Determine the inverse Laplace transform [F] of the given function F(s) F(s)=6s^2-13s+2/s(s-1)(s-6) F(s)=2s^16/s^2+4s+13 s^2F(s)+sF(s)-6F(s)=s^2+4/s^2+s s^2F(s)+sF(s)-6F(s)=s^2+4/s^2+s

Answers

Answer 1

The inverse Laplace transform of F(s) is given by f(t) = [2/3 + (4/15)e^t - (2/5)e^6t]u(t).

Given, F(s) = (6s^2 - 13s + 2)/(s(s-1)(s-6))

We need to find f(t) = L^-1{F(s)}

To find f(t), we first need to express F(s) in partial fractions as:

F(s) = A/s + B/(s-1) + C/(s-6)

Multiplying both sides by the denominator (s(s-1)(s-6)), we get:

6s^2 - 13s + 2 = A(s-1)(s-6) + B(s)(s-6) + C(s)(s-1)

Substituting s = 0, 1, 6, we get:

A = -2/5, B = 2/3, C = 4/15

Therefore, F(s) = -2/(5s) + 2/(3(s-1)) + 4/(15(s-6))

Using the table of Laplace transforms, we get:

L^-1{-2/(5s)} = - (2/5)u(t)

L^-1{2/(3(s-1))} = (2/3)e^t u(t)

L^-1{4/(15(s-6))} = (4/15)e^(6t) u(t)

Hence, the inverse Laplace transform of  Function F(s) is given by:

f(t) = L^-1{F(s)} = [2/3 + (4/15)e^t - (2/5)e^6t]u(t)

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

Answer 2

the inverse Laplace transform of F(s) is F(t) = (1/3) + (6/3)e^t + (11/3)e^6t

To determine the inverse Laplace transform of the function F(s) = (6s^2 - 13s + 2) / (s(s - 1)(s - 6)), we need to decompose the function into partial fractions and then use the table of Laplace transforms to find the inverse transform.

First, we decompose F(s) into partial fractions:

F(s) = A/s + B/(s - 1) + C/(s - 6)

To find the values of A, B, and C, we can multiply both sides by the denominator and equate the coefficients of like powers of s:

6s^2 - 13s + 2 = A(s - 1)(s - 6) + B(s)(s - 6) + C(s)(s - 1)

Expanding and collecting like terms:

6s^2 - 13s + 2 = (A + B + C)s^2 - (7A + 7B + C)s + 6A

Equating coefficients:

A + B + C = 6

-7A - 7B - C = -13

6A = 2

From the third equation, we find A = 1/3. Substituting this value into the first equation, we get B + C = 17/3. Substituting A = 1/3 and B + C = 17/3 into the second equation, we find C = 11/3 and B = 6/3.

So, we have:

F(s) = 1/3s + 6/3/(s - 1) + 11/3/(s - 6)

Now, we can find the inverse Laplace transform of each term using the table of Laplace transforms:

Inverse Laplace transform of 1/3s: (1/3)

Inverse Laplace transform of 6/3/(s - 1): (6/3)e^t

Inverse Laplace transform of 11/3/(s - 6): (11/3)e^6t

Putting it all together, the inverse Laplace transform of F(s) is:

F(t) = (1/3) + (6/3)e^t + (11/3)e^6t

For similar question on inverse Laplace.

brainly.com/question/20392450

#SPJ11


Related Questions

a stack of 12 cards has 4 aces, 4 kings, and 4 queens. what is the probability of picking 3 queens from the stack?

Answers

To find the probability of picking 3 queens from the stack, we need to first find the total number of ways to pick 3 cards from the stack of 12. This is represented by the combination formula:



nCr = n! / (r! * (n-r)!)
where n is the total number of cards in the stack (12) and r is the number of cards we want to pick (3).
nCr = 12! / (3! * (12-3)!) = 220
So, there are 220 possible ways to pick 3 cards from the stack.
Now, we need to find the number of ways to pick 3 queens from the stack. Since there are 4 queens in the stack, we can use the combination formula again:
nCr = n! / (r! * (n-r)!)



where n is the number of queens in the stack (4) and r is the number of queens we want to pick (3).
nCr = 4! / (3! * (4-3)!) = 4
So, there are 4 possible ways to pick 3 queens from the stack.
Finally, we can find the probability of picking 3 queens by dividing the number of ways to pick 3 queens by the total number of ways to pick 3 cards:



P(3 queens) = 4 / 220 = 0.018 or approximately 1.8%.
To answer your question, let's calculate the probability of picking 3 queens from the stack of 12 cards containing 4 aces, 4 kings, and 4 queens.
The total number of ways to pick 3 cards from the stack of 12 cards is represented by the combination formula: C(n, k) = n! / (k!(n-k)!), where n is the total number of cards and k is the number of cards chosen. In this case, n=12 and k=3.



C(12, 3) = 12! / (3!(12-3)!) = 12! / (3!9!) = (12 × 11 × 10) / (3 × 2 × 1) = 220

calculate the number of ways to pick 3 queens from the 4 queens available:
C(4, 3) = 4! / (3!(4-3)!) = 4! / (3!1!) = (4 × 3 × 2) / (3 × 2 × 1) = 4
Finally, divide the number of ways to pick 3 queens by the total number of ways to pick 3 cards to find the probability:
Probability = (Number of ways to pick 3 queens) / (Total number of ways to pick 3 cards) = 4 / 220 = 1/55 ≈ 0.0182
So, the probability of picking 3 queens from the stack is approximately 0.0182 or 1/55.

