The length and width of the rectangle are 10 and 3, respectively.
Let's use "l" to represent the length of the rectangle and "w" to represent the width. From the problem statement, we've got portions of information:
The perimeter is 26. The formulation for the perimeter of a rectangle is P = 2l + 2w. So we are able to write:
2l + 2w = 26
The length is four extra than twice the width. In equation shape:
l = 2w + four
Now we can use substitution to resolve for the length and width. we will alternative the expression 2w + 4 for l within the first equation:
2(2w + 4) + 2w = 26
Simplifying:
4w + 8 + 2w = 26
6w + 8 = 26
6w = 18
w = 3
So the width of the rectangle is three. To discover the length, we're going to substitute w = 3 into the equation for l:
l = 2w + 4 = 2(3) + 4 = 10
So the length of the rectangle is 10.
Thus, the length and width of the rectangle are 10 and 3, respectively.
Learn more about Perimeter of rectangle formula:-
https://brainly.com/question/20853439
#SPJ4
Math 1149 Worksheet Chapter 8 Lesson 4 1. 1-cos²x / sinx 2. Cos X – Cos x. 3. (sin^2 + tan^2 u + cos^2 u) / (sec u) 4. (sec^2 x – tan^2 c) / (cos^2 x + sin^2 x)
5. (sec^2 + csc^2 x) - (tan^2 x + cot^2 x) 6. tan x cot x 7. cot u sin u 8. sec (-x) cos (-x)
9 cot (-θ) tan (-θ)
10. sec^2 (-x) – tan^2 (-x)
11. sec u sin u
1. 1-cos²x / sinx = sin²x / sinx = sinx
2. Cos X – Cos x = 0
3. (sin^2 + tan^2 u + cos^2 u) / (sec u) = (1 + tan^2 u) / (sec u) = sec^2 u / sec u = sec u
4. (sec^2 x – tan^2 c) / (cos^2 x + sin^2 x) = (1/cos^2 x - sin^2 x / cos^2 x) / 1 = (1 - sin^2 x) / cos^2 x = cos^2 x / cos^2 x = 1
5. (sec^2 + csc^2 x) - (tan^2 x + cot^2 x) = (1/cos^2 x + 1/sin^2 x) - (sin^2 x / cos^2 x + cos^2 x / sin^2 x) = (sin^4 x + cos^4 x) / (sin^2 x cos^2 x) = 1 / (sin x cos x)
6. tan x cot x = (sin x / cos x) * (cos x / sin x) = 1
7. cot u sin u = (cos u / sin u) * sin u = cos u
8. sec (-x) cos (-x) = (1 / cos (-x)) * cos (-x) = 1
9. cot (-θ) tan (-θ) = (cos (-θ) / sin (-θ)) * (sin (-θ) / cos (-θ)) = 1
10. sec^2 (-x) – tan^2 (-x) = (1/cos^2 (-x)) - (sin^2 (-x) / cos^2 (-x)) = (1 - sin^2 (-x)) / cos^2 (-x) = cos^2 (-x) / cos^2 (-x) = 1
11. sec u sin u = (1 / cos u) * sin u = sin u / cos u = tan u
Learn more about trigonometry here brainly.com/question/26719838
#SPJ11
i need help 16 divided by 6032 full solution
Answer:
0.00265251989
Hope this helped.
Use the equation to finish the table by finding the x- and y-coordinates. Plot the points and graph the line. Show your work.
We can plot the two points (-2, 3) and (0, 4) and draw a straight line passing through both points. The resulting line has a slope of 1/2 and y-intercept of 4.
Describe Graph?Graphs are used to help people understand and interpret information in a way that is easy to see and analyze. There are many different types of graphs, each with its own characteristics and applications.
Some common types of graphs include:
Line graph: A line graph displays data as a series of points connected by lines, typically used to show trends or changes over time.
Bar graph: A bar graph displays data as bars of different heights, typically used to compare values or quantities.
Pie chart: A pie chart displays data as a circle divided into slices, typically used to show proportions or percentages.
To find the y-coordinate for each x-coordinate, we can substitute each value of x into the equation y = (1/2)x + 4 and simplify:
When x = -2:
y = (1/2)(-2) + 4
y = -1 + 4
y = 3
So, the point (-2, 3) is on the line.
