Answer: 430
Step-by-step explanation:
An average of 5 scores can be found via: (the sum of the scores)*5. Thus, simply multiply 86*5 to get that the sum of his scores is 430
Hope it helps <3
Please explain this to me If f(x)=4x-2 than f(x-1)= A. 4x^2-6x+2 B. 4x^2+2x+2 C. 4x+2 D. 4x-6 E. 4x-1
Answer:
D. 4x − 6
Step-by-step explanation:
f(x) = 4x − 2
f(x−1) = 4(x−1) − 2
f(x−1) = 4x − 4 − 2
f(x−1) = 4x − 6
Applications of exponential functions need help ASAP PlZ
Answer:
Second choice is correct.
Step-by-step explanation:
Simple interest = $12600
Compounded interest = $14656
Best Regards!
is any answers loading for you guys or is it just me
Answer:
not just you
Step-by-step explanation:
what is the world smallest number that is divisible by all the numbers 1,2,3,4,5,6,7,8,9,10?
Answer:
1
Step-by-step explanation:
1 ÷ 1 = 1
2 ÷ 1 = 2
3 ÷ 1 = 3
4 ÷ 1 = 4
5 ÷ 1 = 5
6 ÷ 1 = 6
7 ÷ 1 = 7
8 ÷ 1 = 8
9 ÷ 1 = 9
10 ÷ 1 = 10
Answer:
The world smallest number that is divisible by all the numbers 1,2,3,4,5,6,7,8,9,10 means that all the above numbers can divide that number without a remainder.
From the question the world smallest number that is divisible by the above numbers is
2520Hope this helps you
Find the vertical and horizontal asymptotes, domain, range, and roots of f (x) = -1 / x-3 +2.
Answer:
Vertical asymptote: [tex]x=3[/tex]
Horizontal asymptote: [tex]f(x) =2[/tex]
Domain of f(x) is all real numbers except 3.
Range of f(x) is all real numbers except 2.
Step-by-step explanation:
Given:
Function:
[tex]f (x) = -\dfrac{1 }{ x-3} +2[/tex]
One root, [tex]x = 3.5[/tex]
To find:
Vertical and horizontal asymptote, domain, range and roots of f(x).
Solution:
First of all, let us find the roots of f(x).
Roots of f(x) means the value of x where f(x) = 0
[tex]0= -\dfrac{1 }{ x-3} +2\\\Rightarrow 2= \dfrac{1 }{ x-3}\\\Rightarrow 2x-2 \times 3=1\\\Rightarrow 2x=7\\\Rightarrow x = 3.5[/tex]
One root, [tex]x = 3.5[/tex]
Domain of f(x) i.e. the values that we give as input to the function and there is a value of f(x) defined for it.
For x = 3, the value of f(x) [tex]\rightarrow \infty[/tex]
For all, other values of [tex]x[/tex] , [tex]f(x)[/tex] is defined.
Hence, Domain of f(x) is all real numbers except 3.
Range of f(x) i.e. the values that are possible output of the function.
f(x) = 2 is not possible in this case because something is subtracted from 2. That something is [tex]\frac{1}{x-3}[/tex].
Hence, Range of f(x) is all real numbers except 2.
Vertical Asymptote is the value of x, where value of f(x) [tex]\rightarrow \infty[/tex].
[tex]-\dfrac{1 }{ x-3} +2 \rightarrow \infty[/tex]
It is possible only when
[tex]x-3=0\\\Rightarrow x=3[/tex]
[tex]\therefore[/tex] vertical asymptote: [tex]x=3[/tex]
Horizontal Asymptote is the value of f(x) , where value of x [tex]\rightarrow \infty[/tex].
[tex]x\rightarrow \infty \Rightarrow \dfrac{1 }{ x-3} \rightarrow 0\\\therefore f(x) =-0+2 \\\Rightarrow f(x) =2[/tex]
[tex]\therefore[/tex] Horizontal asymptote: [tex]f(x) =2[/tex]
Please refer to the graph of given function as shown in the attached image.
