D Question 2 2 pts The minerals that form chemical sedimentary rocks are formed from dissolved ons in water (for example-No- and lion in water combined to form NL which is the mineral wate) But where do those kons come from that is how do they get into water in the first place?

Answers

Answer 1

The dissolved ions in water that form chemical sedimentary rocks come from a variety of sources. Some of these sources include weathering and erosion of rocks, volcanic activity, and organic matter decay.

As these processes occur, minerals and other compounds are broken down and released into the water, which can then combine to form new minerals that eventually settle and solidify to form chemical sedimentary rocks.

Additionally, some dissolved ions may come from human activities such as pollution or mining, which can also contribute to the formation of chemical sedimentary rocks.

To know more about sedimentary rocks, refer here:

https://brainly.com/question/10709497#

#SPJ11


Related Questions

calculate the volume of 0.800 M H2O2 (aq) that the student should add to excess NaOCl(aq) to produce 40.0 mL of O2(g) at 0.988 atm and 298K.

Answers

The student should add 4.03 mL of 0.800 M H2O2 solution to excess NaOCl(aq) to produce 40.0 mL of O2(g) at 0.988 atm and 298K.

The balanced chemical equation for the reaction between hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) is:

2 NaOCl + 2 H2O2 → O2 + 2 NaCl + 2 H2O

From the equation, we see that 2 moles of hydrogen peroxide produce 1 mole of oxygen gas. We can use the ideal gas law to calculate the volume of oxygen gas produced:

PV = nRT

where P is the pressure (0.988 atm), V is the volume (40.0 mL = 0.0400 L), n is the number of moles of gas produced, R is the gas constant (0.08206 L·atm/mol·K), and T is the temperature (298 K). Solving for n, we get:

n = PV/RT = (0.988 atm)(0.0400 L)/(0.08206 L·atm/mol·K)(298 K) = 0.00161 mol

Since 2 moles of hydrogen peroxide produce 1 mole of oxygen gas, we need 2 × 0.00161 = 0.00322 moles of hydrogen peroxide. The concentration of the hydrogen peroxide solution is 0.800 M, so we can calculate the volume of solution needed:

V = n/C = 0.00322 mol/0.800 mol/L = 0.00403 L or 4.03 mL

Therefore, the student should add 4.03 mL of 0.800 M H2O2 solution to excess NaOCl(aq) to produce 40.0 mL of O2(g) at 0.988 atm and 298K.

To know more about solution, visit:

https://brainly.com/question/30665317#

#SPJ11

The circle at right represents a portion of a mixture of four gases: Gas A (purple), Gas B (brown), Gas C (green), and Gas D: (orange). The circle contains 4 purple spheres, 3 brown spheres, 5 green spheres, and 4 pairs of orange spheres. (a) Which gas has the highest partial pressure? O Gas A has the highest partial pressure O Gas B has the highest partial pressure O Gas C has the highest partial pressure O Gas D has the highest partial pressure ces (b) Which gas has the lowest partial pressure? O Gas A has the lowest partial pressure O Gas B has the lowest partial pressure O Gas C has the lowest partial pressure O Gas D; has the lowest partial pressure (c) If the total pressure is 0.916 atm, what is the partial pressure of D? atm

Answers

(a) Gas C (green) has the highest partial pressure because it has the most spheres in the circle, indicating a larger proportion of the mixture.

(b) Gas A (purple) has the lowest partial pressure because it has the fewest spheres in the circle, indicating a smaller proportion of the mixture.

(c) To find the partial pressure of Gas D (orange), we need to first determine how many individual spheres are present. The circle contains 4 pairs of orange spheres, so there are a total of 8 orange spheres. The total number of spheres in the circle is 4 + 3 + 5 + 8 = 20.

To calculate the partial pressure of Gas D, we can use the formula:

Partial pressure of Gas D = Total pressure x (Number of Gas D spheres / Total number of spheres)

Partial pressure of Gas D = 0.916 atm x (8/20)

Partial pressure of Gas D = 0.3664 atm

Hence, partial pressure will be 0.3664atm.

To know more about partial pressure refer here:

https://brainly.com/question/15075781?#

#SPJ11

what are the configurations of the chiral carbon atoms in this compound? carbon atom number 1 is the carbon containing the aldehyde. (2s,3s,4r)(2s,3r,4s)(2r,3s,4r)(2r,3r,4r)(2s,3s,4s)(2r,3r,4s)(2s,3r,4r)(2r,3s,4s)

Answers

The compound has eight chiral carbon atoms, numbered 2 through 9. The configurations of each chiral carbon atom can be indicated by the stereochemical designations (R) or (S).

Using the numbering system provided, the configurations of the chiral carbon atoms are as follows:

- Carbon atom number 2: (2S)
- Carbon atom number 3: (3S) in configurations (1), (3), (5), and (7), and (3R) in configurations (2), (4), (6), and (8).
- Carbon atom number 4: (4R) in configurations (1), (3), (5), and (7), and (4S) in configurations (2), (4), (6), and (8).
- Carbon atom number 5: (5S) in configurations (1), (2), (5), and (6), and (5R) in configurations (3), (4), (7), and (8).
- Carbon atom number 6: (6R) in configurations (1), (2), (5), and (6), and (6S) in configurations (3), (4), (7), and (8).
- Carbon atom number 7: (7S) in configurations (1), (4), (5), and (8), and (7R) in configurations (2), (3), (6), and (7).
- Carbon atom number 8: (8R) in configurations (1), (4), (5), and (8), and (8S) in configurations (2), (3), (6), and (7).
- Carbon atom number 9: (9S) in configurations (1), (2), (3), and (4), and (9R) in configurations (5), (6), (7), and (8).