To know more about Probability  click here.

brainly.com/question/30034780

#SPJ11

Una muestra de un metal contiene 4. 25 moles de molibdeno y 1. 63 moles de titanio expresa la relación de átomos y molecula

Answers

The problem statement is in Spanish and it asks to express the relationship between atoms and molecules for a metal sample containing [tex]4.25 moles[/tex] of molybdenum and [tex]1.63 moles[/tex] of titanium.

However, we can make some assumptions based on the typical behavior of metals. Metals usually exist in a solid state and consist of closely packed atoms arranged in a crystal lattice. Therefore, we can assume that the metal in question is solid, and its atoms are arranged in a regular pattern.

In this case, we can assume that the metal sample contains a mixture of molybdenum and titanium atoms, and the atoms are arranged in a crystal lattice structure. The ratio of moles of molybdenum to moles of titanium in the sample is approximately 2.61:1 (4.25/1.63), which means that there are more molybdenum atoms than titanium atoms in the sample.

Since the metal is solid, we can assume that the atoms are arranged in a crystal lattice, and the ratio of the number of atoms of each element in the crystal lattice is determined by the chemical formula of the compound. Without knowing the chemical formula, we cannot determine the exact ratio of atoms and molecules in the sample.

To learn more about atoms and molecules, visit here

https://brainly.com/question/31377831

#SPJ4

how many different samples of size 2 can be selected from a population of size 10? multiple choice 45 10

Answers

The problem asks for the number of different samples of size 2 that can be selected from a population of size 10. To solve this problem, we can use the formula for the number of combinations of n objects taken r at a time, which is given by nCr = n!/(r!(n-r)!), where n is the size of the population and r is the size of the sample.

In this case, we have n=10 and r=2, so the number of different samples of size 2 that can be selected from a population of size 10 is given by 10C2 = 10!/(2!(10-2)!) = 45. Therefore, there are 45 different samples of size 2 that can be selected from a population of size 10.

Another way to think about this problem is to consider that when selecting a sample of size 2 from a population of size 10, we can choose the first element from any of the 10 objects in the population, and then choose the second element from the remaining 9 objects in the population (since we can't choose the same object twice).

Therefore, the total number of different samples of size 2 that can be selected is 10 x 9 = 90. However, since the order in which we choose the elements of the sample doesn't matter, we need to divide by 2 (the number of ways to arrange 2 elements), giving us a total of 45 different samples of size 2.

To learn more about combinations, click here:

brainly.com/question/31586670

#SPJ11

Complete question:

How many different samples of size 2 can be selected from a population of size 10?

Use the region in the first quadrant bounded by √x, y=2 and the y - axis to determine the area of the region. Evaluate the integral.
A. 50.265
B. 4/3
C. 16
D. 8
E. 8π
F. 20/3
G. 8/3
E/ -16/3

Answers

The  integral of the function √x, y=2 and the y  is   G. 8/3

How to determine the area of the region?

You want the area between y=2 and y=√x.

Bounds

The square root curve is only defined for x ≥ 0. It will have a value of 2 or less for m √x ≤ 2

x ≤ 4 . . . . square both sides

So, the integral has bounds of 0 and 4.

Integral

The integral is

[tex]\int\limits^4_0 {[2-xx^{1/2} } \, dx = \int\limits^4_6 {2x-2/3x^{4/3} } \, dx = 8-2/3(\sqrt{4)x^{3} } =8/3[/tex]

Additional comment

You will notice that this is 1/3 of the area of the rectangle that is 4 units wide and 2 units high. That means the area inside a parabola is 2/3 of the area of the enclosing rectangle. This is a useful relation to keep in the back of your mind.

Learn more about integral values of an expression on https://brainly.com/question/29811713

#SPJ1

A store container is the shape of a rectangular prism. The container has a length of 5 ft, a width of9 ft, and a height of 8 ft. What is the surface area of the container?

360 ft sq
314 ft sq
157 ft sq
22 ft sq

Answers

The surface area of the container is 314 sq ft

What is the surface area of the container?

From the question, we have the following parameters that can be used in our computation:

length of 5 ft, a width of9 ft, and a height of 8 ft.

The surface area is calculated as

Area = 2 * (Length * Width + Length * Height + Width * Height)

Substitute the known values in the above equation, so, we have the following representation

Area = 2 *(5 * 9 + 5 * 8 + 9 * 8)

Evaluate

Area = 314

Hence, the area is 314 sq ft

Read more about area at

https://brainly.com/question/26403859

#SPJ1

What is the expected value for the binomial distribution below? Successes 0, 1, 2, 3, 4, 5 probability 243/3125, 162/625, 216/625, 48/625, 32/3125

Answers

The expected value for this binomial distribution is 0.5.