When x = 0:
y = (1/2)(0) + 4
y = 0 + 4
y = 4
So, the point (0, 4) is on the line.
We can complete the table as follows:
x y = (1/2)x + 4 y
-2 y = (1/2)(-2) + 4 3
0 y = (1/2)(0) + 4 4
To graph the line, we can plot the two points (-2, 3) and (0, 4) and draw a straight line passing through both points. The resulting line has a slope of 1/2 and y-intercept of 4.
To know more about intercept visit:
https://brainly.com/question/14180189
#SPJ1
Convert the angle to degrees, minutes, and seconds notation.
124.32 ∘
124.32 ∘
=
Convert the angle measure
48 ∘
36 ′
36 ′′
to decimal degrees.
48 ∘
36 ′
36 ′′
=
(Type an integer or decimal rounded to the nearest thousandth as needed.) Find the angle of least positive measure (in degrees, not The measure is equal to the given measure) that is coterminal with
A
.
A=725 ∘
Give an expression that generates all angles coterminal The correct expression is
240 ∘
+
with the given angle.
240 ∘
This expression will generate all angles coterminal with 240 degrees.
To convert an angle from degrees to degrees, minutes, and seconds, we need to use the following formulas:
1 degree = 60 minutes
1 minute = 60 seconds
First, we need to convert the decimal part of the angle to minutes:
0.32 degrees * 60 minutes/degree = 19.2 minutes
Next, we need to convert the decimal part of the minutes to seconds:
0.2 minutes * 60 seconds/minute = 12 seconds
So, the angle 124.32 degrees is equal to 124 degrees, 19 minutes, and 12 seconds:
124.32 ∘ = 124 ∘ 19 ′ 12 ′′
To convert an angle from degrees, minutes, and seconds to decimal degrees, we need to use the following formulas:
1 degree = 60 minutes
1 minute = 60 seconds
First, we need to convert the minutes to degrees:
36 minutes / 60 minutes/degree = 0.6 degrees
Next, we need to convert the seconds to degrees:
36 seconds / 3600 seconds/degree = 0.01 degrees
So, the angle 48 degrees, 36 minutes, and 36 seconds is equal to 48.61 degrees:
48 ∘ 36 ′ 36 ′′ = 48.61 ∘
To find the angle of least positive measure that is coterminal with a given angle, we need to use the formula:
A = A + 360n
Where A is the given angle, and n is an integer. We need to find the smallest positive value of n that makes the expression equal to a positive angle less than 360 degrees.
For the given angle A = 725 degrees, we can use n = -2:
A = 725 + 360(-2) = 725 - 720 = 5 degrees
So, the angle of least positive measure that is coterminal with 725 degrees is 5 degrees.
To find an expression that generates all angles coterminal with a given angle, we can use the formula:
A = A + 360n
Where A is the given angle, and n is an integer. For the given angle A = 240 degrees, the expression is:
240 ∘ + 360n
This expression will generate all angles coterminal with 240 degrees.
Learn more about angles
brainly.com/question/28451077
#SPJ11
15. \( x=-5, \quad x=4, \quad x=-\frac{1}{2} \) factored form standard form 16. \( x=3, \quad x=-7, \quad x=0 \) (multiplicity of 2) factored form standard form
\[ \text { 17. } x=\frac{2}{3} \text {
The standard form to this equation is x=2/3.
This equation is in the form of a linear equation in one variable, where the variable is x.
The equation is written as x=2/3, meaning that the value of x is equal to 2/3.
The equation can be interpreted as the ratio of two numbers, 2 and 3. The numerator, 2, represents the number of parts, and the denominator, 3, represents the total number of parts.
This equation can be used to solve for the fraction of the total number of parts represented by the numerator. In this case, the fraction is 2/3, or 2 parts out of a total of 3 parts.
The equation can also be interpreted as a proportion. If we make the numerator the unknown value, x, then the equation becomes x/3 = 2/3. This equation can be solved using the cross-multiplication method.
By multiplying the denominators together and setting them equal to each other, then solving for x, we get x = 2/3. This equation shows that the value of x is equal to 2/3 of the total number of parts.
To know more about linear equation click on below link:
https://brainly.com/question/29739212#
#SPJ11
Iliana plays a video game that awards experience points, called "XP", based on how long she plays. She made this graph to study how her playing time relates to XP:
How many hours will it take Iliana to get 200 total XP?