Therefore, the configurations of the chiral carbon atoms in this compound are:

(2S,3S,4R,5S,6R,7S,8R,9S) in configuration (1)
(2S,3R,4S,5R,6S,7R,8S,9R) in configuration (2)
(2R,3S,4R,5S,6S,7S,8R,9S) in configuration (3)
(2R,3R,4S,5R,6R,7R,8S,9R) in configuration (4)
(2S,3S,4S,5R,6S,7R,8R,9S) in configuration (5)
(2R,3R,4S,5S,6R,7S,8S,9R) in configuration (6)
(2S,3R,4R,5S,6R,7R,8R,9S) in configuration (7)
(2R,3S,4S,5R,6R,7S,8S,9R) in configuration (8)

To know more about chiral carbon atoms click here:

https://brainly.com/question/29131173

#SPJ11

Round to 4 significant figures
4,567,985

Answers

4,568,000 without scientific notation, as the absence of a decimal reads from right to left, and zeros don’t count before the first non-zero digit.

Example:

1,100 has two significant figures

OR

4.568 x 10^6 with scientific notation. The decimal indicates reading left to right, excluding zeroes before the first digit from the left.
i think the answer is 4,568,000

if each of these radioactive decays occurred in a test tube, which would be the most harmful for a person sitting near the test tube?

Answers

To answer your question, it is important to note that there are three main types of radioactive decay: alpha, beta, and gamma decay.

1. Alpha decay: Alpha particles have low penetration power and can be stopped by a sheet of paper or clothing. They are less harmful if external exposure occurs.

2. Beta decay: Beta particles have higher penetration power compared to alpha particles but can be stopped by a sheet of plastic, glass, or aluminum. They are moderately harmful for external exposure.

3. Gamma decay: Gamma rays have the highest penetration power and can only be stopped by thick lead or concrete. They are the most harmful for a person sitting near the test tube due to their ability to penetrate human tissue and cause significant damage.

In conclusion, gamma decay would be the most harmful type of radioactive decay for a person sitting near a test tube containing a radioactive substance, as it has the highest penetration power and can cause significant damage to human tissue.

To know more about radioactivity visit :-

https://brainly.com/question/1236735

#SPJ11

the half life of radium is 1690 years if 50 grams are present now, how much will be present in 900 years?

Answers

The radium present after 900 years is 34.56 g

The half-life of radium is 1690 years, which means that the amount of radium present will be reduced to half of its initial value every 1690 years.

Let's calculate how many half-lives occur in 900 years:

number of half-lives = 900 years / 1690 years per half-life

number of half-lives = 0.5325

This means that in 900 years, the amount of radium will be reduced to half its current value of 0.5325 times.

Final amount of radium = 50 g / 2^(0.5325)

The final amount of radium = 34.56 g (rounded to two decimal places)

Therefore, after 900 years, there will be approximately 34.56 grams of radium remaining.

To learn more about half-life:

https://brainly.com/question/11528586

#spj4

in yeast, alcohol dehydrogenase reduces acetaldehyde to ethanol. calculate the free energy change for this reaction under standard conditions

Answers

The free energy change for the reaction where alcohol dehydrogenase reduces acetaldehyde to ethanol in yeast under standard conditions is -18,686 J/mol.

To calculate the free energy change for the reaction where alcohol dehydrogenase reduces acetaldehyde to ethanol in yeast under standard conditions, we can use the formula:

ΔG° = -RT ln K

Where:
- ΔG° is the standard free energy change
- R is the gas constant (8.314 J/mol K)
- T is the temperature in Kelvin (298 K)
- K is the equilibrium constant for the reaction

The balanced chemical equation for the reaction is:

Acetaldehyde + NADH + H+ → Ethanol + NAD+

The equilibrium constant for this reaction is 2100 M^-1. Therefore, we can plug these values into the equation to obtain:

ΔG° = -8.314 J/mol K x 298 K x ln 2100 M^-1
ΔG° = -8.314 J/mol K x 298 K x 7.65
ΔG° = -18,686 J/mol

Therefore, the free energy change for this reaction under standard conditions is -18,686 J/mol.

More on free energy: https://brainly.com/question/29457031

#SPJ11

Every time you change structure by moving a lone pair into a dobule triple bond what steps must be rpeated?

Answers

When you change the structure of a molecule by moving a lone pair into a double or triple bond, the following steps must be repeated: determine formal charge, checking resonance structures, bond orders, determine geometry, and check for stability.

Determine the formal charge: When a lone pair moves into a double or triple bond, it changes the formal charges of the atoms involved in the bond. You must recalculate the formal charges of all the atoms in the molecule to ensure that they are still stable and satisfy the octet rule.

Check for resonance structures: Moving a lone pair into a double or triple bond can create resonance structures. You must check for these structures and determine which is the most stable. The most stable resonance structure has the lowest formal charge and the fewest formal charges.

Check for bond order: The movement of a lone pair into a double or triple bond changes the bond order of the bond involved. You must recalculate the bond order and determine if the new bond is a single, double or triple bond.