To find the expected value for the binomial distribution, we can use the formula:

E(X) = np

where:

X is the random variable representing the number of successes

n is the total number of trials

p is the probability of success in each trial

In this case, the binomial distribution has the following probabilities for the number of successes:

P(X=0) = 243/3125

P(X=1) = 162/625

P(X=2) = 216/625

P(X=3) = 48/625

P(X=4) = 32/3125

The total number of trials is the sum of the probabilities:

n = (243/3125) + (162/625) + (216/625) + (48/625) + (32/3125) = 1

The probability of success in each trial is the sum of the probabilities for X=1, X=2, X=3, and X=4:

p = (162/625) + (216/625) + (48/625) + (32/3125) = 0.5

Now we can use the formula to find the expected value:

E(X) = np = 1 * 0.5 = 0.5.

For similar question on binomial distribution.

https://brainly.com/question/23780714

#SPJ11

Answer:

0.5616

Step-by-step explanation:

The expected value for a binomial distribution can be calculated using the formula E(X) = np, where n is the number of trials and p is the probability of success in each trial.

To calculate the expected value for the given binomial distribution, we need to multiply each number of successes by its corresponding probability and then sum them up.

0 successes: (0)(243/3125)

1 success: (1)(162/625)

2 successes: (2)(216/625)

3 successes: (3)(48/625)

4 successes: (4)(32/3125)

5 successes: (5)(1/3125)

Now, let's calculate each of these values:

0 successes: 0

1 success: 162/625

2 successes: 432/625

3 successes: 144/625

4 successes: 128/3125

5 successes: 5/3125

To find the expected value, we need to sum up these values:

0 + 162/625 + 432/625 + 144/625 + 128/3125 + 5/3125 = 0.5616

Therefore, the expected value for the given binomial distribution is approximately 0.5616.

Schwarz Lemma

Let D= D(0, 1) denote the open unit disc. For c E C, define Mc(z) = cz. It is clear that, if |c| = 1, then Mc E Aut(D).

Theorem 5.1.1. [Schwarz Lemma] Let f : D→ D be an analytic function such that f(0) = 0. Then

(i) |f(z)|≤ |z| for all z D, and |f'(0)| ≤ 1.

(ii) If for some zo ED\{0}, f(zo)| = |zol, or f'(0) = 1, then f= Mc for some |c| = 1. In particular, if f(z0) = zo or f'(0) = 1, then c = 1, i.e., f = id.

Answers

The Schwarz Lemma is a result in complex analysis that gives information about analytic functions that map the open unit disc to itself and have a fixed point at the origin.

The first part of the theorem states that if f is analytic on the open unit disc D and f(0) = 0, then |f(z)| ≤ |z| for all z in D, and |f'(0)| ≤ 1. This means that the absolute value of f(z) is always less than or equal to the absolute value of z, and the absolute value of the derivative of f at the origin is less than or equal to 1.

The second part of the theorem states that if there exists a point zo in D{0} such that either |f(zo)| = |zo| or f'(0) = 1, then f must be a rotation of the disc, i.e., f(z) = cz for some complex number c with |c| = 1. In particular, if f(z0) = z0 or f'(0) = 1, then c = 1 and f = id, the identity function.

The Schwarz Lemma is an important tool in complex analysis for studying functions that preserve the unit disc, and has applications in areas such as conformal mapping and geometric function theory.

Learn more about Schwarz Lemma here:- brainly.com/question/30402486

#SPJ11

#6 i
Find (a) f(g(x)), (b) g(f(x)), and (c)
f(f(x)).

f(x) = 2x², g(x)=x-1

a. f(g(x)) =

b. g(f(x)) =

C.f(f(x)) =

Answers

The solutions are given below,

(a) f(g(x)) = 2x² - 4x + 2

(b) g(f(x)) = 2x² - 1

(c) f(f(x)) = 8x⁴

To find f(g(x)), we substitute g(x) into the function f(x):

f(g(x)) = 2(g(x))²

f(g(x)) = 2(x-1)²

f(g(x)) = 2(x² - 2x + 1)

f(g(x)) = 2x² - 4x + 2

Therefore, f(g(x)) = 2x² - 4x + 2.

b. To find g(f(x)), we substitute f(x) into the function g(x):

g(f(x)) = f(x) - 1

g(f(x)) = 2x² - 1

Therefore, g(f(x)) = 2x² - 1.

c. To find f(f(x)), we substitute f(x) into the function f(x):

f(f(x)) = 2(f(x))²

f(f(x)) = 2(2x²)²

f(f(x)) = 2(4x⁴)

f(f(x)) = 8x⁴

Therefore, f(f(x)) = 8x⁴.

To know more about functions follow

https://brainly.com/question/30474729

#SPJ1

do you dislike waiting in line? supermarket chain kroger has used computer simulation and information technology to reduce the average waiting time for customers at stores. using a new system called quevision, which allows kroger to better predict when shoppers will be checking out, the company was able to decrease average customer waiting time to just seconds (informationweek website). assume that waiting times at kroger are exponentially distributed. a. which of the probability density functions of waiting time is applicable at kroger? a. for b. for c. for d. for b b. what is the probability that a customer will have to wait between and seconds (to 4 decimals)? 0.5433 c. what is the probability that a customer will have to wait more than minutes (to 4 decimals)?