Factor d^2-10d+10 by grouping
Answer:
(d-5-√15)(d-5+√15)
Step-by-step explanation:
Please help
ASAP
ANSWERS
A-48.21
B-66.35
C-53.68
D-28.34
Answer:
B
Step-by-step explanation:
Using the cosine ratio in the right triangle
cos54° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{39}{AB}[/tex] ( multiply both sides by AB )
AB × cos54° = 39 ( divide both sides by cos54° )
AB = [tex]\frac{39}{cos54}[/tex] ≈ 66.35 → B
PLEASE HELP Two prisms are composed to form a V shape. The thickness of each prism is 1 unit, and width of each prism is 2 units. If the length of one prism is greater than the length of the other prism by 1 unit and the total volume of the figure is 30 cubic units, what are the lengths of the prisms?
Answer:
7 units, 8 units
Step-by-step explanation:
Apparently, the cross section of each prism is a rectangle 1 unit by 2 units. Hence the total length will be ...
(30 units³)/((1 unit)(2 units)) = 15 units
Two numbers that differ by 1 and have a sum of 15 are 7 and 8.
The lengths of the prisms are 7 units and 8 units.
Click on the solution set below until the correct one is displayed.
Answer:
{ } or empty set.
Step-by-step explanation:
The solutions should be where the two lines intersect, but in this case, the parallel lines never intersect. That means that they have no solutions.
Hope this helps!
Answer:
{ } or empty set
Step-by-step explanation:
It's because these lines are parallel so they don't intersect to give you a coordinate.
a lottery game has balls numbered 1 through 19. what is the probability selected ball is an even numbered ball or a 4 g
Answer:
Probability ball is an even numbered ball or a 4 [P(A or B)] = 9 / 19
Step-by-step explanation:
Given:
Number of balls = 1 to 19
Find:
Probability ball is an even numbered ball or a 4
Computation:
Total even number = 2, 4, 6, 8, 10, 12, 14, 16, 18
Probability to get even number P(A) = 9 / 19
Probability to get 4 number P(B) = 1 / 19
P(A and B) = 1 / 19 (4 common)
Probability ball is an even numbered ball or a 4 [P(A or B)]
P(A or B) = P(A) + P(B) -P(A and B)
P(A or B) = [9 / 19] + [1 / 19] - [1 / 19]
Probability ball is an even numbered ball or a 4 [P(A or B)] = 9 / 19
Eight women and six men apply for a job at Google. Four of the applicants are selected for interviews. Let X denote the number of women in the interview pool. a) Give (explicitly) the probability mass function for X. Also describe a plot of F(x). b) Give (explicitly) the cdf, F(x), for X. Also show a plot of it. c) Determine the probability that more women are interviewed than men.
Answer:
See below
Step-by-step explanation:
images attached showing all working
a) The possible values of X are as follows
X = {0,1,2,3,4}
P(x) = P(X=x)
b) The cdf in this case, as in the F(x), comes out to be a step function graph on the basis of values obtained from the probability mass function.
c) To find out the probability when more women are interviewed than me, add together the matrices from when value of X is equal to 2, 3 and 4 (from part a).
Simplify 3 (2x + 1) - 2 (x + 1)
Let's simplify step-by-step.
3(2x+1)−2(x+1)
Distribute:
=(3)(2x)+(3)(1)+(−2)(x)+(−2)(1)
=6x+3+−2x+−2
Combine Like Terms:
=6x+3+−2x+−2
=(6x+−2x)+(3+−2)
=4x+1
4x+1 is the answer to the question
The height of an object dropped from the top of a 144-foot building is given by . How long will it take the object to hit the ground?