Determine the geometry: Changing the bond order can also change the geometry of the molecule. You must determine the new geometry of the molecule based on the bond angles and the hybridization of the atoms involved.

Check for stability: After changing the structure of the molecule, you must check if the molecule is still stable. The molecule should satisfy the octet rule and have the lowest possible formal charges.

By repeating these steps every time a lone pair is moved into a double or triple bond, you can ensure that the new structure of the molecule is stable and accurate.

Know more about lone pair here:

https://brainly.com/question/24174604

#SPJ11

50 mL of 0.60 M sodium hydroxide neutralized 20 mL of sulfuric acid. Determine the concentration of the acid.

Answers

The balanced chemical equation for the reaction between sodium hydroxide and sulfuric acid is:

2NaOH + H2SO4 → Na2SO4 + 2H2O

From the balanced equation, we can see that 2 moles of NaOH react with 1 mole of H2SO4.

The number of moles of NaOH used is:

0.050 L x 0.60 mol/L = 0.030 mol

Since 2 moles of NaOH react with 1 mole of H2SO4, the number of moles of H2SO4 in 20 mL of solution is:

0.030 mol NaOH x (1 mol H2SO4 / 2 mol NaOH) = 0.015 mol H2SO4

The concentration of the sulfuric acid is:

0.015 mol / 0.020 L = 0.75 M

determine the molar solubility of copper(i) azide (cun3) in a solution with a ph of 2.690. ignore activities. the sp for cun3 is 4.9×10−9. the a for hn3 is 2.2×10−5.

Answers

The molar solubility of the copper azide (CuN₃) in the solution with the pH of the 2.690 is the  4.1 × 10⁻⁹ M.

The pH = 2.690

[H⁺ ] = 0.0020 M

The equation is as :

HN₃ ⇄ H⁺ + N₃⁻

Ka = [H⁺][N₃⁻]/ [HN₃] = 2.2 × 10⁻⁵

The Ksp value is :

Ksp = [Cu⁺][N₃⁻] = 4.9 × 10⁻⁹

CuN₃(s) + H⁺ --> Cu⁺ + HN₃

Keq = [Cu⁺][HN₃] / [H⁺ ]

Ka = [H⁺][N₃⁻]/ [HN₃]

[H⁺][N₃⁻]/ [HN₃]  = 1/Ka  

Keq = Ksp x 1/Ka

Keq = [Cu⁺][N₃⁻] x [HN₃] /[H+][N₃⁻]

Keq = [Cu⁺][HN₃] / [H⁺]

Keq = 4.9 × 10⁻⁹  / 2.2 × 10⁻⁵

Keq  = 2.23 × 10⁻⁴

Y = molar solubility of CuN₃

Y = [Cu⁺] = [HN₃]

Keq = 2.23 × 10⁻⁴

Keq = Y(Y) / [H⁺]

2.23 × 10⁻⁴ = (Y)(Y) / 7.6 × 10⁻¹⁴

Molar solubility of CuN₃ = 4.1 × 10⁻⁹ M.

To learn more about molar solubility here

https://brainly.com/question/28170449

#SPJ4

What is the ph of 3.26x 10-6

Answers

Answer:26.6

Explanation:.

if using a 3m stock solution of nacl, how much of it would be needed to make a 0.1m solution that totals 0.6 l (or 600 ml)

Answers

You will need 20 ml of the 3M NaCl solution to make a 0.1M solution that totals 0.6L (or 600 ml).

To make a 0.1M solution of NaCl that totals 0.6L (or 600ml), you will need to use the formula:
moles of solute = Molarity x volume of solution in liters
First, we need to calculate how many moles of NaCl we need for this solution:
moles of NaCl = 0.1M x 0.6L
moles of NaCl = 0.06 moles
Next, we need to calculate how much 3M NaCl solution we need to make this 0.1M solution:
moles of solute = Molarity x volume of solution in liters
0.06 moles = 3M x volume of solution in liters
volume of solution in liters = 0.02 L or 20 ml
So, you will need 20 ml of the 3M NaCl solution to make a 0.1M solution that totals 0.6L (or 600 ml).

To learn more about NaCl, click here:

https://brainly.com/question/1550455

#SPJ11

draw the major monobromination product formed by heating the alkane with bromine. add carbon‑bromine bonds to the predrawn structure.

Answers

The most cases, one product will be formed in greater amounts than the others and will be considered the major product.

How we can carbon‑bromine bonds to the predrawn structure?  

However, I can explain the general reaction and the expected product.

When an alkane, such as methane or ethane, is heated with bromine, a substitution reaction can occur in which one of the hydrogen atoms in the alkane is replaced by a bromine atom. This is called monobromination.

For example, let's consider the reaction between methane and bromine:

[tex]CH4 + Br2 → CH3Br + HBr[/tex]

In this reaction, one of the hydrogen atoms in methane is replaced by a bromine atom, forming methyl bromide ([tex]CH3Br[/tex]) as the major monobromination product.

The same reaction can occur with other alkanes, such as ethane, propane, and butane, but the specific product formed will depend on the structure of the alkane and the reaction conditions.

It is worth noting that the reaction between alkanes and halogens (such as bromine) is typically not very selective, meaning that multiple substitution products can be formed.