Answers

a. This is a very low probability, indicating that the new system implemented by Kroger is effective in reducing waiting times.

b. The probability that a customer will have to wait between 2 and 4 seconds is approximately 0.5433.

c. The probability that a customer will have to wait more than 5 minutes (300 seconds) is approximately 0.000006, or 0.0006%.

a. The probability density function of waiting time applicable at Kroger is the exponential distribution function.

b. The probability of a customer having to wait between 2 and 4 seconds can be calculated as follows:

Let λ be the rate parameter of the exponential distribution, which represents the average number of customers served per second. Since the waiting times are exponentially distributed, the probability density function of the waiting time t is given by:

[tex]f(t) = \lambda \times e^{(-\lambda\times t)}[/tex]

We want to find the probability that a customer will have to wait between 2 and 4 seconds. This can be calculated as the difference between the cumulative distribution functions (CDF) evaluated at 4 seconds and 2 seconds:

P(2 < t < 4) = F(4) - F(2)

where F(t) is the CDF of the exponential distribution:

[tex]F(t) = 1 - e^{(-\lambda \times t)}[/tex]

Substituting the value of λ (which we need to estimate), we can solve for the probability:

[tex]P(2 < t < 4) = (1 - e^{(-\lambda4)}) - (1 - e^{(-\lambda2)})\\= e^{(-\lambda2)} - e^{(-\lambda4)}[/tex]

To estimate λ, we can use the information given in the problem that the average waiting time is "just seconds". Let's assume that this means an average waiting time of 2 seconds. Then, the rate parameter λ can be estimated as:

λ = 1 / 2

Substituting this value in the equation above, we get:

[tex]P(2 < t < 4) = e^{(-1)} - e^{(-2)[/tex]

≈ 0.5433

c. The probability of a customer having to wait more than 5 minutes (i.e., 300 seconds) can be calculated as follows:

P(t > 300) = 1 - F(300)

where F(t) is the CDF of the exponential distribution as given above. Substituting the value of λ estimated earlier, we get:

[tex]P(t > 300) = 1 - (1 - e^{(-\lambda300)})\\= e^(-\lambda300)[/tex]

Substituting the value of λ, we get:

[tex]P(t > 300) = e^{(-150)}[/tex]

≈ 0.000006

for such more question on probability

https://brainly.com/question/13604758

#SPJ11

practice with the z-score formula; for a distribution of 200 values that is approximately symmetric, unimodal, and bell-shaped, and that has a mean of 145.2 and a standard deviation of 16.8, what is the z-score for these performance values?'

Answers

To answer your question, we first need to calculate the z-score formula. The z-score formula is:

z = (x - μ) / σ

Where:
x = the value we want to find the z-score for
μ = the mean of the distribution
σ = the standard deviation of the distribution

In this case, we are given that the distribution has a mean of 145.2 and a standard deviation of 16.8. We also know that we want to find the z-score for some performance values.

Let's say that the performance value we are interested in is 160. Using the z-score formula, we can calculate the z-score as:

z = (160 - 145.2) / 16.8
z = 0.88095

So the z-score for a performance value of 160 in this distribution is 0.88095.

It's worth noting that if the distribution is exactly normal, we can use a z-score table to find the percentage of values that fall below or above a certain z-score. However, if the distribution deviates from normality in any way, the z-score may not accurately represent the percentage of values in the distribution.
To calculate the z-score for a specific performance value in a distribution, you can use the following formula:

z-score = (value - mean) / standard deviation

Given the distribution has a mean of 145.2 and a standard deviation of 16.8, let's assume we have a specific performance value "X." You would then plug the numbers into the formula:

z-score = (X - 145.2) / 16.8

Replace "X" with the specific performance value you want to find the z-score for, and you'll have your answer.

To know more about Z-Score click here.

brainly.com/question/15016913

#SPJ11

researchers plan to take another sample of whale and cruise ship encounters in the west arm sub-region of glacier bay. assuming , if the researchers would like to ensure that the standard deviation of the sample proportion is no larger than 0.03, how many encounters would they need to include in their sample? round your answer to the nearest whole number.

Answers

The researchers would need to include at least 278 encounters in their sample to ensure that the standard deviation of the sample proportion is no larger than 0.03.

To determine the required sample size, we need to use the formula for the standard deviation of the sample proportion (σp):

[tex]\sigma_p = \sqrt{(p * (1 - p) / n)}[/tex]

where:

p is the estimated proportion (we don't have this information, so we'll use 0.5 as a conservative estimate for maximum variance),

n is the sample size.

Since the researchers want to ensure that the standard deviation of the sample proportion is no larger than 0.03, we can set up the following inequality:

0.03 ≥ √(0.5 * (1 - 0.5) / n)

Squaring both sides of the inequality to eliminate the square root:

0.03² ≥ 0.5 * (1 - 0.5) / n

0.0009 ≥ 0.25 / n

Now, solve for n:

n ≥ 0.25 / 0.0009

n ≥ 277.78

Since the sample size (n) must be a whole number, the researchers would need to include at least 278 encounters in their sample to ensure that the standard deviation of the sample proportion is no larger than 0.03. Rounding up, the required sample size is 278 encounters.

Learn more about standard deviation here:

https://brainly.com/question/32088157

#SPJ12

use a table of integrals with forms involving eu to find the indefinite integral. (use c for the constant of integration.) ∫ (1 / 1+e^12x) dx

Answers

The indefinite integral of (1 / 1+e^12x) is (1/12) ln|1+e^12x| + C, where C is the constant of integration.