Iliana needs to play for 16 hours to get a total of 200 XP.
What is slope-intercept form ?
The slope-intercept form is a way to write the equation of a line in two variables, usually x and y. It is called "slope-intercept" form because it gives the slope of the line and the y-intercept of the line.
The slope-intercept form is given by:
y = mx + b
where m is the slope of the line and b is the y-intercept, which is the point where the line crosses the y-axis.
We can use the points on the graph to find the equation of the line that relates playing time (x) to total XP (y). To do this, we can use the slope-intercept form of a line:
y = mx + b
where m is the slope of the line and b is the y-intercept.
To find the slope, we can use any two points on the line. Let's use points A and B:
m = (y2 - y1) / (x2 - x1) = (50 - 25) / (4 - 2) = 25/2
Now we can write the equation of the line in slope-intercept form:
y = (25/2)x + b
To find the value of b, we can substitute one of the points on the line into the equation. Let's use point A:
25 = (25/2)(2) + b
b = 0
So the equation of the line is:
y = (25/2)x
Now we can use this equation to find how many hours Iliana needs to play to get 200 total XP. We can set y = 200 and solve for x:
200 = (25/2)x
x = (2/25) * 200
x = 16
Therefore, Iliana needs to play for 16 hours to get a total of 200 XP.
To know more about slope-intercept form visit :
https://brainly.com/question/1884491
#SPJ1
Pls help guys I give brainliest
Show that the set is linearly dependet by finding a nontrival linear combination of vectors in the set whose sum is the zero vector. (use s1, s2, s3 resepectively for the vectors in the set)
S={(5,4),(−1,1),(2,0)}
(0,0)= Express the vector s1 in the set as a linear combination of the vectors s2 and s3. s1=
The vector s₁ in the set can be expressed as a linear combination of the vectors s₂ and s₃:
s₁ = (-4/3)s₂ + (1/3)s₃
How to express that the vector S₁ is a linear combination of the vectors S₂ and S₃?The set S = {(5,4),(−1,1),(2,0)} is linearly dependent if there exists a nontrivial linear combination of the vectors in the set whose sum is the zero vector. In other words, if there exists scalars a, b, and c such that:
a(5,4) + b(−1,1) + c(2,0) = (0,0)
Expanding the above equation gives us:
(5a - b + 2c, 4a + b) = (0,0)
This implies that:
5a - b + 2c = 0
4a + b = 0
Solving the above system of equations gives us:
a = 1/3, b = -4/3, c = 1/3
Therefore, the nontrivial linear combination of the vectors in the set whose sum is the zero vector is:
(1/3)(5,4) + (-4/3)(−1,1) + (1/3)(2,0) = (0,0)
To express the vector s₁ in the set as a linear combination of the vectors s₂ and s₃, we can use the above solution and write:
s₁ = (-4/3)s₂ + (1/3)s₃
More information about linear combination here: https://brainly.com/question/16537794
#SPJ11
equation x^(4)+6x^(3)-3x^(2)-24x-4=0, complete the following Il possible rational roots. synthetic division to test several possible rational roots in order to identify on
The equation x^(4)+6x^(3)-3x^(2)-24x-4=0 has possible rational roots ± 1, 2, 4, ± 1/2, 1/4.
Given the equation: $x^4+6x^3-3x^2-24x-4=0$
To identify possible rational roots we use Rational Root Theorem which states that:
If a polynomial function with integer coefficients has any rational roots then the numerator must divide the constant term and the denominator must divide the leading coefficient. Let's identify possible rational roots. The constant term is -4 and the leading coefficient is 1. Therefore, the possible rational roots are as follows:± 1, 2, 4± 1/2, 1/4
We use synthetic division to test several possible rational roots in order to identify the roots of the equation.
x−40−3−2−4−4−4−4−2+2-2+2-2+2+2-1+1-1+1-1+1+1+4-2+4-2+4-2+4+0-4+0-4+0-4±1 is the root of the equation since the remainder is zero. Therefore, divide the polynomial by x − 1.x^4+6x^3-3x^2-24x-4 = (x-1)(x^3+7x^2+4x+4x+4) = (x-1)(x^3+7x^2+8x+4)
The roots of the equation are x = 1, -2 ± i, where i = √(-1).