They left off the equation but we can know it's
y(t) = h₀ - g t² / 2
That's
y(t) = 144 - 16 t²
It hits the ground when
0 = 144 - 16 t²
16 t² = 144
t² = 144 / 16 = 9
t = 3 seconds
Answer: 3 seconds
DIRECTIONS: Road the question and select the best respons
A right prism of height 15 cm has bases that are right triangles with legs 5 cm and 12 cm. Find the total
surface area of the prism,
OA 315 cm square
OB, 480 cm square
Oc. 510 cm square
OD. 570 cm square
Please explain how to get the answer
Answer:
C. 510 cm^2
Step-by-step explanation:
Well to find TSA or Total Surface Area,
We need to find the area of al the triangles and rectangles.
Let's start with the 2 rectangles facing forwards.
They both have dimensions of 5*15 and 12*15,
75 + 180
= 255 cm ^2
Now let's do the back rectangle which has dimensions of 15 and 13.
15*13 = 195 cm^2
Now we can do the top and bottom triangles,
Since we don't have height we can use the following formula,
[tex]A = \sqrt{S(S-a)(S-b)(S-c)}[/tex]
S is [tex]S = \frac{1}{2} (A+B+C)[/tex]
S= 15
Now with s we can plug that in,
[tex]A = \sqrt{15(15-5)(15-13)(15-12)}[/tex]
The a b and c are the sides of the triangle.
So let's solve,
15 - 5 = 10
15 - 13 = 2
15 - 12 = 3
10*2*3 = 60
60*15 = 900
[tex]\sqrt{900}[/tex] = 30 cm^2
Since there is 2 triangles with the same dimensions their areas combined is 60 cm^2
60 + 255 + 195 = 510 cm^2
Thus,
the TSA of the right triangular prism is C. 510 cm^2.
Hope this helps :)
Answer:
C) 510 square centimetres
Step-by-step explanation:
The surface area of a prism is given as:
A = bh * pL
where b = base length of the prism = 12 cm
h = base width = 5 cm
p = b + h + c
where c = slant height = 13 cm
L = height of the prism = 15 cm
Therefore, the surface area of the prism is:
A = (12 * 5) + (12 + 5 + 13) * 15
A = 60 + (30 * 15)
A = 60 + 450
A = 510 square centimetres
That is the surface area of the prism.
Which is the recommended method for reading your math textbook most effectively? a. read, question, summarize, practice b. highlight, skim, ask, and review c. preview, read, summarize, and review
Answer: a. read, question, summarize, practice
Step-by-step explanation:
This may be subjective, but the most efficient method usually is:
> Read:
Obviously the first step is read, if there is something that you do not understand, keep reading (but take note of all the things that you don't understand), is important that you have a complete overview on the topic that you are studying
> Question:
Now is time to ask about the things that you did not understand in the first read, always when you do not fully understand something, is a good habit to ask about it, this is the best and easiest way to learn.
> Summarize:
Now that you understand all the text (or at least most of it) is the moment to summarize your new knowledge: Write all the new equations that you learned, also write for what they are for, when they can be useful, etc.
This is what you will use to solve exercises, so you should be clear when writing.
> Practice:
This is one of the most important parts, here is where you put in practice your new knowledge. Here you may find some problematic situations where you need to be inventive with your equations, which will allow you to learn new ways to use your equations, so this is a really important step.
So the correct option is A.
What is the range of the function F(x) graphed below?F(x)= -(x+2)^2+3
Answer:
range of the function F(x) is (-infinity, 3)
Step-by-step explanation:
I do not see the graph function F(x), so will assume that it is a graph of the function F(x) over the complete domain (-inf,inf).
As you can see from the attached graph, the function reaches a maximum at y=+3, and extends all the way to -infinity.
So the range of the function F(x) is (-infinity, 3)
Owen has enough materials to build up to 10 birdhouses in shop class. Each birdhouse needs 12 square feet of wood. The function W(b) = 12b represents the total amount of wood that Owen would need to build b birdhouses. What domain and range are reasonable for the function? A. D: 0 ≤ b ≤ 10 R: 0 ≤ W(b) ≤ 120 B. D: 0 ≤ b ≤ 120 R: 0 ≤ W(b) ≤ 10 C. D: 0 ≤ b ≤ 10 R: 12 ≤ W(b) ≤ 120 D. D: 10 ≤ b ≤ 12 R: 0 ≤ W(b) ≤ 120
Answer:
A. D: 0 ≤ b ≤ 10 R: 0 ≤ W(b) ≤ 120
Step-by-step explanation:
Since b represents the number of birdhouses, it is reasonable for that to have non-negative values. The maximum material availability means that b > 10 is not of practical use. This eliminates choices B and D.