Learn more about major product

brainly.com/question/30905538

#SPJ11

in the first of this reaction, the concentration of dropped from to . what is the average rate of dissapearance of in that time?

Answers

The average rate of the reaction is 0.00352 M/s. To calculate the average rate of the reaction, we need to use the formula: Average rate = (change in concentration)/(time interval).

In this case, we are given the initial concentration of HBr as 0.600 M and the concentration after 25.0 seconds as 0.512 M. Therefore, the change in concentration is: 0.600 M - 0.512 M = 0.088 M The time interval is also given as 25.0 seconds.

Now we can plug these values into the formula to get: Average rate = (0.088 M)/(25.0 s) Average rate = 0.00352 M/s Therefore, the average rate of the reaction during the first 25.0 seconds is 0.00352 M/s.

The average rate of the reaction is calculated as 0.00352 M/s.

To know more about average rate of reaction, refer

https://brainly.com/question/14189499

#SPJ11

Note: The question given is incomplete. Here is the complete question.

Question: Consider the reaction: 2 HBr( g) ¡ H2( g) + Br2( g) b. In the first 25.0 s of this reaction, the concentration of HBr dropped from 0.600 M to 0.512 M. Calculate the average rate of the reaction during this time interval.

Construct a rough plot of pH versus volume of base for the titration of 25.0 mL of 0.050 M HCN with 0.075 M NaOH

a) What is the pH before any NaOH is added?

b) What is the pH at the halfway point of the titration?

c) What is the pH when 95% of the required NaOH has been added?

Answers

The pH value of the solution before the start of titration is 5,35.

Step 1: The volume of cyanide acid is 25, 0 ml = 0,025 L. the amount concentration of cyanide acid is 0,050 M. The amount concentration of sodium hydroxide is 0,075 M.

Step 2:  To calculate the concentration of hydronium ions in order to calculate the pH value of acid solution, use the chemical reaction of the ICE table

Chemical reaction is given as:

[tex]HCN_{aq}[/tex] ⇄[tex]H_{3} O^{+} _{aq} + CN^{-} _{aq}[/tex]

Step 3: The value of Ka of cyanide acid is 4, [tex]0.10^{-10}[/tex].

Now, the value of x is given by:

[tex]K_{a} = \frac{[H_{3}O^{+}][CN^{-}] }{[HCN]}[/tex]

4, [tex]0.10^{-10} = \frac{x^{2} }{0,050 M - x}[/tex]

[tex]x = 4,47.10^{-6} M[/tex]

Now, pH is calculated as:

[tex]pH = - log [H_{3} O^{+}]\\ = - log (4,47.10^{-6} )\\= 5,35[/tex]

The pH value of the solution before the start of titration is 5,35.

A typical laboratory technique for quantitative chemical analysis to ascertain the concentration of a recognized analyte is titration. A reagent, also known as a titrant or titrator, is created as a standard solution with a specified volume and concentration.

The following is the fundamental titration principle: The sample being studied is given a solution, referred to as a titrant or standard solution. A chemical that reacts with the substance to be tested is present in the titrant in known concentration. Using a burette, the titrant is added.

Learn more about titration:

https://brainly.com/question/31271061

#SPJ4

write the empirical formula of copper chloride based on the experimental data. express your answer as a chemical formula. is the formula cucl3 reasonable?

Answers

Based on the experimental data, the empirical formula of copper chloride is CuCl2.

The formula CuCl3 is not reasonable because copper chloride typically forms compounds with a 1:1 or 1:2 ratio of copper to chlorine.

To determine the empirical formula of copper chloride based on the experimental data, you'll need to follow these steps:

1. Obtain the mass or percentage composition of each element in the compound, which are copper (Cu) and chlorine (Cl).
2. Convert the mass or percentage composition to moles by dividing each value by their respective atomic masses (Cu: 63.55 g/mol, Cl: 35.45 g/mol).
3. Divide the moles of each element by the smallest mole value obtained in step 2.
4. Round the resulting ratios to the nearest whole number to obtain the mole ratio of each element in the empirical formula.

After performing these steps with your experimental data, you'll arrive at the empirical formula of copper chloride. If the formula CuCl3 is reasonable, the empirical formula you obtain should be CuCl3.

However, without specific data, I cannot confirm if CuCl3 is indeed reasonable.

To know more about empirical formula refer here:

https://brainly.com/question/30784665?#

#SPJ11

Give the systematic (IUPAC) name for each moleculeO O|| ||CH3CCH3 CH3CH2CCH2CH3

Answers

The systematic (IUPAC) name for each molecule CH³C(O)CH³ is dimethylmethanal and CH³CH²C(O)CH²CH³ is 2-methylpentanal

For the first molecule, CH³C(O)CH³, the structure represents an aldehyde with two methyl groups bonded to the carbonyl carbon atom. In IUPAC nomenclature, the suffix for aldehydes is "-al." Since there are two methyl groups attached, we name this molecule as "dimethylmethanal" or more commonly known as "acetone."

For the second molecule, CH³CH²C(O)CH²CH³, the structure represents an aldehyde with an ethyl group on one side and a methyl group on the other side of the carbonyl carbon atom. In IUPAC nomenclature, the parent chain is five carbons long and should be named as "pentanal." However, since there is a methyl group attached to the second carbon, the name should indicate its position as well. Therefore, the IUPAC name for this molecule is "2-methylpentanal." The systematic (IUPAC) name for each molecule CH³C(O)CH³ is dimethylmethanal and CH³CH²C(O)CH²CH³ is 2-methylpentanal

Learn more about acetone here:

https://brainly.com/question/13334667

#SPJ11

What does it mean to contain a full second energy level?
Why?
Example

Answers

An atom that contains a full second energy level has a full outermost energy level.