Hence, we have completed the following:
Possible rational roots: ± 1, 2, 4, ± 1/2, 1/4
Synthetic division to test possible rational roots: x−40−3−2−4−4−4−4−2+2-2+2-2+2+2-1+1-1+1-1+1+1+4-2+4-2+4-2+4+0-4+0-4+0-4
Possible rational root: ±1
Divide polynomial by (x-1): x^4+6x^3-3x^2-24x-4 = (x-1)(x^3+7x^2+4x+4x+4) = (x-1)(x^3+7x^2+8x+4)
Roots of the equation: x = 1, -2 ± i, where i = √(-1).
For more such questions on Synthetic division.
https://brainly.com/question/29631184#
#SPJ11
"twice the difference of some number and 8 amounts to the quotient of 112 and 14 " written as an equation is
The solution to the equation is x = 12.
The equation for "twice the difference of some number and 8 amounts to the quotient of 112 and 14" can be written as:
2(x - 8) = 112/14
Where x is the unknown number.
First, simplify the right side of the equation by dividing 112 by 14 to get:
2(x - 8) = 8
Next, distribute the 2 on the left side of the equation:
2x - 16 = 8
Finally, solve for x by isolating the variable on one side of the equation:
2x = 8 + 16
2x = 24
x = 24/2
x = 12
Therefore, the solution to the equation is x = 12.
For more about equation:
https://brainly.com/question/29657983
#SPJ11
what smaller 5.75 or 9/7
Answer:
9/7 is smallerrrr
I KNOW AM not smart AT ALL but I really need an explanation if you’re gonna answer pls, because I really want to fully understand how you got the answer.
The location of B' after the rotation on the coordinate plane of 90 degrees clockwise about the origin is
How to rotate 90 degrees clockwise about the origin ?90 degree clockwise rotation refers to the rotation of a figure on a coordinate plane about a fixed point in the clockwise direction. Every point (x, y) will rotate to in order to rotate the figure 90 degrees clockwise around a point (y, -x).
This then means that the B will go from B ( 7, 3 ) to B' ( 3, - 7 ) after a clockwise rotation about the origin.
Find out more on clockwise rotation at https://brainly.com/question/25921931
#SPJ1
question below, please hurry
A jet flying at 200 m/s north accelerates at a rate of 18.2 m/s² for 15 seconds. What is the jet's final velocity?
The final velocity of the jet flying in the north direction after accelerating for 15s is 473 m/s.
What is meant by velocity?When observed from a specific point of view and as measured by a specific unit of time, velocity is the direction at which an item is moving and serves as a measure of the pace at which its position is changing. How quickly or slowly an object is travelling can be determined by its velocity and speed. Being a vector quantity, we need to define velocity in terms of both magnitude (speed) and direction. A body is considered to be accelerating if the magnitude or direction of its velocity changes.
Given,
The initial velocity u = 200 m/s
Acceleration of jet a = 18.2 m/s²
Time taken t = 15s
We are asked to find the final velocity v of the jet.
W can use the following formula to find the final velocity.
v = u+ at
= 200 + (18.2) × 15
= 473 m/s (north)
Therefore the final velocity of the jet flying in the north direction after accelerating for 15s is 473 m/s.
To learn more about the velocity, follow the link.
https://brainly.com/question/24445340
#SPJ1
the mean of five numbers is 15. Four of the numbers are 3, 19, 8, and 32. What is the fitch number.
Answer:
,15
Step-by-step explanation:
ez
Math part 4 question 9
Answer: All questions and answers from the Mathematics Part I (solutions) Book of Class 9 Math Chapter 4 are provided here for you for free.
Step-by-step explanation:
Solve problem
-2 1/3 - (-5)
Answer:
See below.
Step-by-step explanation:
We are asked to solve this expression.
We should first identify that (-5) will be a positive 5 due to 2 negatives cancelling each other out.
We should have;
[tex]-2 \frac{1}{3}+5[/tex]
To make adding a bit more simpler for this type of problem, we should turn both values into Improper Fractions.
What are Improper Fractions?
Improper Fractions are 2 or more fractions that have a greater numerator than a denominator. You can see why they're called improper.
Good Examples:
[tex]\frac{4}{3} \ and \ \frac{3}{2} \\4 > 3\\ 3 > 2[/tex]
Bad Examples:
[tex]\frac{3}{4} \ and \ \frac{4}{4} \\3 < 4\\4 = 4[/tex]
Let's turn these values into Improper Fractions.
