Consider a two-stage cascade refrigeration system operating between -50°C and 50°C. Each stage operates on an ideal vapor-compression refrigeration cycle. The upper cycle uses ammonia as working fluid; lower cycle uses R-410a. In the lower cycle refrigerant condenses at -10°C, in the upper cycle refrigerant evaporates at 0°C. If the mass flow rate in the upper cycle is 0.5 kg/s, determine the following: a.) the mass flow rate through the lower cycle: kg/s b.) the rate of cooling in tons: c.) the rate of heat removed from the cycle: d.) the compressors power input in kW: e.) the coefficient of performance: KW

Answers

Answer 1

The calculations involve determining the mass flow rates, cooling rate, heat removal rate, compressor power input, and coefficient of performance (COP).

What are the key calculations and parameters involved in analyzing a two-stage cascade refrigeration system?

a) The mass flow rate through the lower cycle can be determined using the principle of conservation of mass. Since the upper cycle mass flow rate is given as 0.5 kg/s, we can assume that the mass flow rate through the lower cycle is also 0.5 kg/s.

b) The rate of cooling in tons can be calculated by dividing the heat removed from the cycle by the refrigeration effect. Since the refrigeration effect is given by the mass flow rate through the upper cycle multiplied by the enthalpy change between the evaporator and the condenser, we need additional information to calculate the rate of cooling in tons.

c) The rate of heat removed from the cycle can be calculated by multiplying the mass flow rate through the upper cycle by the specific heat capacity of the working fluid and the temperature difference between the evaporator and the condenser.

d) The compressor's power input in kW can be determined using the equation: power = mass flow rate through the upper cycle multiplied by the specific enthalpy increase across the compressor.

e) The coefficient of performance (COP) is the ratio of the rate of cooling to the compressor's power input. It can be calculated by dividing the rate of cooling in tons by the power input in kW.

For a more accurate calculation, specific values for enthalpies, specific heat capacities, and refrigeration effect are required.

Learn more about mass flow rates

brainly.com/question/30763861

#SPJ11


Related Questions

Use the Virtual Work Method to solve the horizontal deflection
at joint C of the truss system below.
A = 600 mm2
E = 200 GPa.
Use a = 3 m and b = 13.5 kN. Enter absolute value only.

Answers

The horizontal deflection at joint C of the truss system, calculated using the Virtual Work Method, is 0.

the horizontal deflection at joint C of the truss system using the Virtual Work Method, we need to follow these steps:

1. Calculate the stiffness of each member:

 - The stiffness (K) of each member is given by the equation K = (E * A) / L, where E is the modulus of elasticity (given as 200 GPa), A is the cross-sectional area (given as 600 mm^2), and L is the length of the member

 - Let's calculate the stiffness for each member:

  Member AB:

[tex]L_AB = sqrt(a^2 + b^2) = sqrt((3 m)^2 + (13.5 kN)^2) = sqrt(9 m^2 + 182.25 kN^2) = sqrt(9 m^2 + 182.25 kN^2) = sqrt(9 m^2 + 182.25 kN^2) ≈ sqrt(190.25) m ≈ 13.79 m[/tex]

[tex]K_AB = (E * A) / L_AB = (200 GPa * 600 mm^2) / (13.79 m) = (200 * 10^9 N/m^2 * 600 * 10^-6 m^2) / (13.79 m) = 10,938.40 kN/m[/tex]

Member BC:

  [tex]L_BC[/tex]= a = 3 m

[tex]K_BC = (E * A) / L_BC = (200 GPa * 600 mm^2) / (3 m) = (200 * 10^9 N/m^2 * 600 * 10^-6 m^2) / (3 m) = 400 kN/m[/tex]

2. Calculate the virtual work done by the applied horizontal force at joint C

  - The virtual work (δW) is given by the equation [tex]δW[/tex]= F * [tex]δL[/tex], where F is the applied horizontal force (given as 150 kN) and δL is the virtual horizontal displacement at joint C.

  - Let's calculate [tex]δW[/tex]:

[tex]δW = F * δL = 150 kN * δL[/tex]

3. Equate the virtual work done by the applied horizontal force to the total potential energy of the truss system:

  - The total potential energy is given by the equation

[tex]PE_total[/tex][tex]= (1/2) * (K_AB * δL_AB^2 + K_BC * δL_BC^2),[/tex]

where K_AB and K_BC are the stiffness of each member, and [tex]δL_AB[/tex]and [tex]δL_BC[/tex] are the horizontal displacements at joints A and B, respectively.
  - Since we are interested in the deflection at joint C, [tex]δL_AB[/tex]and [tex]δL_BC[/tex]are both zero.
  - Let's equate the virtual work to the total potential energy:

  [tex]δW[/tex]= [tex]PE_total[/tex]

[tex]150 kN * δL = (1/2) * (10,938.40 kN/m * 0 + 400 kN/m * 0)[/tex]

[tex]δL = 0[/tex]

Therefore, the horizontal deflection at joint C of the truss system, calculated using the Virtual Work Method, is 0.

Learn more about deflection with the given link,

https://brainly.com/question/1581319

#SPJ11

Understanding Pop
Active
Pre-Test
2
3
4
5 6
7
8
A dot density map uses dots to show the
O number of people living in a certain area.
Oratio of land to water in a certain area.
O types of resources in a certain area.
O type of climate in a certain area.
9
10

Answers

A dot density map uses dots to show the number of people living in a certain area.

A dot density map is a cartographic technique used to represent the number of people living in a specific area. It employs dots to visually depict the population distribution across a region.

The density of dots in a given area corresponds to a higher concentration of people residing there.

This method allows for a quick and intuitive understanding of population patterns and can be used to analyze population distribution, identify densely populated areas, or compare population densities between different regions.

It is important to note that dot density maps specifically focus on representing population and do not convey information regarding the ratio of land to water, types of resources, or climate in an area.

for such more question on density map

https://brainly.com/question/1354972

#SPJ8

The power, P, produced by a wind turbine depends on the diameter of the turbine, d, the wind speed, U, the turbine angular velocity w and the air density and viscosity, p and u respectively. a) Find the maximum number of non- dimensional groups required to describe this dependency

Answers

To describe this dependency, we require non-dimensional groups. To find out how many non-dimensional groups are needed to describe this dependency, we'll use the Buckingham Pi Theorem.

When it comes to a wind turbine, the power (P) produced depends on the wind speed (U), the diameter of the turbine (d), the turbine angular velocity (w), and the air density (p) and viscosity (u).

This theorem states that, for any physical situation involving n variables, m non-dimensional groups can be formed, where

m = n - k, and k is the minimum number of reference dimensions required to specify all the variables.

The reference dimensions are the dimensions of the seven SI base units.    We know that there are 5 variables in this situation: U, d, w, p, and u.

Each of these has a reference dimension. As a result,

k = 5. m

= n - k

= 5 - 5

= 0.

Therefore, there are no non-dimensional groups required to describe this dependency because the number of non-dimensional groups is zero. So, this means that all the variables are dependent on one another directly or indirectly.

The power (P) generated by a wind turbine is directly proportional to the cube of the wind speed (U) and the square of the turbine radius (d).

We can see that all the variables in the equation have units of time, mass, and length. As a result, we can describe them in terms of three fundamental dimensions: L (length), M (mass), and T (time).