Meaning of having a full-second energy level

In chemistry, energy levels (also called electron shells) are fixed distances from the nucleus of an atom where electrons may be found.

When an atom contains a full second energy level, it means that its outermost energy level is full. This makes the atom very stable.

For example, carbon is in the second period, so it has electrons in its second energy level, and it is in the fourth group in the second energy level, so it has 4 electrons.

More on energy levels can be found here: https://brainly.com/question/29736874

#SPJ1

According to Table F, which of these salts is least soluble in water?

(1) LiCl (3) FeCl2(2) RbCl (4) PbCl2

Answers

The least soluble salt in the list is PbCl2 .

Why is PbCl2 not soluble in waters?

The Pb2+ cation repels water molecules less forcibly than smaller or less charged cations due to its size and high charge density. PbCl2 is hence less soluble in water.

The strength of the ionic bonds between Pb2+ and Cl- ions should also be taken into account. Within the lattice structure of PbCl2, the Pb2+ and Cl- ions are arranged in a regular way to form a crystalline solid.

The strength of the ionic bonds between Pb2+ and Cl- ions accounts for the low solubility

Learn more about PbCl2:https://brainly.com/question/9238746

#SPJ`1

and the table of values given on the right. do you expect this reaction to be spontaneous at room temperature? why?

Answers

Without more information about the specific reaction in question, it is difficult to make a definitive statement about its spontaneity at room temperature.

Why will be expect this reaction to be spontaneous at room temperature?

However, I can explain the concept of spontaneity and how it relates to chemical reactions.

Spontaneity refers to whether a reaction will occur without any external intervention, such as the addition of energy or a catalyst. It is determined by the change in free energy ([tex]ΔG[/tex]) of the system, which is calculated using the equation:

[tex]ΔG = ΔH - TΔS[/tex]

where [tex]ΔH[/tex] is the change in enthalpy (heat content) of the system, T is the temperature in Kelvin, and [tex]ΔS[/tex]is the change in entropy (degree of disorder) of the system.

If [tex]ΔG[/tex] is negative, the reaction is spontaneous and will occur without any external intervention. If [tex]ΔG[/tex] is positive, the reaction is non-spontaneous and will not occur without the addition of energy or a catalyst. If [tex]ΔG[/tex] is zero, the reaction is at equilibrium and there is no net change in the concentrations of reactants and products.

In general, the spontaneity of a reaction depends on the balance between the enthalpy and entropy changes. If the enthalpy change is negative (i.e., the reaction releases heat), the reaction will tend to be spontaneous at low temperatures. If the entropy change is positive (i.e., the reaction increases disorder), the reaction will tend to be spontaneous at high temperatures.

Without knowing the specific values of [tex]ΔH[/tex], ΔS, and T for the reaction in question, it is difficult to say whether it will be spontaneous at room temperature. However, in general, reactions that involve the breaking of strong bonds (such as [tex]C-H[/tex] bonds in alkanes) and the formation of weaker bonds (such as [tex]C-B[/tex]r bonds in alkyl bromides) tend to have positive enthalpy changes, which makes them less likely to be spontaneous. Additionally, the formation of a gas or an aqueous solution (both of which have high entropy) can increase the entropy change and make a reaction more likely to be spontaneous.

In conclusion, the spontaneity of a chemical reaction depends on a complex interplay between enthalpy and entropy changes, as well as the temperature and other factors.

Learn more about room temperature

brainly.com/question/8739174

#SPJ11

A compound is found to contain 64.80 % carbon, 13.62 % hydrogen, and 21.58 % oxygen by weight. To answer the questions, enter the elements in the order presented above 1. What is the empirical formula for this compound? 2. The molecular weight for this compound is 74.14 gmol. What is the molecular formula for this compound? Try Another Version Submit Answer 1 Item attempt remaining 1. How many ATOMS of boron are present in 4.40 moles of boron tribromide? atoms of boron. 2. How many MOLES of bromine are present in 6.12x1022 molecules of boron tribromide? moles of bromine. Submit Answer Iry Another Version 1 Item attempt remaining

Answers

The empirical formula for this compound is C4H10O and molecular weight is 74.14 g/mol

What is the empirical formula and molecular formula for this compound?

The empirical formula for this compound can be determined by converting the percentages to grams and then to moles.

Assuming a 100 g sample, we have:

64.80 g carbon = 5.4 moles

13.62 g hydrogen = 13.5 moles

21.58 g oxygen = 1.35 moles

To find the simplest whole-number ratio of these elements, we divide by the smallest number of moles (1.35):

Carbon: 5.4 / 1.35 = 4

Hydrogen: 13.5 / 1.35 = 10

Oxygen: 1.35 / 1.35 = 1

Therefore, the empirical formula for this compound is C4H10O.

The empirical formula has a molecular weight of (4x12.01 + 10x1.01 + 1x16.00) = 74.14 g/mol, which is the same as the given molecular weight. This means the empirical formula is also the molecular formula.

So the compound is C4H10O.