To find the indefinite integral of (1 / 1+e^12x), we can use a table of integrals with forms involving eu. The form that matches our integral is ∫(1 / 1+e^u) du, where u=12x.

We can substitute u=12x and du/dx=12 to get ∫(1 / 1+e^12x) dx = (1/12) ∫(1 / 1+e^u) du.

Using the table of integrals, the integral of (1 / 1+e^u) du is ln|1+e^u| + C, where C is the constant of integration.

Substituting back in u=12x and multiplying by 1/12, we get the final answer: ∫(1 / 1+e^12x) dx = (1/12) ln|1+e^12x| + C.

For more about integral:

https://brainly.com/question/22008756

#SPJ11

Find the maxima and minima, and where they are reached, of the function In f(x,y) = x² + y² + xy

{(x,y): x² + y² ≤ 1}

(I)Local. (ii) Absolutes. (iii) Identify the critical points inside the disk (not on the border) if any. Say if they are extreme '? what type?'o saddle points,'o we cannot tell using ___

Answers

i. The local maxima and minima are 3 and 2

ii. The absolute maximum of f(x,y) over the region is 3/2  at (1/√2, 1/√2), and the absolute minimum is -1/2, which is attained at (-1/√2, -1/√2).

iii.  There are no other critical points inside the disk, so we cannot tell whether they are extreme or saddle points.

i. To find the maxima and minima of the function f(x,y) = x² + y² + xy over the region {(x,y): x² + y² ≤ 1}, we first find the critical points by setting the partial derivatives equal to zero:

f(x) = 2x + y = 0

fy = 2y + x = 0

Solving these equations simultaneously gives the critical point (-1/3, 2/3). We now need to check if this is a local maximum, local minimum or a saddle point. To do this, we use the second partial derivative test.

f(xx) = 2, f(xy) = 1, fyy = 2

The determinant of the Hessian matrix is Δ = f(xx)f(yy_ - (fxy)² = 2(2) - (1)² = 3, which is positive, and f(xx) = 2, which is positive. Therefore, the critical point is a local minimum.

ii. To find the absolute maximum and minimum, we need to consider the boundary of the region. Let g(x,y) = x² + y² be the equation of the circle with radius 1 centered at the origin. We can parameterize this curve as x = cos(t) and y = sin(t), where 0 ≤ t ≤ 2π.

Substituting this into the function f(x,y), we get:

h(t) = f(cos(t), sin(t)) = cos²(t) + sin²(t) + cos(t)sin(t) = 1 + (1/2)sin(2t)

We now find the critical points of h(t) by setting dh/dt = 0:

dh/dt = cos(2t) = 0

This gives t = π/4 and 5π/4.

Substituting these values into h(t), we get:

h(π/4) = 3/2

h(5π/4) = -1/2

Therefore, the absolute maximum of f(x,y) over the region is 3/2, which is attained at (1/√2, 1/√2), and the absolute minimum is -1/2, which is attained at (-1/√2, -1/√2).

iii. There are no other critical points inside the disk, so we cannot tell whether they are extreme or saddle points.

Learn more about the maxima and minima of a function: brainly.com/question/31398897

#SPJ11

Choose the formula for the volume of a cone V = 13πr2h written in terms of h.

A. H=r23Vπ

B. H=Vπr23

C. H=πr23V

D. H=3Vπr2

Part B

Find the height h of a cone with volume V = 32π cm3 and radius r = 4 cm.


height = cm

Answers

The Height of the Cone is 6 cm.

What is Volume of Cone?

The shape's volume is equal to the product of its area and height. = Height x Base Area = Volume.

The formula for the volume of a cone is V=1/3hπr².

Volume of Cone= 1/3 πr²h

where r is the radius and h is the height.

Now, if V= 32π cm³ and r= 4 cm

Then, Volume of Cone = 1/3 πr²h

                            32π = 1/3 π(4)²h

                             32 = 1/3  (4)²h      

                               32= 1/3 (16)h

                               h/3 = 2

                              h= 6cm

Hence, the height is 6 cm.

Learn more about Volume of Cone here:

brainly.com/question/29767724

#SPJ4

Express the given quantity as a function f(x) of one variable x.

the perimeter of a rectangle of length x and width y that has an area of 187 square meters

Answers

This function gives us the perimeter in meters for any given length x of the rectangle. To express the given quantity as a function f(x) of one variable x, we need to use the given information about the area and the formula for the perimeter of a rectangle.

Let's start by recalling the formula for the area of a rectangle:

A = length x width

We know that the area of the rectangle is 187 square meters, so we can write:

187 = x y

Now, let's recall the formula for the perimeter of a rectangle:

P = 2(length + width)

We want to express the perimeter as a function of x only, so we need to eliminate y from this formula using the information we have about the area:

y = 187/x

Substituting this expression for y into the formula for the perimeter, we get:

P = 2(x + 187/x)

Therefore, the function f(x) that expresses the perimeter of the rectangle as a function of its length x is:

f(x) = 2(x + 187/x)

This function gives us the perimeter in meters for any given length x of the rectangle.