Since W represents the amount of wood required for b birdhouses, it is reasonable for the range of it to match 12 times the domain: 12·0 = 0 to 12·10 = 120. This eliminates choice C.
The appropriate choice is ...
A. D: 0 ≤ b ≤ 10 R: 0 ≤ W(b) ≤ 120
Karen has 6 more than twice as many newspaper customers as when she started selling newspapers. She now has 98 customers. How many did she have when she started?
Answer:
46 customers
Step-by-step explanation:
If the number of original customers is n, we can write the following equation:
98 = 2n + 6
92 = 2n
46 = n
The length of a rectangle is 4yd longer than its width. If the perimeter of the rectangle is 36yd, find its area
Answer:
[tex] \boxed{\sf Area \ of \ the \ rectangle = 91 \ yd^{2}} [/tex]
Given:
Length of the rectangle = 4 yd longer than its width
Perimeter of the rectangle = 36 yd
To Find:
Area of the rectangle
Step-by-step explanation:
Let the width of the rectangle be 'w' yd
So,
Length of the rectangle = (w + 4) yd
[tex] \therefore \\ \sf \implies Perimeter \: of \: the \: rectangle = 2(Length + Width) \\ \\ \sf \implies 36 = 2((4 + w) + w) \\ \\ \sf \implies 36 = 2(4 + w + w) \\ \\ \sf \implies 36 = 2(4 + 2w) \\ \\ \sf 36 =2(2w+4) \: is \: equivalent \: to \: 2(2w + 4) = 36: \\ \sf \implies 2(2w + 4) = 36 \\ \\ \sf Divide \: both \: sides \: of \: 2 (2w + 4) = 36 \: by \: 2: \\ \sf \implies 2w + 4 = 18 \\ \\ \sf Subtract \: 4 \: from \: both \: sides: \\ \sf \implies 2w = 14 \\ \\ \sf Divide \: both \: sides \: of \: 2w = 14 \: by \: 2: \\ \sf \implies w = 7[/tex]
So,
Width of the rectangle = 7 yd
Length of the rectangle = (7 + 4) yd
= 13 yd
[tex] \therefore \\ \sf Area \ of \ the \ rectangle = Length \times Width \\ \\ \sf = 7 \times 13 \\ \\ \sf = 91 \: {yd}^{2} [/tex]
Can you figure out the missing number in this sequence? Type your answer below!
88511,16351,?,10251
Answer:
731`55
Step-by-step explanation:
*Step-by-step explanation:*
The given sequence:
88511, 16351, ?, 10251
To find, the missing number (?) = ?
The pattern follow:
1. To Add the first 2 digits in the number .
2. Subtract digit 3 from Digit 2 .
3. The multiply digit 3 and 4 .
4. To divide digit 4 by 3.
16351 ⇒ 8 + 8 = 16, 8 - 5 = 3, 5 × 1 = 5 and \dfrac{1}{1} =111=1
= 16351
? ⇒ 1 + 6 = 7, 6 - 3 = 3, 3 × 5 = 15 and \dfrac{5}{1}15 = 5
= 73155
10251 ⇒ 7 + 3 = 10, 3 - 1 = 2, 1 × 5 = 5 and \dfrac{5}{5}55 = 1
= 10251
∴ The missing number of the given sequence = 73155
Thus, the missing number of the given sequence is 73155.
The third number in the sequence is : 73155
The given sequence is:
88511, 16351, ?, 10251
Now the pattern to find the missing value is:
Add, subtract, multiply and then divide.
These patterns are applied on the previous number's double digits to get the next number of the sequence.
Example:
Take 88511.