Learn more about Empirical formula

brainly.com/question/14044066

#SPJ11

What volume in mL of 3.99 M NH4Cl has 26.18 g of solute in it?

Answers

26.18 g of NH₄Cl would require 122.56 mL of 3.99 M NH₄Cl solution.

To solve this problem, we need to use the formula:

moles of solute = mass of solute / molar mass

moles of solute = concentration x volume / 1000

We can rearrange the second formula to solve for the volume:

volume = (moles of solute x 1000) / concentration

First, let's calculate the moles of NH₄Cl:

moles of NH₄Cl = 26.18 g / 53.49 g/mol (molar mass of NH₄Cl)

moles of NH₄Cl = 0.489 mol

Now we can use the second formula to calculate the volume:

volume = (0.489 mol x 1000) / 3.99 M

volume = 122.56 mL

To know more about solute, here

https://brainly.com/question/30665317

#SPJ1

the light reactions produce atp and nadph h and this process also results in the release of

Answers

The light reactions produce ATP and NADPH, and this process also results in the release of oxygen.

Here's a step-by-step explanation of how this occurs:

1. Light reactions occur in the thylakoid membranes of chloroplasts in photosynthetic organisms.


2. When light photons are absorbed by pigments like chlorophyll, they excite electrons to a higher energy state.


3. These high-energy electrons are transferred through a series of proteins called the electron transport chain (ETC).


4. As electrons move through the ETC, they release energy, which is used to pump protons (H+) across the thylakoid membrane, creating a proton gradient.


5. This proton gradient drives the enzyme ATP synthase to produce ATP from ADP and inorganic phosphate (Pi).


6. Meanwhile, the electrons are ultimately passed to NADP+ (nicotinamide adenine dinucleotide phosphate) along with a proton (H+), reducing it to NADPH.


7. The loss of electrons from chlorophyll is replenished by splitting water molecules, a process called photolysis. This results in the release of oxygen gas (O2) as a byproduct.

In summary, the light reactions produce ATP and NADPH, and the process results in the release of oxygen.


To know more about light reactions refer here:

https://brainly.com/question/11240542#


#SPJ11

all chemical activities can be viewed as a series of ____________ between molecules.

Answers

All chemical activities can be viewed as a series of interactions or reactions between molecules.

What is Molecules?

A molecule is the smallest unit of a substance that retains all of the chemical and physical properties of that substance. It is a group of two or more atoms that are held together by chemical bonds. Molecules can be made up of atoms of the same element, such as two oxygen atoms bonded together to form O2, or they can be made up of different elements, such as a water molecule (H2O) made up of two hydrogen atoms and one oxygen atom.

These interactions involve the exchange or sharing of electrons between atoms to form new chemical bonds or break existing ones. Some common types of molecular interactions include acid-base reactions, redox reactions, precipitation reactions, and complexation reactions. These interactions ultimately determine the properties and behavior of chemical substances and are fundamental to our understanding of chemistry.

Learn more about Molecules, visit;

https://brainly.com/question/26556885

#SPJ4

Calculate the solubility (in g/L) of a generic salt with a formula of A2B, a Ksp of 4.10x10^-11 and a molar mass of 231 g/mol.

Answers

The solubility of A₂B is 5.66x10⁻⁶ g/L.

The solubility (in g/L) of a generic salt with a formula of A₂B and a Ksp of 4.10x10⁻¹¹ can be calculated as follows:

First, we need to write the equation for the dissolution of A₂B:

A₂B(s) ⇌ 2A+(aq) + B2⁻(aq)

The Ksp expression for A2B can be written as follows:

Ksp = [A⁺]²[B2⁻]

where [A⁺] and [B²⁻] are the molar concentrations of the ions in solution.

Since we have 2 moles of A⁺ ions for each mole of A₂B that dissolves, we can express the solubility (in moles/L) of A₂B as follows:

s = [A⁺] = [B²⁻]/2

Substituting this expression into the Ksp equation, we get:

Ksp = (s)²([B²⁻]/2) = (s)²([B²⁻]/4)

Solving for [B²⁻], we get:

[B²⁻] = 4Ksp/s² = 4(4.10x10⁻¹¹)/(231/2)² = 2.45x10⁻⁸ M

Finally, we can convert the molar concentration of B²⁻ to grams per liter by multiplying by its molar mass:

2.45x10⁻⁸ M × 231 g/mol = 5.66x10⁻⁶ g/L

Therefore, the solubility of A2B is 5.66x10⁻⁶ g/L.

Know more about solubility here:

https://brainly.com/question/28170449

#SPJ11

what is the ph of a solution of 0.33 m acid and 0.55 m of its conjugate base if the ionization constant is 5.55 x 10-9?group of answer choices8.888.489.478.267.57

Answers

The ph of a solution is 8.48.


To find the pH of the solution, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A⁻]/[HA])

where pKa is the acid dissociation constant (-log(Ka)), [A⁻] is the concentration of the conjugate base, and [HA] is the concentration of the acid.

First, we need to find the pKa from the ionization constant (Ka):

Ka = [H+][A⁻]/[HA]
5.55 x 10⁻⁹ = x² / (0.33 - x)

where x is the concentration of H+ ions formed by the dissociation of the acid.

Simplifying the equation using the quadratic formula, we get:

x = 7.45 x 10⁻⁵ M

Therefore, the pKa is:

pKa = -log(5.55 x 10⁻⁹)
pKa = 8.255

Now we can use the Henderson-Hasselbalch equation:

pH = 8.255 + log(0.55/0.33)
pH = 8.48

So the pH of the solution is 8.48.

To know more about Henderson-Hasselbalch visit:

brainly.com/question/13423434

#SPJ11

. hydrogen cyanide is prepared commercially by the reaction of methane, ch4(g), ammonia, nh3(g), and oxygen, o2(g), at high temperature. the other product is gaseous water. a. write a chemical equation for the reaction. b. what volume of hcn(g) can be obtained from 20.0 l ch4(g), 20.0 l nh3(g), and 20.0 l o2(g)? the volumes of all g

Answers

a) CH₄(g) + NH₃(g) + O₂(g) → HCN(g) + 3H₂O(g) ; b) Volume of HCN(g) that can be obtained from 20.0 L CH₄(g), 20.0 L NH3(g), and 20.0 L O2(g) is 23.4 L.

a. The chemical equation for the reaction of methane, ammonia, and oxygen to form hydrogen cyanide and water is: CH₄(g) + NH₃(g) + O₂(g) → HCN(g) + 3H₂O(g)

b. To determine the volume of HCN(g) that can be obtained from 20.0 LCH₄(g), 20.0 L NH3(g), and 20.0 L O₂ g), we first need to determine the limiting reactant.

The balanced chemical equation shows that for every 1 mole of CH₄, 1 mole of NH₃, and 1 mole of O₂, we can produce 1 mole of HCN. Therefore, the mole ratio of CH₄: NH₃: O₂: HCN is 1:1:1:1.

We can use the ideal gas law to convert the given volumes of CH₄, NH₃, and O2 to moles:

n(CH₄) = PV/RT = (1 atm)(20.0 L)/(0.0821 L•atm/mol•K)(298 K) = 0.965 mol
n(NH₃) = PV/RT = (1 atm)(20.0 L)/(0.0821 L•atm/mol•K)(298 K) = 0.965 mol
n( O₂) = PV/RT = (1 atm)(20.0 L)/(0.0821 L•atm/mol•K)(298 K) = 0.965 mol

Since the mole ratio of the reactants is 1:1:1, the limiting reactant is CH₄ because it has the lowest number of moles.

Therefore, we can only produce 0.965 moles of HCN. To determine the volume of HCN, we can use the ideal gas law again:

V(HCN) = n(HCN)RT/P = (0.965 mol)(0.0821 L•atm/mol•K)(298 K)/(1 atm) = 23.4 L

Therefore, the volume of HCN(g) that can be obtained from 20.0 L CH₄(g), 20.0 L  NH₃(g), and 20.0 L  O₂(g) is 23.4 L.

To know more about hydrogen cyanide, refer

https://brainly.com/question/1448033

#SPJ11

Will the following reactions provide the indicated product in high yield? O H + CH3 H3C NaOH, ethanol Heat ---> O CH3

Answers

Yes, the reaction will provide the indicated product in high yield.This is a classic Williamson ether synthesis reaction, in which the hydroxide ion deprotonates the alcohol, creating an alkoxide ion that is then attacked by the methyl halide to form the ether product.

The reaction is usually performed under reflux conditions to ensure complete reaction and high yield of product. The only potential issue with this reaction is if there is any competing elimination reaction that could occur under the basic conditions, but since the reactants are well-suited to the ether synthesis mechanism and there are no obvious leaving groups on the reactants, we can assume that the reaction will proceed as expected with good yield.

learn more about reflux conditions

https://brainly.com/question/4080620

#SPJ11

2. Enter the expression 147N+α, where α is the lowercase Greek letter alpha.

Express your answer as a chemical expression.

3. Enter the chemical equation 2H+(aq)+S2−(aq)→H2S(g).

Express your answer as a chemical equation.

Answers

2. The chemical expression 147N+α is:  147N + α --> 151D + 4He

3. The chemical equation 2H+(aq)+S2−(aq)→H2S(g) is :  2H+ + S2- --> H2S

2. The expression 147N+α represents a nuclear reaction where alpha particle (α) is being emitted from the nucleus of nitrogen-14 (147N). The resulting product after the emission of alpha particle is oxygen-18 (148O).

Nuclear reactions involve the changes in the composition of an atomic nucleus, and they are different from chemical reactions which involve the interactions of electrons between atoms. In a nuclear reaction, the nucleus of an atom is altered, and one or more subatomic particles may be released.

In this case, the emission of an alpha particle from nitrogen-14 nucleus transforms it into oxygen-18 nucleus. An alpha particle consists of two protons and two neutrons, and its emission causes the atomic number of the element to decrease by two and the atomic mass to decrease by four.

Therefore, the chemical expression for the nuclear reaction 147N+α is:

14/7N + 4/2α → 18/8O

3. The chemical equation 2H+(aq)+S2−(aq)→H2S(g) represents the reaction between hydrogen ions (H+) and sulfide ions (S2-) to form hydrogen sulfide gas (H2S).

In aqueous solution, hydrogen ions are hydrated to form hydronium ions (H3O+), which are often represented as H+. Therefore, the reaction can also be written as:

2H3O+(aq) + S2-(aq) → H2S(g) + 2H2O(l)

This is an acid-base reaction where the hydronium ion (H3O+) acts as an acid and the sulfide ion (S2-) acts as a base. The reaction produces a weak acid, hydrogen sulfide, which exists mainly in the gaseous phase and is often recognized by its rotten egg-like odor.