[tex]\frac{1}{3} - \frac{3}{3} - \frac{3}{3} = -\frac{7}{3}[/tex]
[tex]5=\frac{5}{1}[/tex]
Make the Denominators Equal:
[tex]\frac{5}{1} \times \frac{3}{3} = \frac{15}{3} \ (5)[/tex]
Now, we can simply add.
[tex]-\frac{7}{3} + \frac{15}{3} = \frac{8}{3}[/tex]
Reverse, turn [tex]\frac{8}{3}[/tex] into a mixed fraction.
[tex]\frac{8}{3} - \frac{3}{3} \ (1) - \frac{3}{3} \ (2) = 2\frac{2}{3}[/tex]
Our final answer is [tex]2\frac{2}{3} .[/tex]
can yall answer these 2 questions for me
According to the information we can infer that the statement that establishes a correct interpretation of the model is the model associates a score of 80 with 2 hours of studying.
How to select the correct statement?To select the correct statement we must replace the value of (t) in the equation and check the relationship between the results of the students in the test and the hours spent studying.
According to the above, if we replace t by two we can infer that the result would be y = 80 as shown below:
y = 10 (2) + 60y = 20 + 60y = 80So the correct answer would be statement C.
On the other hand, to identify the percentage to which the number of seventh grade students who have a laptop is equivalent, we must add the total number of students in this grade and then find the percentage with a rule of three:
52 + 43 = 9595 = 100%43 = %?43 * 100% / 95 = 45.26%So the correct answer would be 42% because this value is the closest and we could approximate it.
Learn more about equations at: https://brainly.com/question/29657983
#SPJ1
The length of the top of a workbench is 6m greater than the width. The area is 91m^(2). Find the length and the width.
The length of the top of the workbench is 13m and the width is 7m.
To find the length and the width, we can use the formula for the area of a rectangle, which is A = L x W, where A is the area, L is the length, and W is the width. We can plug in the given values and solve for the unknowns.
Let's start by assigning variables to the length and the width. Let's call the width x and the length x + 6 (since the length is 6m greater than the width).
Now we can plug these values into the formula:
A = L x W
91 = (x + 6) x x
91 = x2 + 6x
Now we can rearrange the equation to solve for x:
x2 + 6x - 91 = 0
We can use the quadratic formula to solve for x:
x = (-6 ± √(62 - 4(1)(-91))) / (2(1))
x = (-6 ± √(36 + 364)) / 2
x = (-6 ± √400) / 2
x = (-6 ± 20) / 2
The two possible solutions are:
x = (-6 + 20) / 2 = 7
x = (-6 - 20) / 2 = -13
Since the width cannot be negative, the only valid solution is x = 7. This means that the width is 7m and the length is x + 6 = 7 + 6 = 13m.
So the length of the top of the workbench is 13m and the width is 7m.
To know more about variable, refer here:
https://brainly.com/question#
#SPJ11
List all the possible rational roots of x^4 - 2x^3 -6x^2 + 22x - 15 = 0
The possible rational roots are:
±1/1, ±3/1, ±5/1, ±15/1, ±1/1, ±1/2, ±3/2, ±5/2, ±15/2
What are Functions?A function is a mathematical rule that assigns a unique output value for each input value. It is a set of ordered pairs where the first element is the input and the second element is the output.
To list all the possible rational roots of x⁴ - 2x³ -6x² + 22x - 15 = 0, we need to find all the factors of the constant term -15 (in this case, they are 1, -1, 3, -3, 5, -5, 15, and -15) and all the factors of the leading coefficient 1 (in this case, they are 1 and -1). Then, we form all possible fractions of the form p/q, where p is a factor of the constant term and q is a factor of the leading coefficient. Therefore, the possible rational roots are:
±1/1, ±3/1, ±5/1, ±15/1, ±1/1, ±1/2, ±3/2, ±5/2, ±15/2
To learn more about Functions from the given link
https://brainly.com/question/22340031
#SPJ1
(a) How many ways can 8 people be arranged on 8 chairs in a row?
(b) How many ways can 8 people be seated around a circular table? (Note that rotating the chairs around the table does not change the seating) (c) Let {P.P2, P3, ...Ps} be eight people. How many committees can be selected from the people if ps has to be the chair of the committee (and so a member of the committee)?