Learn more about rectangle. here:

https://brainly.com/question/15019502

#SPJ11

A man took 4 1/2 hours to drive 360 km from Singapore to Kuala Lumpur. He used 37. 5 litres of petrol for journey. A. He drove at an average speed of 110 km / hr on a highway for 2 hours during his journey. Find his average speed for the remaining part of his journey

Answers

The average speed for the remaining part of his journey is A = 280 km/hr

Given data ,

We are given that the man drove 360 km from Singapore to Kuala Lumpur in 4 1/2 hours, which is equivalent to 4.5 * 60 = 270 minutes.

Therefore, his overall average speed is:

average speed = 360 km / 270 min

= 1.333... km/min

We must know the distance and time he covered during that portion of the voyage in order to calculate his average speed for the remaining distance. We know he traveled the following distance in two hours at an average speed of 110 km/h on a highway:

distance = speed x time = 110 km/hr × 2 hr = 220 km

Therefore, the distance he traveled during the remaining part of the journey is:

The distance = total distance - distance on highway = 360 km - 220 km = 140 km

Additionally, we know that he used 37.5 litres of petrol for the entire trip. Assume his car uses the same amount of fuel throughout the entire trip. His fuel efficiency may therefore be computed as follows:

fuel efficiency = total distance / petrol used

F = 360 km / 37.5 litres

F = 9.6 km/litre

We can use this fuel efficiency to calculate the time he spent on the remaining part of the journey, since time = distance / speed and speed = distance / petrol used:

Time = distance / speed

T = 140 km / (fuel efficiency × petrol used)

T = 140 km / (9.6 km/litre × 37.5 litres)

T = 0.5 hours

Therefore, his average speed for the remaining part of the journey is:

Now , the average speed = distance / time

A = 140 km / 0.5 hours

A = 280 km/hr

Hence , his average speed for the remaining part of the journey was 280 km/hr

To learn more about speed click :

https://brainly.com/question/19930939

#SPJ4

Work out the length of EA in the diagram below. 1 10°C 6 cm E 9 cm C 20/30 Marks 10 cm B A Not drawn to scale​

Answers

The calculated value of the length of EA in the diagram is 16.7 cm

Working out the length of EA in the diagram

The diagram is an illustration of similar triangles, and the length of EA can be calculated using the following proportional equation

EA/EC = BD/DC

Where

EC = 9 + 6 = 15 cm

BD = 10 cm

DC = 9 cm

Substitute the known values in the above equation, so, we have the following representation

EA/15 = 10/9

Multiply both sides of the equation by 15

This gives

EA = 15 * 10/9

Evaluate the equation

EA = 16.7

Hence, the length of EA in the diagram is 16.7 cm

Read more about similar triangles at

https://brainly.com/question/14285697

#SPJ1

6. Hsu Mei did a study on reaction times of teenage drivers and used a box plot to display the data. If her reaction time is 0. 50 seconds, how does she compare to the reaction time of other teenage drivers? Explain

Answers

Answer:

There can be no answer, as you did not provide the box plot to compare the data.

the network receives 830 responses, of which 439 indicate that they would like to see the new show in the lineup. the test statistic for this hypothesis would be .

Answers

To answer your question, we need to calculate the test statistic for the hypothesis.

Based on the information provided, we have:

- Number of total responses (n) = 830
- Number of positive responses (x) = 439

Assuming you want to test the proportion of positive responses, we can use the formula for the test statistic in a one-sample proportion hypothesis test:

z = (p_hat - p0) / sqrt(p0(1-p0)/n)

where p_hat is the sample proportion, p0 is the null hypothesis proportion, and n is the total number of responses. First, let's calculate p_hat:

p_hat = x/n = 439/830 ≈ 0.529

Now, to determine the test statistic, we need to know the null hypothesis proportion (p0). If you provide that information, I can help you calculate the test statistic (z).

To learn more about hypothesis  visit;

https://brainly.com/question/29519577

#SPJ11

A town's population
was 345,000 in 1996.
Its population
increased by 3%
each year.

Answers

The population after 1.5 years will be 360640.9.

Given that, a town's population was 345,000 in 1996. Its population increased by 3% each year.

The exponential growth =

A = P(1+r)ⁿ

A = final amount, P = initial amount, r = rate and n = time.

A = 345000(1+0.03)ⁿ

A = 345000(1.03)ⁿ

There is a growth factor of 1.03.

For n = 1.5

[tex]A = 345000(1.03)^{1.5[/tex]

A = 360640.9

Hence, the population after 1.5 years will be 360640.9.

Learn more about growth factor click;

https://brainly.com/question/12052909

#SPJ1

Let S be the part of the plane 1x+2y+z=41x+2y+z=4 which lies in

the first octant, oriented upward. Use the Stokes theorem to find

the flux of the vector field F=3i+2j+4kF=3i+2j+4k across the

surface S

= (1 point) Let S be the part of the plane lc + 2y + z = 4 which lies in the first octant, oriented upward. Use the Stokes theorem to find the flux of the vector field F = 3i + 2j + 4k across the surf

Answers

By Stoke's theorem, the flux of the vector field F across surface S is equal to the line integral of F over the boundary curve C: Flux = ∮C (F ⋅ dr) = 20

To find the flux of the vector field F = 3i + 2j + 4k across the surface S using Stoke's theorem, we first need to find the curl of F: Curl(F) = (∂Fz/∂y - ∂Fy/∂z)i - (∂Fx/∂z - ∂Fz/∂x)j + (∂Fy/∂x - ∂Fx/∂y)k Since Fz = 4, Fy = 2, and Fx = 3, all their partial derivatives are constants: Curl(F) = (0)i - (0)j + (0)k = 0

Now, let's find the line integral over the boundary curve C: ∮C (F ⋅ dr) = ∫₀^4 3dx + ∫₀^2 2dy + ∫₀^1 4dz We can integrate each part separately: ∫₀^4 3dx = 3(4) - 3(0) = 12 ∫₀^2 2dy = 2(2) - 2(0) = 4 ∫₀^1 4dz = 4(1) - 4(0) = 4

Now, add up the results: ∮C (F ⋅ dr) = 12 + 4 + 4 = 20

Visit here to learn more about Stokes Theorem:

brainly.com/question/17256782

#SPJ11

SOMEBODY HELP ME PLEASE

Answers


Answer: V ≈ 619.1

Explanation:
Volume of a cone = 1/3 πr2h
V = 1/3 (π x 6.5^2 x 14)
V = 1/3 x 1,857.31
V = 619.1033333333333
V ≈ 619.1

Which of the following sets contain only rational numbers that are integers?
F
(6, -3, 1.25}
G
(8, 4, 0.5)
H
(-8, 4/3,✔️16, 25)
J
(16/4,-8, 7, √5)

Answers



The set that contains only rational numbers that are integers is:

H: (-8, 4/3, 16, 25)

The number -8 is an integer, 16 and 25 are also integers, and 4/3 is a rational number, but not an integer.

The other sets contain numbers that are not integers or are not rational:

F: contains the rational number 1.25, which is not an integer.

G: contains the rational number 0.5, which is not an integer.

J: contains the irrational number √5, which is not rational and not an integer.

AC=A, C, equals
Round your answer to the nearest hundredth.
A right triangle A B C. Angle A C B is a right angle. Angle B A C is seventy degrees. Side A C is unknown. Side B C is six units.

Answers

Answer: Using trigonometry, we can find the length of side AC. Since we know the length of side BC and one angle, we can use the tangent function:

tan(70) = AC/6

Multiplying both sides by 6, we get:

AC = 6 * tan(70)

Using a calculator, we get:

AC ≈ 19.22

Rounding to the nearest hundredth, we get:

AC ≈ 19.22 units.

Answer:2.33

Step-by-step explanation:

Whats 4/5 X 3/8?
I am super confused!!

Answers

Answer:

12/40

Step-by-step explanation:

to do multiplication with fractions is super simple you just have to multiply the numerators and denominators so the 2 top numbers (4 x 3) and the two bottom numbers (5 x 8) and create your fraction (12/40)

Answer:3/10

Step-by-step explanation: you first multiply the 2 numerator 4*3=12

Then multiply the 2 denominators 5*8=40 now you have 12/40 to simplify you divide both by 4 so you have  3/10

please do part a and b thank youUse the Mean Value Theorem to show that if x > 0, then sinr S.

Answers

The Mean Value Theorem is a crucial theorem of calculus that reveals a relationship between the gradient of a curve and the values of its associated function at the endpoint.

What is the Mean Value Theorem?

Specifically, it states that provided f(x) is steady on the enclosed interval [a, b], and differentiable on (a, b), then there must exist a point c within the range of (a, b) such that

f(b) - f(a) = f'(c) * (b - a)

which translates to there being an individual c inside the parameterized region (a, b), such that the inclined angle of the tangent line to the graph at c is equal to the general incline of the graph between a and b.

The Mean Value Theorem possesses a plethora of utilities in mathematical analysis and calculus alike.

Learn more about mean on

https://brainly.com/question/1136789

#SPJ1

select all the labelled angles on the triangular prisms that are right angles

Answers

As we can observe in the attachment below figure the ∠b, ∠g, and ∠f are the right angles.

We must ascertain whether an angle is exactly 90 degrees in order to decide whether it is a right angle or not. There are several methods for doing this:

Use a protractor to measure the angle of a line: A protractor is a tool that may be used for this purpose. Utilise trigonometric ratios: If we are aware of the dimensions of the sides of a triangle that contains the contested angle, Using geometrical attributes, we may determine if an angle is a right angle if we are aware of the characteristics of the lines and angles that make up a geometrical figure. For instance, all four angles in a rectangle are right angles.

Therefore, The angles at ∠b, ∠g, and ∠f are right angles, as shown in the attachment below.

Learn more about right-angle triangles here:

https://brainly.com/question/3770177

#SPJ1

The slope-intercept equation of a line is y = -7x - 2. What is the slope of the
line?
OA. The slope is 2.
OB. The slope is -2.
OC. The slope is 7.
OD. The slope is -7.
SUBMIT

Answers

The calculated value of the slope of the line is -7

Calculating the slope of the line?

From the question, we have the following parameters that can be used in our computation:

The slope-intercept equation of a line is y = -7x - 2

This means that

y = -7x - 2

A linear equation is represented as

y = mx + c

Where

Slope = m

using the above as a guide, we have the following:

m = -7

This means that the slope of the line is -7

Hence, the slope of the line is -7

Read more about slope at

https://brainly.com/question/16949303

#SPJ1

can yall please help me with this?