To learn more about 147N+α refer here:

https://brainly.com/question/583971#

#SPJ11

The combustion of a piece of paper in the presence of enough oxygen produces: CO2 (g) + H20 (9) CO2 (g) + H2 (9) O2 (g) + H20 (g)

Answers

When a piece of paper undergoes combustion (burning) in the presence of sufficient oxygen, it produces carbon dioxide ([tex]CO_{2}[/tex]) gas and water vapor ([tex]H_{2}O[/tex]).

This is due to the chemical reactions that occur between the paper and the oxygen. The paper contains carbon and hydrogen atoms, which combine with oxygen from the air to form [tex]CO_{2}[/tex] and [tex]H_{2}O[/tex].

It is important to note that the exact amounts of each product formed depend on the amount of oxygen present during combustion.

If there is not enough oxygen, incomplete combustion can occur and produce carbon monoxide (CO) instead of [tex]CO_{2}[/tex].

To know more about combustion, refer here:

https://brainly.com/question/15117038#

#SPJ11

Other Questions
the numeric values for the controls can also be represented in decimal (base 10). question what control is represented by the decimal value 15 ? The binding of the blastocyst to the endometrium is called.. Calculate the pH for each case in the titration of 50.0 mL of 0.120 M HClO(aq) with 0.120 M KOH(aq). Use the ionization constant for HClO.1. What is the pH before addition of any KOH? pH=2. What is the pH after addition of 25.0 mL KOH? pH=3. What is the pH after addition of 40.0 mL KOH? pH=4. What is the pH after addition of 50.0 mL KOH? pH=5. What is the pH after addition of 60.0 mL KOH? pH= if 1.0 l of he gas at 20oc and 101.3 kpa is compressed isothermally to a volume of 100 ml, how much work is done on the gas?group of answer choicesnone of the other answers is correct4.7 x102 kj2.3 x102 j2.3 x102 kj5.6 kj will the 235u 235 u ions strike the collecting plate above, below, or at the same location as the 238u 238 u ions? According to your text, mental rotation data are best viewed as evidence of ______.a. generalizationb. discriminationc. cognitive processingd. peak shift The accompanying table (attached) shows fictitious data for three samples. (a) Compute SS(between) and SS(within). (b) Compute SS(total), and verify the relationship between SS(between), SS(within), and SS(total). (c) Compute MS(between), MS(within), and spooled as demonstrated in the case in the text, kibler v. hall, most of the court's attention in trademark infringement cases is concerned with the: Which of the following is consistent with Avogadros law? a) P/T = constant (V,n constant). b) V/T = constant (P, n constant). c) Vn = constant (P, T constant). d) V/n = constant (P, T constant) if acth secretion is inhibited, which of the outcomes will result? the thyroid gland will not release thyroid hormone. the posterior pituitary gland will not release adh. the adrenal glands will not release cortisol. the anterior pituitary gland will not release tsh. which of the following is considered a threat caused by human error?group of answer choicesa tsunami floods a data center causing total data lossan employee inadvertently installing an old database on top of the current onea virus and worm writer infecting computer systemsa hacker breaking into a system to steal for financial gainan employee intentionally destroying data and system components The table shows different values for functions f(x) and g(x), which are continuous for all 20. the communication process within a company that builds relationships with customers, employees, stockholders, suppliers, government agencies, and society is called . c) The NY Knicks won 35 games out of 65 games. What is the probability that they win the next game? d) Find the experimental probability of a player on the New York Liberty being over 73 inches Implement reverse, which takes a linked list l ink and returns a linked list containing the elements ofdef reverse(link):"""Returns a Link that is the reverse of the original.>>> print_link(reverse(Link(1)))>>> link = Link(1, Link(2, Link(3)))>>> new = reverse(link)>>> print_link(new)>>> print_link(link)""""*** YOUR CODE HERE ***" a major artery with a cross-sectional area of 1.1 cm2 branches into 18 smaller arteries, each with an average cross-sectional area of 0.41 cm2. by what factor is the average speed of the blood reduced when it passes into these branches? One problem with some of the newer high-temperature superconductors is getting a large enough current density for practical use without causing the resistance to reappear. The maximum current density for which the material will remain a superconductor is called the critical current density of the material. In 1987, IBM research labs had produced thin films with critical current densities of 1.0105A/cm^2.a. How much current could an 18-gauge wire of this material carry and still remain superconducting?b. Researchers are trying to develop superconductors with critical current densities of 1.0106A/cm21.010^6A/cm^2.c. What diameter cylindrical wire of such a material would be needed to carry 1000 AA without losing its superconductivity? Which of the following jobs would most likely include certified electrician in the job description? key grip set lighting technician director of photography gaffer Suppose that yi (t) and y2 (t) are solutions to the following differential equation such that the Wronskian (yl. y2) (to=1) = 20. Find the Wronskian (y1, y2) (t) for any t. [Hint: see proof at top of page 143] dy(t) +e-3ty(t) = 0 dt d'y(t) (t + 4) dt2 a nurse assesses a patient receiving a first generation antipsychotic medication. the nurse notices that the patient is squirming and pacing. when composing the nurse's notes, the nurse would describe the assessment findings by which terminology?