Therefore, we require a minimum of three reference dimensions to specify all the variables.

To know more about Theorem visit :

https://brainly.com/question/32715496

#SPJ11

The Complete Question :

The power, P, produced by a wind turbine depends on the diameter of the turbine, d, the wind speed, U, the turbine angular velocity ω and the air density and viscosity, ρ and μ respectively. a) Find the maximum number of non- dimensional groups required to describe this dependency. [Total 4 Marks]

b) Explain why P and μ are not suitable choices for the repeating variables. [5 Marks]

c) Using ρ, ω and d as the repeating variables, rewrite this relation in dimensionless form. [7 Marks]

d) An engineer wishes to test the performance of a wind turbine with a diameter of 4m whose operational angular velocity is 200 rad/s with a wind speed of 15 m/s. She builds a small-scale model which she wishes to test in water at a speed of 5m/ s. Calculate the diameter and angular velocity required for the model turbine to reproduce the operating conditions of the full-scale wind turbine. [6 Marks]

e) The measured power produced by the scale model is 400 kW, determine the power produced by the full-scale wind turbine? [3 Marks]

f) The rotational speed of the wind turbine, ω, is found to be proportional to the wind speed U. If the effects of viscosity are negligible, comment on how the power of a specific wind turbine changes with wind speed.

A 5000− seat theater has tickets for sale at $25 and $40. How many tickets should be sold at each price for a sellout performance to generate a total revenue of $144,500?
The number of tickets for sale at $25 should be The number of lickets for sale at $40 should be

Answers

The number of tickets for sale at $25 should be 3700, and the number of tickets for sale at $40 should be 1300 to generate a total revenue of $144,500

To determine the number of tickets that should be sold at each price, we can use a system of equations.

Let's assume that the number of tickets sold at $25 is represented by x, and the number of tickets sold at $40 is represented by y.

We know that the total revenue generated from selling x tickets at $25 and y tickets at $40 should be $144,500. We can express this information as an equation:

25x + 40y = 144,500

Additionally, we know that the total number of tickets sold should be 5000, which gives us another equation:

x + y = 5000

Now we have a system of two equations with two variables:

25x + 40y = 144,500
x + y = 5000

To solve this system, we can use the method of substitution or elimination.

In this case, let's use the method of substitution.

Solving the second equation for x, we get:

x = 5000 - y

Now we can substitute this expression for x in the first equation:

25(5000 - y) + 40y = 144,500

Expanding and simplifying this equation, we have:

125000 - 25y + 40y = 144,500

Combining like terms, we get:

15y = 19500

Dividing both sides by 15, we find:

y = 1300

Now we can substitute this value of y back into the second equation to find x:

x + 1300 = 5000

Subtracting 1300 from both sides, we get:

x = 3700

Therefore, the number of tickets for sale at $25 should be 3700, and the number of tickets for sale at $40 should be 1300 to generate a total revenue of $144,500.

Learn more about total revenue from this link:

https://brainly.com/question/15267519

#SPJ11

In the diagram, BCD is a straight line. Angle ACB is a right angle. BC=6cm, tan x= 1.3 and cos y = 0.4 Work out the length of AD.

Answers

Answer:

Step-by-step explanation:

12

Example Sketch the period and find Fourier series associated with the function f(x) = x², for x € (-2,2]. TI

Answers

The Fourier series associated with the given function f(x) = x² for x € (-2,2] is given by

f(x) = 4/3 - 4/π³ ∑_n=1^∞ 1/(2n-1)³ cos [(2n-1)πx / 2].

Given function: f(x) = x² for x € (-2,2]

To sketch the period and find Fourier series associated with the given function f(x),

we need to calculate the coefficients.

The following steps will help us find the Fourier series:

The Fourier series for the given function is given bya0 = (1 / 4) ∫-2²2 x² dx

On integrating, we get

a0 = (1 / 4) [ (8 / 3) x³ ]²-² = 0a0 = 0

Next, we need to calculate the values of an and bn coefficients which are given by:

an = (1 / L) ∫-L^L f(x) cos (nπx / L) dx

where, L = 2bn = (1 / L) ∫-L^L f(x) sin (nπx / L) dx

where, L = 2

On substituting the given function, we get

an = (1 / 2) ∫-2²2 x² cos (nπx / 2) dx

On integrating by parts, we get

an = 8 / n³ π³ [ (-1)ⁿ - 1 ]

Therefore, an = (8 / n³ π³) [1 - (-1)ⁿ]

On substituting the given function, we get

bn = (1 / 2) ∫-2²2 x² sin (nπx / 2) dx

On integrating by parts, we get

bn = 16 / n⁵π⁵ [ 1 - cos(nπ) ]

On substituting n = 2m + 1, we get

bn = 0

On substituting n = 2m, we get

bn = (-1)^m (32 / n⁵ π⁵)

Therefore, the Fourier series for the given function f(x) is given by

f(x) = ∑(-∞)^∞ cn ei nπx/L

where, cn = (an - ibn) / 2

On substituting the values of an and bn, we get

f(x) = 4/3 - 4/π³ ∑_n=1^∞ 1/(2n-1)³ cos [(2n-1)πx / 2]

Therefore, The Fourier series associated with the given function f(x) = x² for x € (-2,2] is given by

f(x) = 4/3 - 4/π³ ∑_n=1^∞ 1/(2n-1)³ cos [(2n-1)πx / 2].

To know  more about integrating by parts visit:

https://brainly.com/question/31040425

#SPJ11

Which of the following mixtures will produce a buffer solution?
a) 100 mL of 0.25 M NaNO3 and 100 mL of 0.50 M HNO3 b)100 mL of 0.25 M NaNO₂ and 100 mL of 0.50 M HNO₂ c)Choices (a) and (b) both buffers.

Answers

The correct option to the question is option C) both buffers. The following mixtures will produce a buffer solution: 100 mL of 0.25 M NaNO3 and 100 mL of 0.50 M HNO3 and 100 mL of 0.25 M NaNO2 and 100 mL of 0.50 M HNO2.

Buffer solutions are the solutions that can withstand any pH changes without a significant alteration in the pH of the solution. It is a solution that can neutralize small amounts of acid or base and maintain a relatively stable pH. The solution's buffering capacity is the extent to which it can resist changes in pH.

A buffer solution comprises a weak acid and its corresponding conjugate base or a weak base and its corresponding conjugate acid. A buffer solution's pH is determined by the weak acid's Ka value and the acid-to-conjugate base concentration ratio.

Both options (a) and (b) are the mixtures of a weak acid and a salt of its conjugate base. When the weak acid reacts with a strong base, it forms a salt of its conjugate base. When a weak acid reacts with a strong acid, it produces a salt of its conjugate acid.

Thus, both mixtures produce a buffer solution. In the first mixture, HNO3 acts as the weak acid, and NO3 acts as the conjugate base. In the second mixture, HNO2 acts as the weak acid, and NO2 acts as the conjugate base.

Therefore, we can conclude that both options (a) and (b) are the mixtures of a weak acid and a salt of its conjugate base, and both produce a buffer solution.