Answers

4.543, [tex]4\frac{11}{20}[/tex],4.57, 37/8 is the order from least to greatest

The given numbers are 4.543, 4.57, [tex]4\frac{11}{20}[/tex], 37/8

We have to order from least to greatest

Let us find the decimal values which are given in fraction form

[tex]4\frac{11}{20}[/tex] = 91/20

= 4.55

Now let us find 37/8 in decimal form'

37/8 = 4.625

Now 4.543, 4.57, 4.55, 4.625 arrange from least to greatest

By comparing the decimal values we get an order from least to greatest is 4.543, 4.55, 4.57, 4.625

Hence, 4.543, [tex]4\frac{11}{20}[/tex],4.57, 37/8 is the order from least to greatest

To learn more on Number system click:

https://brainly.com/question/22046046

#SPJ1

The Roberts family is shopping for a new car. They are considering a minivan or an SUV. Those vehicles come in red, gold, green, silver, and blue. Each vehicle has three models; Standard, sport, or luxury. Use the tree diagram to answer the question. How many choices does the family have?

Answers

From the tree diagram, the family have 2 × 3 × 5 = 30 choices.

Here, the types of cars to be considered are minivan or an SUV.

Those vehicles come in red, gold, green, silver, and blue.

And each vehicle has three models i.e., standard, sport, or luxury.

First we draw the tree diagram.

The required tree diagram for this siuation is shown below.

Since for each type of vechicle  has three models, the number of choices for two vehicles would be,

2 × 3 = 6

And these vehicles come in red, gold, green, silver, and blue.

So, the number of choices the family have:

6 × 5

i.e., 2(types of cars) × 3(types of models of each vehicle) × 5(colors in each model)

so, the family have 2 × 3 × 5 = 30 choices.

Learn more about the tree diagram here:

https://brainly.com/question/3269330

#SPJ1

Other Questions
lew is a practicing cpa who decides to raise bonsai as a business. lew engages in the activity and has the following revenue and expenses:Sales$ 5,000Depreciation on greenhouse10,000Fertilizer, soil, pots1,500Select either "Yes" or "No" to indicate which of the following are factors the IRS will consider when evaluating whether the activity is a hobby..Whether the activity is conducted like a businessYes2.The expertise of the taxpayerYes3.The time and effort expendedYes4.Previous success of the taxpayer in different activitiesNo5.Income and loss history from the activityYes6.Losses are due to circumstances beyond the taxpayer's control or are normal in the start-up phaseYes7.The taxpayer changes the method of operation to improve profitabilityYes8.The dependence on the activity for the taxpayer's incomeYes9.Whether a future profit can be expected from the appreciation of the assets used in the activityIf the activity is deemed to be a regular business, what is the amount of Lew's loss from the activity?$6500c. If the activity is deemed to be a hobby, what is the amount of Lew's expenses (if any) from the activity that may be deducted?$ ????? symptoms of craving and withdrawal in the presence of a drug cs are __________. Fever is induced at the systemic level by ______, which is an endogenous pyrogen. A) CXCL8 B) IL-12. C) IL-6. D) CCL2. Evaluate intx^2/9 + 16 x^6 dx which clinical findings would the nurse expect when assessing a client who has cardiogenic shock? select all that apply. one, some, or all responses may be correct. a head-tail radio galaxy is one that has ________ significantly while ejecting its radio lobes. When the pressure is increased on the following system at equilibrium, 3 H2(g) + N2(g) =2 NH3(g), by adding a positive pressure of inert Argon gas, O In order to restore equilibrium, the reaction shifts right, toward products O no change occurs In order to restore equilibrium, the reaction shifts left, toward reactants O none of the other choices PLEASE HELP I NEED IT QUICK!!!! Approximately what percentage of the body is composed of fluid?A) 10 - 20%B) 30 - 45%C) 50 - 70%D) 60 - 80% the project organization works best when which of the following conditions are satisfied? i. work tasks can be defined with a specific goal and deadline. ii. the job is typical and familiar to the existing organization. iii. the work contains interrelated tasks requiring specialized skills. iv. the project is temporary but unimportant to long-term organizational success. v. the project cuts across organizational lines. none of these conditions need to be satisfied. i, iii, v correct! i, iii, iv, v Use spherical coordinates. Find the volume of the part of the ball rho 8 that lies between the cones = /6 and = /3. robbers are just as likely to ________ from a robbery scene as they are to ________. the ________ claim form must be used to submit paper claims to medicare for a physician's services. true or false: the cost of preferred stock is not a source of long-term capital financing and should be excluded from a wacc calculation. solve the initial value problem y'' 2y' y = tet; y(0) = y'(0) = 1 which of the following would be included in the u.s. financial account? a a computer made in britain imported into the united states b the value of a bond of a company in the united states sold to someone living in britain c wages paid by a company in the united states to an employee living in britain. d interest on a u.s. company's bond sold to someone living overseas e a computer made in the u.s. exported to britain what accusations were published in the newspaper and leaflets against president kennedy before he visited texas in 1963? people are telling me that i am npc. it makes me feel kind of strange and i don't like what to do with it. what should i do? quora you visit an ice cream shop on a hot summer day. the shop offers 15 ice cream flavors, 3 types of cones, and 8 toppings. assuming you want one ice cream flavor, one cone, and one topping, how many possible combinations can you create? what is the equilibrium constant k for the following reaction at 300 k? caco3(s) cao(s) co2(g)