First pair (8,8): Add them: 16
Second pair (8,5): Subtract them: 8-5 = 3
Third pair: (5,1): Multiply them: 5
Fourth pair(1,1): Divide them: 1/1 = 1
Thus the next number of the sequence we get is 16351.
Similarly, doing it on 2nd term (16351) to find the missing third term:
Add (1,6): 7
Subtract (6,3): 3
Multiply (3,5): 15
Divide (5,1): 5
Thus the third number in the sequence is : 73155
Learn more here:
https://brainly.com/question/3000144
3x²-9x+1+0 Find the discriminant
Answer:
[tex]\boxed{D = 69}[/tex]
Step-by-step explanation:
The given quadratic equation is:
[tex]3x^2-9x+1 = 0[/tex]
Comparing it with the standard form of Quadratic Equation [tex]ax^2+bx+c = 0[/tex] , we get:
a = 3, b = -9 and c = 1
Discriminant = b² - 4ac
D = (-9)²-4(3)(1)
D = 81 - 12
D = 69
Solve log x = 3. (2 points)
Answer:
x=1000
Step-by-step explanation:
log x = 3
log10 ( x) = 3
Raise each side to the power of 10
10^( log10 ( x)) =10 ^3
x = 10 ^3
x = 1000
Answer:
[tex]\boxed{x=1000}[/tex]
Step-by-step explanation:
[tex]log (x)= 3[/tex]
[tex]log_{10} (x)= 3[/tex]
Use logarithmetic definition:
[tex]log_a(b)=c[/tex]
[tex]b=a^c[/tex]
[tex]a=10\\b=x\\c=3[/tex]
Plug in the values.
[tex]x=10^3[/tex]
[tex]x=1000[/tex]
Antisocial personality disorder (ASPD) is characterized by deceitfulness, reckless disregard for the well-being of others, a diminished capacity for remorse, superficial charm, thrill seeking, and poor behavioral control. ASPD is not normally diagnosed in children or adolescents, but antisocial tendencies can sometimes be recognized in childhood or early adolescence. James Blair and his colleagues have studied the ability of children with antisocial tendencies to recognize facial expressions that depict sadness, happiness, anger, disgust, fear, and surprise. They have found that children with antisocial tendencies have selective impairments, with significantly more difficulty recognizing fearful and sad expressions.
Suppose you have a sample of 40 14-year-old children with antisocial tendencies and you are particularly interested in the emotion of surprise. The average 14-year-old has a score on the emotion recognition scale of 11.80. (The higher the score on this scale, the more strongly an emotion has to be displayed to be correctly identified. Therefore, higher scores indicate greater difficulty recognizing the emotion). Assume that scores on the emotion recognition scale are normally distributed.
You believe that children with antisocial tendencies will have a harder time recognizing the emotion of surprise (in other words, they will have higher scores on the emotion recognition test).
What is your null hypothesis stated using symbols? ________
What is your alternative hypothesis stated using symbols? _________
This is a ____ tailed test. Given what you know, you will evaluate this hypothesis using a _______ statistic.
Using the Distributions tool, locate the critical region for a = 0.05.
Answer:
Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 11.80
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 11.80
Step-by-step explanation:
We are given that you have a sample of 40 14-year-old children with antisocial tendencies and you are particularly interested in the emotion of surprise. The average 14-year-old has a score on the emotion recognition scale of 11.80.
Assume that scores on the emotion recognition scale are normally distributed.
Let [tex]\mu[/tex] = true average score on the emotion recognition scale
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 11.80
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 11.80
This a right-tailed test because the higher the score on this scale, the more strongly an emotion has to be displayed to be correctly identified. Therefore, higher scores indicate greater difficulty recognizing the emotion.
We can evaluate this hypothesis using One-sample t-test statistics or One-sample z-test statistics depends on the information given in the question.
If the z-test statistic is used, then the critical region at 0.05 level of significance will be an area more than the critical value of 1.645.
And if the t-test statistic is used, then the critical region at 0.05 level of significance with 39 degrees of freedom will be an area more than the critical value of 1.685.