There would be 40,320 ways can 8 people be arranged on 8 chairs in a row. There are 5,040 ways can 8 people be seated around a circular table. There are 128 committees can be selected from the people if ps has to be the chair of the committee
(a) The number of ways that 8 people can be arranged on 8 chairs in a row is 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40,320. This is because there are 8 choices for the first chair, 7 choices for the second chair, and so on until there is only one choice for the last chair.
(b) The number of ways that 8 people can be seated around a circular table is (8-1)! = 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5,040. This is because we can fix one person in one seat and then there are 7 choices for the next seat, 6 choices for the next seat, and so on until there is only one choice for the last seat.
(c) The number of committees that can be selected from the 8 people if Ps has to be the chair of the committee is 2^(8-1) = 2⁷ = 128. This is because there are 7 people left to choose from and each person can either be on the committee or not on the committee, which gives us 2 choices for each person.
Learn more about probability https://brainly.com/question/17037947
#SPJ11
If both a and b are positive numbers and ( b)/(a) is greater than 1, then is a-b positive or negative?
If both a and b are positive numbers and (b)/(a) is greater than 1, then a-b will be negative.
This is because when (b)/(a) is greater than 1, it means that b is greater than a. So when you subtract a from b, you will get a negative number.
For example, let's say a = 2 and b = 5.
(b)/(a) = (5)/(2) = 2.5, which is greater than 1.
So when we subtract a from b, we get:
b - a = 5 - 2 = 3, which is a positive number.
But when we subtract b from a, we get:
a - b = 2 - 5 = -3, which is a negative number.
Therefore, if both a and b are positive numbers and (b)/(a) is greater than 1, then a-b will be negative.
To know more about numbers here:
https://brainly.com/question/17429689#
#SPJ11
If three hamburgers cost $7.50 altogether what is the price of one hamburger
Answer:
$2.50
Step-by-step explanation:
Given: /\ABC, KM || AC
a) AB=10, KB=2, KM=1
AC-?
b) KM=3, AC=6,BC=9
BM-?
c)BC=25, MC=10, AC=5
KM-?
d)AK=10,KB=4,BC=21
BM-?,MC-?
In the triangle ABC, the value of AC is obtained as 5 units.
What are triangles?
Triangles are a particular sort of polygon in geometry that have three sides and three vertices. Three straight sides make up the two-dimensional figure shown here. An example of a 3-sided polygon is a triangle. The total of a triangle's three angles equals 180 degrees. One plane completely encloses the triangle.
A triangle ABC is given.
The measure of AB is given as 10 units.
The measure of KB is given as 2 units.
The measure of KM is given as 1 unit.
According to the indirect measurement -
AB / AC = KB / KM
Substitute the values in the equation -
10 / AC = 2 / 1
2 AC = 10
AC = 5
Therefore, the value of AC is obtained as 5 units.
To learn more about triangles from the given link
https://brainly.com/question/25215131
#SPJ1
simplify long division
The long division process is explained below.
What is Division?Division is one of the operation in mathematics where number is divided into equal parts as that of a definite number.
While doing long division method, you have to follow certain steps.
Consider an example 259 ÷ 9.
259 is the dividend, 9 is the divisor.
First consider the first digit of the dividend, which is 2. But 2 is not greater than or equal to 9.
So take the next digit also and so consider the first two digits.
The first two digits of the dividend is 25.
25 is not a multiple of 9.
The number which is a multiple of 9 nearer to but less than 25 is 18.
18 = 2 × 9.
Write 2 in the quotient and subtract 25 - 18 = 7
Now 7 is less than 9. So bring down the next (third) digit of the dividend, which is 9.
So the number we get is 79.
Again 79 is not a multiple of 9. The nearest lesser multiple of 9 is 72.
72 = 9 × 8
So write 8 in the quotient.
Remainder is 79 - 72 = 7
So we get the quotient as 28 and the remainder is 7.
Hence the simplification of the long division is explained.
To learn more about Division, click on the link :
https://brainly.com/question/28824872
#SPJ1
Bart wants to plant 8 trees in a row along his fence. He has been given 4 birches, 1 spruce, 1 poplar, 1 willow, and 1 elm. If the 4 birches are identical, then how many possible arrangements of trees are there?
The possible arrangement is 3960.
What is permutation?Permutation is a mathematical calculation of the number of ways a particular set can be arranged, where the order of the arrangement matters.
Given that, Bart wants to plant 8 trees in a row along his fence.
Possible arrangement of 4 birches = 5 x 4 x 3 x 2 x 1 = 120
If 3 birches are next to each other, therefore, 6 possible arrangement are possible = A₄⁴ x A₅² = 480
Similarly,
If 2 birches are next to each other, therefore, 6 possible arrangement are possible = A₄⁴ x A₅² = 480
If 4 birches are not next to each other, therefore, possible arrangement are possible = A₄⁴ x A₅⁴ = 2880
Therefore, total arrangements = 120+480+480+2880 = 3960
Hence, the possible arrangement is 3960.
Learn more about permutation, click;
https://brainly.com/question/30649574
#SPJ1
Without making calculations, what data set has the smallest standard deviation?
Answer: the last option
Step-by-step explanation:
Standard derivation reflects the degree if dispersion of a data set
so the answer is 1,1,1,1,2,2,2,2
What is the exact distance between (-7,4) and (3,1)
Answer: d = [tex]\sqrt{109}[/tex]
Step-by-step explanation:
Use the distance formula. [tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y{1})^2[/tex]
[tex]d=\sqrt{(3-(-7))^2+(1-4)^2[/tex]
d = [tex]\sqrt{(10)^2+(-3)^2}[/tex]
d = [tex]\sqrt{100+9}[/tex]
d = [tex]\sqrt{109}[/tex]
Given- Two points as (-7,4) and (3,1)
To find- The exact distance between them
Explanation - we know the distance formula is
[tex]d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
here
[tex]x_1=-7, x_2=3\\y_1=4, y_2=1[/tex]
Substituting these values we get
[tex]d=\sqrt{(-7-3)^2+(1-4)^2} \\d=\sqrt{10^2+3^2} \\d=\sqrt{100+9} \\d=\sqrt{109} \\d=10.44[/tex]
Hence the distance between them is 10.44
Final answer- the distance between the points is 10.44
1) Louis is dilating triangle ABC at right. He
multiplied each x-coordinate and y-coordinate of
triangle ABC by -2.
a. What are the new coordinates of the points?
To find the new coordinates of the points after Louis multiplied each x-coordinate and y-coordinate of triangle ABC by -2, we can use the following formulas:
New x-coordinate = -2 * old x-coordinate
New y-coordinate = -2 * old y-coordinate
Let's apply these formulas to each point in triangle ABC:
Point A: (-3, 4)
New x-coordinate of A = -2 * (-3) = 6
New y-coordinate of A = -2 * 4 = -8
New coordinates of A: (6, -8)
Point B: (1, 1)
New x-coordinate of B = -2 * 1 = -2
New y-coordinate of B = -2 * 1 = -2
New coordinates of B: (-2, -2)
Point C: (5, -2)
New x-coordinate of C = -2 * 5 = -10
New y-coordinate of C = -2 * (-2) = 4
New coordinates of C: (-10, 4)
Therefore, the new coordinates of the points after Louis multiplied each x-coordinate and y-coordinate of triangle ABC by -2 are:
A: (6, -8)
B: (-2, -2)
C: (-10, 4)
Find x
pls help solve this
The answers are given in the solution below.
What is circle?A circle is a round-shaped figure that has no corners or edges. In geometry, a circle can be defined as a closed, two-dimensional curved shape.
Given that, are circles, we need to find the value of x in each of them,
Using the property of circle,
1) ∠ TSU = 1/2(arc LV + arc TU)
98° = 1/2(70° + 25x+1)
196 = 71+25x
25x = 125
x = 5
2) ∠ BAC = 1/2(arc DR + arc CB)
10x-5 = 1/2(4x+18 + 132)
20x-10 = 4x+18+132
16x = 160
x = 10
3) arc FR = 360° - 245°
arc FR = 115°
∠ FSR = 1/2(245-115)
8x+1 = 65
8x = 64
x = 8
4) ∠ EDF = 1/2(arc CF - arc DF)
5x+1 = 1/2(13x+19-4x-5)
5x+1 = 1/2(9x+14)
10x+2 = 9x+14
x = 12
Learn more about circles, click;
https://brainly.com/question/29142813
#SPJ1