To know more about buffering capacity :

brainly.com/question/30894034

#SPJ11

According to drilling and completion engineering answer the following question: The well depth is 3000m with diameter 215.9mm (8-1/2in). The maximum bit weight is 150kN and the well angle is 2º. Buoyancy coefficient KB is 0.90 and safety factor is 1.30. The drill collar gravity qe is 1.53 kN/m. Please determine how much length of drill collar pipes used for the drilling.

Answers

The length of drill collar pipes used for drilling is 53.5 meters.

To determine how much length of drill collar pipes is used for the drilling, we need to calculate the weight required to overcome the buoyancy force acting on the drill collar, and then use that weight to calculate the length of the drill collar pipe used. The formula for calculating the weight required to overcome buoyancy is as follows:

W = Q × (1 + KB)

Where, W is the weight required to overcome buoyancy, Q is the weight of the drill collar, KB is the buoyancy coefficient, which is given as 0.90

Using the formula above, we can calculate the weight required to overcome buoyancy as follows:

W = qe × LDC × (1 + KB)

where, qe is the drill collar gravity, which is given as 1.53 kN/m

LDC is the length of the drill collar pipe used

We can substitute the given values and simplify as follows:

150 kN = 1.53 kN/m × LDC × (1 + 0.90)150

kN = 1.53 kN/m × LDC × 1.9LDC = 150 kN ÷ (1.53 kN/m × 1.9)

LDC = 53.5 m

Therefore, the length of drill collar pipes used for drilling is 53.5 meters.

Learn more about buoyancy visit:

brainly.com/question/30641396

#SPJ11

how much is 453 million?​

Answers

Hello!

453 millions

= 453 000 000

What is the length of the indicated side of the trapezoid? ​

Answers

The length of the indicated side of the trapezoid is 10 inches

What is the length of the indicated side of the trapezoid? ​

From the question, we have the following parameters that can be used in our computation:

The trapezoid

The length of the indicated side of the trapezoid is calculated as

Length² = (18 - 12)² + 8²

Evaluate the sum

So, we have

Length² = 100

Take the square root of both sides

Length = 10

Hence, the length of the indicated side of the trapezoid is 10 inches

Read more about trapezoid at

https://brainly.com/question/1463152

#SPJ1

The following precipitation reaction can be used to determine the amount of copper ions dissolved in solution. A chemist added 5.00 x 102 L of a solution containing 0.173 mol L¹ Na3PO4(aq) to a 5.00 x 102 L sample containing CuCl₂(aq). This resulted in a precipitate. The chemist filtered, dried, and weighed the precipitate. If 1.21 g of Cu3(PO4)2(s) were obtained, and assuming no copper ions remained in solution, calculate the following: a. the concentration of Cu²+ (aq) ions in the sample solution. b. the concentrations of Na* (aq), CI (aq), and PO43(aq) in the reaction solution (supernatant) after the precipitate was removed. 5. Calculate the number of moles of gas in a 3.24 L basketball inflated to a total pressure of 25.1 psi at 25°C. What is the total pressure (in psi) of gas in this basketball if the temperature is changed to 0°C? 6. Calculate the density of gas in a 3.24 L basketball inflated with air to a total pressure of 25.1 psi at 25°C. Assume the composition of air is 78% N₂, 21% O2, and 1% Ar. [Ignore all other gases.] 7. A sample of gas has a mass of 0.623 g. Its volume is 2.35 x 10¹ Lata temperature of 53°C and a pressure of 763 torr. Find the molar mass of the gas.

Answers

a. To calculate the concentration of Cu²+ ions in the sample solution, we need to use stoichiometry and the amount of [tex]Cu_3(PO_4)_2[/tex] precipitate obtained.

b. The concentrations of Na+, Cl-, and [tex]PO_4[/tex]3- ions in the reaction solution can be determined using the volume and initial concentration of [tex]Na_3PO_4[/tex] and the stoichiometry of the reaction.

5. To calculate the number of moles of gas in the basketball at 25°C and 0°C, we can use the ideal gas law equation and convert the temperature from Celsius to Kelvin.

6. To calculate the density of the gas in the basketball, we need to use the ideal gas law equation and the molar mass of air.

7. To find the molar mass of the gas, we can use the ideal gas law equation, the given mass, volume, temperature, and pressure of the gas, and solve for the molar mass.

a. To calculate the concentration of Cu²+ ions, we need to determine the moles of [tex]Cu_3(PO_4)_2[/tex] precipitate obtained using its mass and molar mass. Then, using the volume of the sample solution, we can calculate the concentration of Cu²+ ions.

b. To determine the concentrations of Na+, Cl-, and [tex]PO_4[/tex]3- ions in the reaction solution, we can use stoichiometry and the initial concentration and volume of [tex]Na_3PO_4[/tex]. Since the reaction is assumed to go to completion, the concentrations of Na+ and Cl- ions will be equal to the initial concentration of [tex]Na_3PO_4[/tex], while the concentration of [tex]PO_4[/tex]3- ions can be calculated using the stoichiometric ratio.

5. To calculate the number of moles of gas at 25°C, we use the ideal gas law equation PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin. We can rearrange the equation to solve for n.

6. To calculate the density of the gas, we divide the mass of the gas by its volume. Since the composition of air is given, we can calculate the molar mass of air using the percentages of the constituent gases and their molar masses.

7. To find the molar mass of the gas, we can rearrange the ideal gas law equation PV = nRT to solve for the molar mass. By substituting the given values of mass, volume, temperature, and pressure, we can solve for the molar mass of the gas.

To know more about Equation visit-

brainly.com/question/14686792

#SPJ11

Epoxidation/cyclopropanation 2 Unanswered 1 attempt left A species that has opposite charges on adjacent atoms is most often defined as what?

Answers

A species that has opposite charges on adjacent atoms is most often defined as an ion or an ionic compound.

A species that has opposite charges on adjacent atoms is typically defined as an ion or an ionic compound due to the presence of ionic bonding. In ionic compounds, atoms with different electronegativities transfer electrons, resulting in the formation of ions with opposite charges. These ions are attracted to each other through electrostatic forces, creating a stable crystal lattice structure. The presence of opposite charges on adjacent atoms is a characteristic feature of ionic compounds and distinguishes them from covalent compounds, where electron pairs are shared between atoms.

To know more about ionic compound,

https://brainly.com/question/30418469

#SPJ11

CV313: HYDROLOGY AND COASTAL ENGINEERING Groundwater is critically important for many countries worldwide including the Pacific islands. In this project, you are required to conduct a literature surve

Answers

Conducting a literature survey on groundwater and coastal engineering for countries, particularly Pacific islands, is an essential project in understanding and managing water resources.

What is the significance of groundwater in the context of Pacific islands and why is conducting a literature survey important?

Groundwater plays a vital role in many countries, especially Pacific islands, where freshwater resources are limited. These islands heavily rely on groundwater for drinking water, agriculture, and maintaining freshwater lenses.

Understanding the hydrology and coastal engineering aspects related to groundwater is crucial for sustainable water management and coastal protection.

Conducting a literature survey allows researchers to gather existing knowledge, identify research gaps, and develop effective strategies for groundwater conservation, saltwater intrusion prevention, and mitigating the impacts of climate change on freshwater resources in Pacific islands.

Learn more about groundwater

brainly.com/question/22109774

#SPJ11

A solid steel shaft 32 mm in diameter is to be used to transmit 3,750 W from the motor to which it is attached. The shaft rotates at 175 rpm( rev/min). Determine the longest shaft that can be twisted to no more than 2º. Use G = 83 GPa Select one: O a. 1.34 m O b. 1.12 m O c. 1.46 m O d. 1.25 m

Answers

The longest solid steel shaft that can be twisted to no more than 2º, while transmitting 3,750 W and rotating at 175 rpm, is approximately 1.34 m.

To determine the longest solid steel shaft that can be twisted within the given constraints, we need to consider the power transmission, rotational speed, and the allowable twist angle.

Calculate the torque transmitted by the shaft:

The torque (T) transmitted by the shaft can be calculated using the formula:

[tex]T = (P * 60) / (2π * N)[/tex]

where P is the power transmitted, N is the rotational speed in revolutions per minute (rpm), and T is the torque.

Substitute the given power (3,750 W) and rotational speed (175 rpm) into the formula to calculate the torque.

Determine the maximum allowable shear stress:

The maximum allowable shear stress (τ_max) for the steel shaft can be calculated using the formula:

[tex]τ_max = θ * (G * D) / (2 * L)[/tex]

where θ is the twist angle in radians, G is the shear modulus of the material, D is the diameter of the shaft, and L is the length of the shaft.

Substitute the given twist angle (2º converted to radians), shear modulus (83 GPa), and shaft diameter (32 mm) into the formula.

Calculate the longest shaft length:

Rearrange the formula for maximum allowable shear stress to solve for the shaft length (L):

[tex]L = θ * (G * D) / (2 * τ_max)[/tex]

Substitute the values of the twist angle, shear modulus, shaft diameter, and maximum allowable shear stress into the formula to calculate the longest shaft length.

By performing the calculations, we find that the longest solid steel shaft that can be twisted to no more than 2º while transmitting 3,750 W at 175 rpm is approximately 1.34 m

To know more about Diameter visit:

https://brainly.com/question/32968193

#SPJ11

Predict the resonance stabilization of propenyl cation and radical from SHM. We expect the resonance energy to decrease as we add pi-electrons. What happens with these systems (w.r.to the stabilization energies) and what do you think is the reason for the same?

Answers

The delocalization of electrons through resonance has a profound impact on the stability of organic molecules. Resonance stabilization in organic molecules is an important aspect of organic chemistry.

The π-electrons of a molecule can be delocalized over the entire molecular structure in the presence of pi bonds. Let us discuss the resonance stabilization of propenyl cation and radical from SHM.Shimizu, Hirao, and Miyamoto (SHM) developed a new method for estimating the energy of a molecule with resonance by measuring its distortion energy. Shimizu, Hirao, and Miyamoto calculated the stabilization energy for three propenyl cations (Propene, CH2=CH-CH2+), Propenyl radicals (CH2=CH-CH2•), and Propenyl anions (CH2=CH-CH2-), with and without resonance. They found that the Propenyl cation and radical systems had very low stabilization energy compared to their non-resonance forms, while the Propenyl anion system was highly stabilized by resonance.

In the Propenyl cation and radical systems, as the number of π-electrons increases, the resonance energy decreases. When the number of π-electrons increases, the positive charge is distributed among more atoms, resulting in weaker stabilization energy due to resonance. In conclusion, the resonance energy decreases as the number of pi electrons increases for Propenyl cation and radical. The reason for this is that as the number of pi-electrons increases, the positive charge is distributed among more atoms, resulting in weaker stabilization energy due to resonance.

To know more about  delocalization visit

https://brainly.com/question/31227124

#SPJ11

A sample of radioactive material disintegrates from 6 to 2 grams
in 50 days. After how many days will just 1 gram ​remain?

Answers

It is given that a sample of radioactive material disintegrates from 6 to 2 grams in 50 days ,just 1 gram will remain after approximately 77.95 days.

We are to determine after how many days will just 1 gram remain.Let N be the number of remaining grams of the material after t days.The rate of decay of radioactive material is proportional to the mass of the radioactive material. The differential equation is given as:dN/dt = -kN,where k is the decay constant.

The solution to the differential equation is given as:[tex]N = N0 e^(-kt)[/tex]where N0 is the initial number of grams of the material and t is time in days.

If 6 grams of the material reduces to 2 grams, then N0 = 6 and N = 2.

Thus,[tex]2 = 6 e^(-k × 50) => e^(-50k) = 1/3[/tex]

On taking natural logarithm of both sides, we get:-

50k = ln(1/3) => k = (ln 3)/50

Thus, the decay equation for the material is:

[tex]N = 6 e^[-(ln 3/50) t][/tex]

At t = t1, 1 gram of the material remains.

Thus, N = 1.

Substituting this in the decay equation, we get:[tex]1 = 6 e^[-(ln 3/50) t1] => e^[-(ln 3/50) t1] = 1/6[/tex]

Taking natural logarithm of both sides, we get:-(ln 3/50) t1 = ln 6 - ln 1 => t1 = (50/ln 3) [ln 6 - ln 1] => t1 ≈ 77.95 days

Therefore, just 1 gram will remain after approximately 77.95 days.

To know more about radioactive  visit:

https://brainly.com/question/1770619

#SPJ11

QUESTIONNAIRE Answer the following: SITUATION 1 A stone weigh 105 lbs in air. When submerged in water, it weighs 67.0 lb. 1. Find the volume of the stone. 2. Find the specific gravity of the stone. 3. A piece of irregularly shaped metal weighs 0.3 kN in air. When the metal is completely submerged in water, it weights 0.2325 kN. Find the volume of the metal.

Answers

1. The volume of the stone is approximately 0.39 cubic feet.

2. The specific gravity of the stone is approximately 2.69.

3. The volume of the metal is approximately 0.017 cubic meters.

When an object is submerged in a fluid, such as water, it experiences a buoyant force that counteracts the force of gravity. By measuring the change in weight of the object when submerged, we can determine its volume and specific gravity.

1) In the first situation, we are given that the stone weighs 105 lbs in air and 67.0 lbs when submerged in water. The difference between these two weights represents the buoyant force acting on the stone. By applying Archimedes' principle, we can equate the weight of the displaced water to the buoyant force.

To find the volume of the stone, we divide the weight difference by the density of water. The density of water is approximately 62.4 lbs/ft³. Therefore, the volume of the stone is calculated as (105 lbs - 67.0 lbs) / (62.4 lbs/ft³) ≈ 0.39 ft³.

2) Next, to determine the specific gravity of the stone, we compare its density to the density of water. The specific gravity is the ratio of the density of the stone to the density of water. Since the density of water is 1 g/cm³ or approximately 62.4 lbs/ft³, the specific gravity of the stone can be calculated as (105 lbs/0.39 ft³) / (62.4 lbs/ft³) ≈ 2.69.

3) Moving on to the second situation, we are given the weight of an irregularly shaped metal piece both in air and when completely submerged in water. The weight in air is 0.3 kN, and when submerged, it weighs 0.2325 kN.

Using the same principle as before, we calculate the weight difference between air and water to find the buoyant force acting on the metal. Dividing this weight difference by the density of water, which is approximately 1000 kg/m³, we can determine the volume of the metal. The volume is calculated as (0.3 kN - 0.2325 kN) / (1000 kg/m³) ≈ 0.017 m³.

Learn more about specific gravity

brainly.com/question/9100428

#SPJ11

Multiply the polynomials.
(3x² + 3x + 5)(6x + 4)
OA. 18x³ + 30x² +42x - 20
B. 18x³ + 30x² + 42x+ 20
OC. 18x³ + 6x² + 42x+ 20
D. 18x³ + 30x² + 2x - 20

Answers

The given polynomials, we use the distributive property. Multiplying each term of the first polynomial by each term of the second, we get OA. 18x³ + 30x² + 42x + 20.

To multiply the given polynomials (3x² + 3x + 5) and (6x + 4), we can use the distributive property and multiply each term of the first polynomial by each term of the second polynomial.

(3x² + 3x + 5)(6x + 4)

Expanding the expression:

= 3x²(6x + 4) + 3x(6x + 4) + 5(6x + 4)

Using the distributive property:

= 18x³ + 12x² + 18x² + 12x + 30x + 20

Combining like terms:

= 18x³ + (12x² + 18x²) + (12x + 30x) + 20

= 18x³ + 30x² + 42x + 20

Consequently, the appropriate response is

OA. 18x³ + 30x² + 42x + 20

for such more question on polynomials

https://brainly.com/question/15702527

#SPJ8

Functions f(x) and g(x) are defined as follows: f(x)=2x+3(−[infinity]

Answers

The function f(x) = 2x + 3 as x approaches negative infinity tends to negative infinity.

The function f(x) = 2x + 3 can be evaluated for any value of x. However, the notation "−[infinity]" after the function definition seems to indicate that the function is defined only for values of x approaching negative infinity.

To understand the meaning of the function f(x) = 2x + 3 as x approaches negative infinity, we can consider the behavior of the function for extremely large negative values of x.

As x becomes more and more negative (approaching negative infinity), the term 2x dominates the function. Since x is negative, 2x becomes more negative as x decreases. Therefore, as x approaches negative infinity, 2x approaches negative infinity as well.

The constant term 3 remains the same regardless of the value of x. Therefore, as x approaches negative infinity, the function f(x) = 2x + 3 also approaches negative infinity.

In other words, as x becomes increasingly negative, the output values of the function f(x) become increasingly negative. The function has a negative slope and decreases without bound as x approaches negative infinity.

Learn more about function from ;

https://brainly.com/question/11624077

#SPJ11

Bromine monochloride is synthesized using the reaction Br_2(g)+Cl_2(g) --->2BrCl(g) Kp=1.1×10−4 at 150 K A 201.0 L flask initially contains 1.058 kg of Br2 and 1.195 kg of Cl2. Calculate the mass of BrCl , in grams, that is present in the reaction mixture at equilibrium. Assume ideal gas behaviour

Answers

The mass of BrCl present in the reaction mixture at equilibrium is 1529.19 grams.

To find the mass of BrCl in the reaction mixture at equilibrium, we need to use the given equilibrium constant (Kp) and the initial amounts of Br2 and Cl2.

First, let's convert the given masses of Br2 and Cl2 into moles using their molar masses.

The molar mass of Br2 is 159.808 g/mol, and the molar mass of Cl2 is 70.906 g/mol.

1.058 kg of Br2 = 1.058 kg × (1000 g / 1 kg) × (1 mol / 159.808 g) = 6.618 mol Br2

1.195 kg of Cl2 = 1.195 kg × (1000 g / 1 kg) × (1 mol / 70.906 g) = 16.830 mol Cl2

According to the balanced equation, the stoichiometry of the reaction is 1:1:2 for Br2, Cl2, and BrCl, respectively.

This means that for every 1 mole of Br2 and Cl2, we get 2 moles of BrCl. Since the initial amounts of Br2 and Cl2 are in excess, the reaction will proceed until one of them is completely consumed.

Let's assume that all of the Br2 is consumed. Since 1 mole of Br2 produces 2 moles of BrCl, the total moles of BrCl produced will be 2 × 6.618 mol = 13.236 mol.

Now, we can convert the moles of BrCl into grams using its molar mass.

The molar mass of BrCl is 115.823 g/mol. Mass of BrCl = 13.236 mol × 115.823 g/mol = 1529.19 g

Therefore, the mass of BrCl present in the reaction mixture at equilibrium is 1529.19 grams.

Note: It is important to ensure that the units are consistent throughout the calculations and to use the correct molar masses and conversion factors.

Learn more about molar mass at

https://brainly.com/question/15937867

#SPJ11

A mixture of 30 mol% CO, 65 mol % H₂, and 5 mol % N₂ is fed to a methanol (CH3OH) synthesis reactor, where the following reaction occurs: CO + 2H₂CH₂OH The reactor is at 200°C and 4925 kPa. The stream leaving the reactor is at equilibrium. If 100 kmol/h of the feed mixture is fed to the reactor, calculate the flow rates of all species leaving the reactor.

Answers

The flow rates of all species leaving the reactor are as follows n(CH3OH) is 2.81 x 10⁶ kmol/h, n(H2O) is 641 kmol/h, n(CO) is - 2.81 x 10⁶ kmol/h, n(H2) is - 5.61 x 10⁶ kmol/h and n(N2) = 5 kmol/h respectively.

The values of various components can be substituted into the equation above.

mol CO used = 0.3 x 100 kmol/h = 30 kmol/h

mol H2 used = 0.65 x 100 kmol/h = 65 kmol/h

mol N2 used = 0.05 x 100 kmol/h = 5 kmol/h

Total moles used = 30 + 65 + 5 = 100 kmol/h

Now, let us calculate the equilibrium constant

Kc:Kc = (PCH3OH)/(PCO.PH2²)

At 200°C and 4925

kPa:PCH3OH = PCO = PH2² = 4925

kPaKc = (4925)/(4925 * 65² * 30) = 4.02 x 10⁻⁴ mol/kPa³

The flow rate of methanol (CH3OH) leaving the reactor is given by:

n(CH3OH) = (nCO * nH2²) / Kc= (30 x 65²) / 4.02 x 10⁻⁴ = 2.81 x 10⁶ kmol/h

The flow rate of water (H2O) leaving the reactor is given by:

n(H2O) = (nCO * nH2² * Kc)= (30 x 65² x 4.02 x 10⁻⁴) = 641 kmol/h

The flow rate of CO leaving the reactor is given by:

n(CO) = nCO - n(CH3OH)= 30 - 2.81 x 10⁶ = - 2.81 x 10⁶ kmol/h

This negative value indicates that all CO in the feed reacts completely with H2.

The flow rate of H2 leaving the reactor is given by:n(H2) = nH2 - 2 * n(CH3OH)= 65 - 2 x 2.81 x 10⁶ = - 5.61 x 10⁶ kmol/h

This negative value indicates that all H2 in the feed reacts completely with CO.

The flow rate of N2 leaving the reactor is given by:

n(N2) = nN2= 5 kmol/h

Therefore, the flow rates of all species leaving the reactor are as follows n(CH3OH) is 2.81 x 10⁶ kmol/h, n(H2O) is 641 kmol/h, n(CO) is - 2.81 x 10⁶ kmol/h, n(H2) is - 5.61 x 10⁶ kmol/h and n(N2) = 5 kmol/h respectively.

To know more about flow rate, click here

https://brainly.com/question/19863408

#SPJ11

Suppose an individual makes an initial investment of $2,000 in an account that earns 7.2%, compounded monthly, and makes additional contributions of $100 at the em of each month for a period of 12 years. After these 12 years, this individual wants to make withdrawals at the end of each month for the next 5 years (so that the account balance will be reduced to $0). (Round your answers to the nearest cent.) (a) How much is in the account after the last deposit is made?
(b) How much was deposited? $ x (c) What is the amount of each withdrawal? $ (d) What is the total amount withdrawn?

Answers

(a) The account balance after the last deposit is made is approximately $33,847.94.

(b) The total amount deposited over the 12-year period is approximately $17,200.

(c) The amount of each withdrawal is approximately $628.34.

(d) The total amount withdrawn over the 5-year period is approximately $37,700.

To calculate the final balance after the last deposit, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A = the final amount

P = the principal amount (initial investment)

r = the annual interest rate (7.2% or 0.072)

n = the number of times the interest is compounded per year (12 for monthly compounding)

t = the number of years (12)

Using the given values, we can plug them into the formula:

A = 2000(1 + 0.072/12)^(12*12)

A ≈ $33,847.94

To calculate the total amount deposited, we need to consider the monthly contributions over the 12-year period:

Total contributions = (monthly contribution) × (number of months)

Total contributions = 100 × 12 × 12

Total contributions = $17,200

For the amount of each withdrawal, we need to distribute the remaining balance evenly over the 5-year period:

Amount of each withdrawal = (final balance) / (number of months)

Amount of each withdrawal = $33,847.94 / (5 × 12)

Amount of each withdrawal ≈ $628.34

Finally, to calculate the total amount withdrawn, we multiply the amount of each withdrawal by the number of months:

Total amount withdrawn = (amount of each withdrawal) × (number of months)

Total amount withdrawn = $628.34 × (5 × 12)

Total amount withdrawn ≈ $37,700

Learn more about account balance

brainly.com/question/28699225

#SPJ11

Point F is the image when point f is reflected over the line x=-2 and then over the line y=3. The location of F is (5, 7). which of the following is the location of point F?

A.) (-5,-7)
B.) (-9.-1)
C.) (-1,-3)
D.) (-1,13)

Answers

To find the location of point F after reflecting point f over the line x = -2 and then over the line y = 3, we can perform the reflections one by one.

First, reflecting over the line x = -2 will change the x-coordinate of point F to its opposite. Since the x-coordinate of point F is 5, the reflected x-coordinate will be -5.

Next, reflecting over the line y = 3 will change the y-coordinate of the reflected point F to its opposite. Since the y-coordinate of the reflected point F is 7, the final y-coordinate will be -7.

Therefore, the location of point F after the given reflections is (-5, -7), which corresponds to option A. So, the correct answer is A.) (-5, -7).

Calculate the equilibrium concentration of undissociated CH 3

CHOHCOOH in a lactic acid solution with an analytical lactic acid concentration of 0.0694M and apH of 3.170. K a

(CH 3

CHOHCOOH)=1.38×10 −4
. Concentration = M

Answers

The answer is 7.97 × 10^-2.

Given,Analytical lactic acid concentration, c = 0.0694

MpH of the solution, pKa and Ka of CH3CHOCOOH, pKa = - log KaKa

= antilog (- pKa)Ka

= antilog (- 1.138)Ka

= 2.455×10-2M

= [CH3CHOCOOH] + [CH3CHOHCOO]-Ka

= ([CH3CHOHCOO-] [H+]) / [CH3CHOCOOH][CH3CHOHCOO-]

= [H+] x [CH3CHOCOOH] / Ka[CH3CHOHCOO-] = [H+] x 0.0694M / (1.38 × 10^-4)M[CH3CHOHCOO-]

= 4.357 × 10^-1 x H+

Similarly, [CH3CHOCOOH] = (0.0694M - [CH3CHOHCOO-])

= (0.0694M - 4.357 × 10^-1 x H+)

At equilibrium, [CH3CHOHCOOH] = [CH3CHOHCOO-] + [H+][CH3CHOHCOOH]

= 5.357 × 10^-1 x H+ + 0.0694M - 4.357 × 10^-1 x H+[CH3CHOHCOOH]

= 7.97 × 10^-2M + 0.999 × [H+]

Equilibrium concentration of undissociated CH3CHOHCOOH = [CH3CHOHCOOH]

= 7.97 × 10^-2M.

Hence, the answer is 7.97 × 10^-2.

Know more about Analytical lactic acid concentration here:

https://brainly.com/question/14279880

#SPJ11

Observations indicate that an excavator carries an average bucket load of 3.0 Lm3 per cycle. The soil being carried weighs 1471 kg/m3 loose and 1839 kg/m3 in-place. Excavator cycle time averages 0.5 minutes. A job efficiency factor of 0.75 is considered appropriate given the site and management conditions. Calculate the cost to excavate a volume of 2500m3 of bank material using this machine if its total operational cost is $320 per hour.

Answers

The cost to excavate a volume of 2500 m³ of bank material using this excavator is approximately $8182.17.

To calculate the cost to excavate a volume of 2500 m³ of bank material using the given excavator, we need to consider the average bucket load, soil density, cycle time, job efficiency factor, and the total operational cost of the machine.

Average bucket load per cycle = 3.0 m³

Soil density (loose) = 1471 kg/m³

Soil density (in-place) = 1839 kg/m³

Excavator cycle time = 0.5 minutes

Job efficiency factor (E) = 0.75

Total operational cost of the machine = $320 per hour

First, let's calculate the number of cycles required to excavate the given volume of material:

Number of cycles = Volume of material / Average bucket load per cycle

= 2500 m³ / 3.0 m³

≈ 833.33 cycles

Next, we need to calculate the weight of the material excavated in each cycle:

Weight of material per cycle = Average bucket load per cycle * Soil density (in-place)

= 3.0 m³ * 1839 kg/m³

= 5517 kg

Now, let's calculate the total weight of material excavated:

Total weight of material excavated = Weight of material per cycle * Number of cycles

= 5517 kg * 833.33 cycles

≈ 4,597,501.01 kg

To convert the weight of material to metric tons (MT), we divide by 1000:

Total weight of material excavated (in MT) = 4,597,501.01 kg / 1000

≈ 4597.50 MT

Now, let's calculate the total operational cost for the excavation:

Total operational cost = Total weight of material excavated (in MT) * Cost per MT

To find the cost per MT, we divide the total operational cost per hour by the production rate per hour:

Cost per MT = Total operational cost / (Production rate per hour * E)

The production rate per hour can be calculated by dividing the number of cycles per hour by the cycle time:

Production rate per hour = (Number of cycles per hour) / Cycle time

Number of cycles per hour = 60 minutes / Cycle time

Substituting the given values:

Number of cycles per hour = 60 minutes / 0.5 minutes

= 120 cycles/hr

Production rate per hour = 120 cycles/hr / 0.5 minutes

= 240 cycles/hr

Now, let's calculate the cost per MT:

Cost per MT = $320/hr / (240 cycles/hr * 0.75)

= $320 / 180

≈ $1.78/MT

Finally, we can calculate the total operational cost for the excavation:

Total operational cost = Total weight of material excavated (in MT) * Cost per MT

≈ 4597.50 MT * $1.78/MT

≈ $8182.17

Learn more about cost to excavate:

https://brainly.com/question/29886282

#SPJ11

Calculate the solubility of CaSO3
(a) in pure water and (b) in a solution in which
[SO32-] =
0.190 M.
Solubility in pure water =
M
Solubility in 0.190 M
SO32- =
M

Answers

(a) The solubility of [tex]CaSO_3[/tex] in pure water is M.

(b) The solubility of [tex]CaSO_3[/tex] in a solution with [[tex]SO_3^2^-[/tex]] = 0.190 M is M.

When calcium sulfite ([tex]CaSO_3[/tex]) dissolves in water, it dissociates into its respective ions, calcium ions ([tex]Ca^2^+[/tex]) and sulfite ions[tex](SO_3^2^-)[/tex]. The solubility of a compound is defined as the maximum amount of the compound that can dissolve in a given amount of solvent at a particular temperature. In this case, we need to calculate the solubility of [tex]CaSO_3[/tex] in two different scenarios: pure water and a solution with a specified concentration of sulfite ions.

(a) Solubility in pure water:

In pure water, where there is no additional presence of sulfite ions, the solubility of [tex]CaSO_3[/tex] is M. This means that at equilibrium, the concentration of [tex]Ca^2^+[/tex] and [tex]SO_3^2^-[/tex] ions in the solution would be M.

(b) Solubility in a solution with [tex][SO_3^2^-][/tex] = 0.190 M:

When there is a solution with a concentration of [tex][SO_3^2^-][/tex] = 0.190 M, the equilibrium of the solubility of [tex]CaSO_3[/tex] is affected. The presence of sulfite ions in the solution creates a common ion effect, which reduces the solubility of CaSO₃. As a result, the solubility of CaSO₃ in this solution would be M. The additional concentration of sulfite ions shifts the equilibrium and decreases the amount of CaSO₃ that can dissolve in the solution.

In summary, the solubility of CaSO₃ in pure water is M, while in a solution with [SO32-] = 0.190 M, the solubility is M due to the common ion effect.

The solubility of a compound is influenced by several factors, including temperature, pressure, and the presence of other ions in the solution. In this case, the concentration of sulfite ions ([tex][SO_3^2^-][/tex]) has a significant impact on the solubility of CaSO₃. The common ion effect occurs when a compound is dissolved in a solution that already contains one of its constituent ions. The presence of the common ion reduces the solubility of the compound.

The common ion effect can be explained by Le Chatelier's principle. According to this principle, if a stress is applied to a system at equilibrium, the system will shift to counteract that stress and restore equilibrium.

In the case of CaSO₃, the addition of sulfite ions in the form of [tex][SO_3^2^-][/tex] in the solution increases the concentration of the sulfite ion. In response to this increase, the equilibrium shifts to the left, reducing the solubility of CaSO₃. This shift occurs to minimize the stress caused by the increased concentration of the common ion.

The solubility product constant (Ksp) is a useful tool to quantify the solubility of a compound. It represents the equilibrium expression for the dissociation of a sparingly soluble compound. For CaSO₃, the Ksp expression would be:

[tex]Ksp = [Ca^2^+][SO_3^2^-][/tex]

The solubility can be calculated using the Ksp expression and the concentrations of the ions at equilibrium.

Learn more about solubility

brainly.com/question/31493083

#SPJ11

Let G=(V,E) be a directed graph with negative-weight edges. Then one can compute shortest paths from a single source s E V to all v EV faster than Bellman-Ford by re-weighting the edges to be non-negative and then running Dijkstra's algorithm. True False The path between any two vertices s and t in the minimum spanning tree of a graph G must be a shortest path from s to t in G. True False Let P be the shortest path from some vertex s to some other vertex t in a graph. If the weight of each edge in the graph is increased by one, P will still be a shortest path from s to t. True False

Answers

The statement "One can compute shortest paths from a single source s to all vertices v faster than Bellman-Ford by re-weighting the edges to be non-negative and then running Dijkstra's algorithm" is False.

The statement "The path between any two vertices s and t in the minimum spanning tree of a graph G must be a shortest path from s to t in G" is False.

The statement "If the weight of each edge in the graph is increased by one, the shortest path from s to t will still be a shortest path" is True.

The statement is False. Although re-weighting the edges to be non-negative and running Dijkstra's algorithm is faster than the Bellman-Ford algorithm for finding shortest paths in graphs with non-negative edge weights, it does not hold for graphs with negative-weight edges.

The reason is that Dijkstra's algorithm relies on the property of selecting the smallest edge weight at each step, which may not work correctly in the presence of negative-weight edges.

The statement is False. While the minimum spanning tree of a graph connects all vertices with the minimum total edge weight, it does not guarantee that the path between any two vertices in the minimum spanning tree is the shortest path in the original graph.

The minimum spanning tree focuses on minimizing the total weight of the tree, not necessarily considering individual shortest paths between pairs of vertices.

The statement is True. If the weight of each edge in a graph is increased by one, the relative order of the edge weights remains the same. Therefore, the shortest path from a vertex s to another vertex t will still be the shortest path even after increasing the edge weights.

The increased weights simply shift the absolute values of the weights, but the relative differences between the weights remain unchanged, ensuring that the shortest path remains the same.

To learn more about spanning tree visit:

please read the question carfully
1. Write the component of F₁ acting in the direction of F2. Write the component in its Cartesian form. 1200 F₂=400 N F₁ = 250 N

Answers

The component of F₁ acting in the direction of F₂ is 250 N in its Cartesian form.

To find the component of F₁ acting in the direction of F₂, we can use the dot product of the two vectors. The dot product gives us the magnitude of one vector in the direction of another vector.

Given:

F₂ = 400 N

F₁ = 250 N

The dot product of two vectors A and B is given by:

A · B = |A| |B| cosθ

Where |A| and |B| are the magnitudes of vectors A and B, respectively, and θ is the angle between the two vectors.

In this case, we want to find the component of F₁ in the direction of F₂, so we can write:

F₁ component in the direction of F₂ = |F₁| cosθ

To find the angle θ, we can use the fact that the dot product of two vectors A and B is also equal to the product of their magnitudes and the cosine of the angle between them:

F₁ · F₂ = |F₁| |F₂| cosθ

Since we know the magnitudes of F₁ and F₂, we can rearrange the equation to solve for cosθ:

cosθ = (F₁ · F₂) / (|F₁| |F₂|)

Substituting the given values:

cosθ = (250 N * 400 N) / (|250 N| * |400 N|)

Taking the magnitudes:

cosθ = (250 N * 400 N) / (250 N * 400 N)

cosθ = 1

Since cosθ = 1, we know that the angle between the two vectors is 0 degrees or θ = 0.

Now, we can calculate the component of F₁ in the direction of F₂:

F₁ component in the direction of F₂ = |F₁| cosθ

F₁ component in the direction of F₂ = 250 N * cos(0)

F₁ component in the direction of F₂ = 250 N * 1

F₁ component in the direction of F₂ = 250 N

Learn more about vectors from the given link!

https://brainly.com/question/14799066

#SPJ11

100 poitns

Port Elizabeth, South Africa is about 32° south of the equator and 25° east of the prime

meridian. Perth, Australia is also about 32° south, but 115° east of the prime meridian.

How far apart are Port Elizabeth and Perth?

Answers

To determine the distance between Port Elizabeth, South Africa, and Perth, Australia, we can use the Haversine formula, which is commonly used to calculate distances between two points on the Earth's surface given their latitude and longitude coordinates.

Using the Haversine formula, the distance (d) between two points with coordinates (lat1, lon1) and (lat2, lon2) is given by:

d = 2r * arcsin(√(sin²((lat2 - lat1)/2) + cos(lat1) * cos(lat2) * sin²((lon2 - lon1)/2)))

In this case, the latitude and longitude coordinates for Port Elizabeth are approximately (-32°, 25°), and for Perth are approximately (-32°, 115°).

Substituting these values into the formula:

d = 2 * r * arcsin(√(sin²((-32° - (-32°))/2) + cos(-32°) * cos(-32°) * sin²((115° - 25°)/2)))

Note that the angles should be in radians for the trigonometric functions, so we convert the degrees to radians:

d = 2 * r * arcsin(√(sin²((-32° - (-32°))/2) + cos(-32°) * cos(-32°) * sin²((115° - 25°)/2)))

Using the Earth's average radius r ≈ 6,371 kilometers, we can calculate the distance between Port Elizabeth and Perth using the formula above.

Learn more about longitude here

https://brainly.com/question/30340298

#SPJ11

If y varies directly as x, and y is 18 when x is 5, which expression can be used to find the value of y when x is 11? y = StartFraction 5 Over 18 EndFraction (11) y = StartFraction 18 Over 5 EndFraction (11) y = StartFraction (18) (5) Over 11 EndFraction y = StartFraction 11 Over (18) (5) EndFraction

Answers

The expression that can be used to find the value of y when x is 11 is y = (18/5)(11). Option B.

When two variables vary directly, it means that they have a constant ratio between them. In this case, if y varies directly as x, we can express this relationship using the equation:

y = kx

where k represents the constant of variation.

To find the value of y when x is 11, we need to determine the value of k first. Given that y is 18 when x is 5, we can substitute these values into the equation:

18 = k(5)

To solve for k, we divide both sides of the equation by 5:

k = 18/5

Now we have the value of k. We can substitute it back into the equation and solve for y when x is 11:

y = (18/5)(11)

Simplifying this expression gives us:

y = 198/5

Therefore, the value of y when x is 11 is 198/5. SO Option B is correct.

FOr more question on expression visit:

https://brainly.com/question/1859113

#SPJ8

Other Questions
Which of the following set of dataframe functions best answers exercise 3 of lab 6?a. filter, orderBy, show(10)b. filter, select, join, orderBy, show(10)c. filter, select, orderBy, show(10)d. select, orderBy, show(1 Suppose that the graph below represents an INCREASE in the price of Good 1. Find the total, substitution and income effects for the consumption of Good 1. Be sure to show the substitution budget line. C For its first taxable year, Rony Incorporateds accounting records showed the following: Operating loss per books $ (830,000) Temporary book/tax difference 118,000 Net operating loss for tax $ (712,000) Required: Use a 21 percent rate to compute Ronys deferred tax asset with respect to the $118,000 book/tax difference. Use a 21 percent rate to compute Ronys deferred tax asset with respect to its $712,000 NOL carryforward. Compute Ronys tax benefit (negative tax expense) reported on its first income statement. Gargantua and PantagruelQuestions :What is sent to Gargantua in Gargantua: Chapter Fifteen?What does he do with the gift? You have just been hired as a summer intern by a startup company, BestSCUEngineers.com Your first project is to re-design a 4-variable logic function. Your boss gives you the 4-variable function in the Product of Sums (POS) format as follows: F(W,X,Y,Z) = (W+X)(W+Y+Z)(W+X'+Y'+Z') Your job is to implement the logic function using logic gates as a 2-level AND- OR using the Minimum Sum of Product (SOP) form. (i) Express F(W,X,Y,Z) as a minimum SOP form [20pts.] (ii) Draw a 2-level AND-OR logic implementation of the SOP form please help will give brainliest........... The molar concentration of a solution of 17.70 g CaCl2 (MW = 110.98 g/mol) in 75 mL is:I)2.13MII)3.67MIII)4.7MIV)7.67M find the inverse of each function Define the term 'equilibrium vapour pressure and discuss: (i) the molecular basis of this physical quantity (ii) the effect of temperature (iii) the effect of surface area the volume of a cubical box is 1331/125 meter square find its side How are residual services helping citizens in society?350 words Find the S-Box output of the input which you will obtain by following the steps: (a) Take the last 8 digits of your student number and take mod 2 of cach digit.(b) Convert your row number (1 to 166) to binary string of length 8. Sheridan Company expects to produce 53,000 units of product XLA during the current year. Budgeted variable manufacturing costs per unit are direct materials $7, direct labour $13, and overhead $17. Annual budgeted fixed manufacturing overhead costs are $92,400 for depreciation and $47,400 for supervision. In the current month, Sheridan produced 5,600 units and incurred the following costs: direct materials $35,280, direct labour $70,600, variable overhead $103,292, depreciation $7,700, and supervision $4,187. Prepare a flexible budget report. A marine boiler installation is fired with methane (CH4). For stoichiometric combustion, calculate: A. The correct air to fuel mass ratio. B. The percentage composition of the dry flue gases by volume. Atomic mass relationships: hydrogen 1, oxygen 16, carbon 12, nitrogen 14. Air contains 23% oxygen and 77% nitrogen by mass. Given the signalsy, [n] = [-1 3 1 2 1] and y [n] = [-2 -1 3-1 21]. Evaluate the output for Y[n]+yl-n]. b. y [2+ n] yn - 2] he volume of a specific weight of gas varies directly as the absolute temperature f and inversely as the pressure P. If the volume is 1.23 m when Pis 479 kPa and Tis 344 K find the volume when Pis 433 kPa and Tis 343 K. Round your answer to the hundredths place value. Type the answer without the units as though you are filling in the blank The volume is _____m Refer to HWVideo of Section 11-3. In the vapor-compression cycle the refrigerant must be R-12 since it is environmentally friendly. undergoes phase change remains in the gaseous state leaks that is why engincers refrained from using this system Question 5 Refer to HW Video of Section 11-3. In the vapor-compression cycle at state 2 . the specific enthalpy is the same as that of state 1 the temperature and pressure are the highest the temperature is the coldest since heat is rejected oriy the pressure is the highest In a certain unit cell. planes cut through the crystal axes at (2a. 3b. c). (a. b. c). (6a. 3b. 3c). (2a. -3b. -3c). Identify the M iller indices of the planes. Einstein's relation between the displacement x of a Brownian particle and the observed time interval t. (2) Einstein-Stokes equation for the diffusion coefficient. Explain the derivation process of each of all of them. In the answer emphasize what is the hypothesis (or assumption) and what is the result.. For the beam shown below, calculate deflection using any method of your choice. Assume M1=30kNm, M2 = 20kNm and L=5 m.