The null hypothesis should be considered as the [tex]H_0: \mu = 11.80[/tex]
The alternative hypothesis should be considered as the [tex]H_A: \mu > 11.80[/tex]
It is the right-tailed test.
Calculation of the null hypothesis & alternative hypothesis:Since The average 14-year-old has a score on the emotion recognition scale of 11.80.
So here the null hypothesis should be [tex]H_0: \mu = 11.80[/tex]
And, here it is the right-tailed test since there should be higher the score on the given scale, due to this it should strongly an emotion that represent for rightly identified. Also high scores represent the high difficults for recording the emotion.
Learn more about hypothesis here: https://brainly.com/question/18831983
Construct the cumulative frequency distribution for the given data.
Age (years) of Best Actress when award was won Frequency
20-29 28
30-39 37
40-49 14
50-59 3
60-69 4
70-79 1
80-89 1
Age (years) of Best Actress when award was won Cumulative Frequency
Less than 30
Less than 40
Less than 50
Less than 60
Less than 70
Less than 80
Less than 90
Answer:
Age Frequency Cumulative Frequency
Less than 30 28 28
Less than 40 37 28 + 37 = 65
Less than 50 1 4 65 + 14 = 79
Less than 60 3 79 + 3 = 82
Less than 70 4 82 + 4 = 86
Less than 80 1 86 + 1 = 87
Less than 90 1 87 + 1 = 88
Step-by-step explanation:
Given:
The Frequency Distribution table of ages of best actresses when award was won
To find:
Construct the cumulative frequency distribution
Solution:
In order to construct cumulative frequency distribution for the given data, each frequency from above table is added to the sum of the previous frequencies. For example, frequency for Less than 40 is 37 and the previous frequency (less than 30) is 28 so in order to calculate cumulative frequency 28 i.e. previous frequency is added to 37 (frequency of less than 30) and the cumulative frequency is 65. The complete table is given above.
The assistant principal set up chairs in the auditorum for graduation. She placed
the chairs in 24 rows with 28 chairs in each row. How many chairs are set up in
the auditorium
Answer:
672 chairs
Step-by-step explanation:
24 × 28 = 672
hope this helps
Construct a polynomial function with the stated properties. Reduce all fractions to lowest terms. Third-degree, with zeros of −3, −1, and 2, and passes through the point (1,10).
Answer:
[tex]\Large \boxed{-\dfrac{5}{4}(x+3)(x+1)(x-2)}[/tex]
Step-by-step explanation:
Hello,
Based on the indication, we can write this polynomial as below, k being a real number that we will have to identify (degree = 3 and we have three zeroes -3, -1, and 2).
[tex]\Large \boxed{k(x+3)(x+1)(x-2)}[/tex]
We know that the point (1,10) is on the graph of this function, so we can say.
[tex]k(1+3)(1+1)(1-2)=10}\\\\4*2*(-1)*k=10\\\\-8k=10\\\\k=\dfrac{10}{-8}=-\dfrac{5}{4}[/tex]
Then the solution is:
[tex]\large \boxed{-\dfrac{5}{4}(x+3)(x+1)(x-2)}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The soldering iron’s highest temperature setting is 400 °F. What is the soldering iron’s temperature in Centigrade?
Answer:
204.4(repeating) degrees
Step-by-step explanation:
The equation to go from F to C, is (F-32)×5/9. So 400-32 is 368.
368×5=1840
Than 1840/9=204.44 degrees. The 4 is repeating at the end.
If ABC~DEF and the scale factor from ABC to DEF is 3/4, what is the length of DF?
Answer:
the length of DF = 3/4 AC
see below for explanation
Step-by-step explanation:
ABC is said to be approximately equal to DEF
The scale factor from ABC to DEF = 3/4
From the question, we can tell the original and new shape is a triangle because the lettering to indicate the vertices for both are 3.
We can deduce from the question, ΔABC was dilated to form ΔDEF
In dilation, the length of each of the corresponding side of the new figure is equal to the multiplication of each of the corresponding sides of the old figure and thee scale factor.
In the absence of cordinates for each vertices and length of each sides, ΔABC has 3 sides :
AB, BC and AC
ΔDEF has 3 sides : DE, EF and DF
If AB corresponds to DE
BC corresponds to EF
AC corresponds to DF
Then:
length DE = scale factor × AB = 3/4 AB
length EF = scale factor × BC = 3/4 BC
length DF = scale factor × AC = 3/4 AC
Therefore, the length of DF = 3/4 AC
what is the measure of SR?
Answer:
RS = 8
Step-by-step explanation:
Given:
Secant QU = internal secant segment PU + external secant segment PQ = 7 + 9 = 16
Secant QS = internal secant segment RS + external secant segment RQ = (3x - 5) + 8
To find the measure of RS, we need to find the value of x.
Thus, recall the "Two Secant Theorem"
According to the theorem,
(RS + RQ)*RQ = (PU + PQ)*PQ
Thus,
[tex] (3x - 5 + 8)*8 = (7 + 9)*9 [/tex]
[tex] (3x + 3)*8 = (16)*9 [/tex]
[tex] 24x + 24 = 144 [/tex]
Subtract 24 from both sides
[tex] 24x + 24 - 24 = 144 - 24 [/tex]
[tex] 24x = 120 [/tex]
Divide both sides by 24
[tex] \frac{24x}{24} = \frac{120}{24} [/tex]
[tex] x = 5 [/tex]
Plug in the value of x into (3x - 5) to find the measure of RS
RS = 3(5) - 5 = 15 - 7
RS = 8
A positive integer is 2 less than another. If the sum of the reciprocal of the smaller and twice
the reciprocal of the larger is 11/15,
then find the two integers.
Answer:
Step-by-step explanation:
Let x represent the smaller integer.
Let y represent the larger integer.
A positive integer is 2 less than another. It means that
y = x + 2
If the sum of the reciprocal of the smaller and twice the reciprocal of the larger is 11/15, it means that
1/x + 2/y = 11/15- - - - - - - - - - 1
Substituting y = x + 2 into equation 1, it becomes
1/x + 2/(x + 2) = 11/15
Considering the left hand side of the equation, it becomes
(x + 2 + 2x)/x(x + 2)
Therefore,
(3x + 2)/(x² + 2x) = 11/15
Cross multiplying, it becomes
15(3x + 2) = 11(x² + 2x)
45x + 30 = 11x² + 22x
11x² + 22x - 45x - 30 = 0
11x² - 23x - 30 = 0
11x² + 10x - 33x - 30 = 0
x(11x + 10) - 3(11 + 10) =℅0
(x - 3)(11x + 10) = 0
x - 3 = 0 or 11x + 10 = 0
x = 3 or x = - 10/11
Since it us a positive integer, the smaller integer is 3 and the larger integer is 3 + 2 = 5
Answer: Let x represent the smaller integer.Let y represent the larger integer.A positive integer is 2 less than another. It means that y = x + 2 If the sum of the reciprocal of the smaller and twice the reciprocal of the larger is 11/15, it means that 1/x + 2/y = 11/15- - - - - - - - - - 1Substituting y = x + 2 into equation 1, it becomes 1/x + 2/(x + 2) = 11/15Considering the left hand side of the equation, it becomes(x + 2 + 2x)/x(x + 2) Therefore,(3x + 2)/(x² + 2x) = 11/15Cross multiplying, it becomes15(3x + 2) = 11(x² + 2x)45x + 30 = 11x² + 22x11x² + 22x - 45x - 30 = 011x² - 23x - 30 = 011x² + 10x - 33x - 30 = 0x(11x + 10) - 3(11 + 10) =℅0(x - 3)(11x + 10) = 0x - 3 = 0 or 11x + 10 = 0x = 3 or x = - 10/11Since it us a positive integer, the smaller integer is 3 and the larger integer is 3 + 2 = 5
Step-by-step explanation: