can
you please answer this
G(x,y) = (−y) + (2x)) Describe and sketch the vector field along both coordinate axes and along the diagonal lines y = tx. 3- 2 1 -6-5-4-3-2-1 2 3 4 5 6 -3- +4- -5- -6- (b) Compute the work done by

Answers

Answer 1

(a) To describe and sketch the vector field G(x, y) = (-y, 2x) along the coordinate axes and diagonal lines y = ±x:

Along the x-axis (y = 0):

For y = 0, G(x, 0) = (-0, 2x) = (0, 2x), where the y-component is always zero. This means that the vector field is purely horizontal along the x-axis, with vectors pointing to the right for positive x and to the left for negative x.

Along the y-axis (x = 0):

For x = 0, G(0, y) = (-y, 0) = (-y, 0), where the x-component is always zero. This means that the vector field is purely vertical along the y-axis, with vectors pointing downwards for positive y and upwards for negative y.

Along the diagonal lines y = ±x:

For the diagonal lines y = ±x, we substitute y = ±x into G(x, y) = (-y, 2x) to get G(x, ±x) = (±x, 2x). This means that the x-component is always positive or negative x, and the y-component is always 2x. The vectors along the diagonal lines will have a combination of horizontal and vertical components.

To sketch the vector field, we can choose representative points along the axes and diagonal lines and plot the vectors based on the calculated components. Here's a rough sketch:

      |     |     |     |     |     |     |

     -2    -1     0     1     2     3     4

     /     |     |     |     |     |     \

    /      |     |     |     |     |      \

   /       |     |     |     |     |       \

  /        |     |     |     |     |        \

 /         |     |     |     |     |         \

/          |     |     |     |     |          \

/           |     |     |     |     |           \

/ | | | | |

/ | | | | |

/ | | | | |

-4 | | | | | -4

| | | | |

-3 -2 -1 0 1

The vectors along the x-axis will point to the right, while the vectors along the y-axis will point downwards. The vectors along the diagonal lines y = ±x will have a combination of horizontal and vertical components, tilted in the direction of the line.

(b). To compute the work done by the vector field G(x, y) = (-y, 2x) along the line segment L from point A(0,0) to point B(2,4), we can evaluate the line integral using the parameterization of the line segment.

The parameterization of the line segment L from A to B can be given as follows:

x(t) = 2t

y(t) = 4t

where 0 ≤ t ≤ 1.

To compute the work, we need to evaluate the integral of the dot product of G(x, y) and the tangent vector of the line segment:

Work = ∫(G(x, y) ⋅ dR)

where dR = (dx, dy) represents the differential displacement along the line segment.

Substituting the parameterization into G(x, y), we have:

G(x(t), y(t)) = (-4t, 4t)

The differential displacement dR is given by:

dR = (dx, dy) = (dx/dt, dy/dt) dt = (2, 4) dt

Now, we can calculate the dot product G(x(t), y(t)) ⋅ dR and integrate it over the parameter range:

Work = ∫[(-4t, 4t) ⋅ (2, 4)] dt

= ∫[-8t^2 + 16t^2] dt

= ∫(8t^2) dt

= 8 ∫t^2 dt

= 8 [t^3/3] evaluated from t = 0 to t = 1

= 8 [(1^3/3) - (0^3/3)]

= 8 (1/3)

= 8/3

Therefore, the work done by the vector field G(x, y) along the line segment L from point A(0,0) to point B(2,4) is 8/3.

Learn more about coordinate axis:

https://brainly.com/question/15930946

#SPJ11


Related Questions

Verify Stokes's Theorem by evaluating A. F. dr as a line integral and as a double integral. a F(x, y, z) = (-y + z)i + (x – z)j + (x - y)k S: z = 25 – x2 - y2, 220 line integral double integral

Answers

The double integral of the curl of F over the surface S is given by -10A.

To verify Stokes's Theorem for the vector field F(x, y, z) = (-y + z)i + (x - z)j + (x - y)k over the surface S defined by z = 25 - x^2 - y^2, we'll evaluate both the line integral and the double integral.

Stokes's Theorem states that the line integral of the vector field F around a closed curve C is equal to the double integral of the curl of F over the surface S bounded by that curve.

Let's start with the line integral:

(a) Line Integral:

To evaluate the line integral, we need to parameterize the curve C that bounds the surface S. In this case, the curve C is the boundary of the surface S, which is given by z = 25 - x^2 - y^2.

We can parameterize C as follows:

x = rcosθ

y = rsinθ

z = 25 - r^2

where r is the radius and θ is the angle parameter.

Now, let's compute the line integral:

∫F · dr = ∫(F(x, y, z) · dr) = ∫(F(r, θ) · dr/dθ) dθ

where dr/dθ is the derivative of the parameterization with respect to θ.

Substituting the values for F(x, y, z) and dr/dθ, we have:

∫F · dr = ∫((-y + z)i + (x - z)j + (x - y)k) · (dx/dθ)i + (dy/dθ)j + (dz/dθ)k

Now, we can calculate the derivatives and perform the dot product:

dx/dθ = -rsinθ

dy/dθ = rcosθ

dz/dθ = 0 (since z = 25 - r^2)

∫F · dr = ∫((-y + z)(-rsinθ) + (x - z)(rcosθ) + (x - y) * 0) dθ

Simplifying, we have:

∫F · dr = ∫(rysinθ - zrsinθ + xrcosθ) dθ

Now, integrate with respect to θ:

∫F · dr = ∫rysinθ - (25 - r^2)rsinθ + r^2cosθ dθ

Evaluate the integral with the appropriate limits for θ, depending on the curve C.

(b) Double Integral:

To evaluate the double integral, we need to calculate the curl of F:

curl F = (∂Q/∂y - ∂P/∂z)i + (∂P/∂z - ∂R/∂x)j + (∂R/∂x - ∂Q/∂y)k

where P, Q, and R are the components of F.

Let's calculate the partial derivatives:

∂P/∂z = 1

∂Q/∂y = -1

∂R/∂x = 1

∂P/∂y = -1

∂Q/∂x = 1

∂R/∂y = -1

Now, we can compute the curl of F:

curl F = (1 - (-1))i + (-1 - 1)j + (1 - (-1))k

       = 2i - 2j + 2k

The curl of F is given by curl F = 2i - 2j + 2k.

To apply Stokes's Theorem, we need to calculate the double integral of the curl of F over the surface S bounded by the curve C.

Since the surface S is defined by z = 25 - x^2 - y^2, we can rewrite the surface integral as a double integral over the xy-plane with the z component of the curl:

∬(curl F · n) dA = ∬(2k · n) dA

Here, n is the unit normal vector to the surface S, and dA represents the area element on the xy-plane.

Since the surface S is described by z = 25 - x^2 - y^2, the unit normal vector n can be obtained as:

n = (∂z/∂x, ∂z/∂y, -1)

  = (-2x, -2y, -1)

Now, let's evaluate the double integral over the xy-plane:

∬(2k · n) dA = ∬(2k · (-2x, -2y, -1)) dA

            = ∬(-4kx, -4ky, -2k) dA

            = -4∬kx dA - 4∬ky dA - 2∬k dA

Since we are integrating over the xy-plane, dA represents the area element dxdy. The integral of a constant with respect to dA is simply the product of the constant and the area of integration, which is the area of the surface S.

Let A denote the area of the surface S.

∬(2k · n) dA = -4A - 4A - 2A

            = -10A

Therefore, the double integral of the curl of F over the surface S is given by -10A.

To verify Stokes's Theorem, we need to compare the line integral of F along the curve C with the double integral of the curl of F over the surface S.

If the line integral and the double integral yield the same result, Stokes's Theorem is verified.

To know more about Stokes's Theorem refer here

https://brainly.com/question/32258264#

#SPJ11

Determine where / is discontinuous. if yo f(x) = 7-x 7-x if 0 5x

Answers

The function f(x) = 7 - x is continuous for all values of x, including x = 0. There are no points of discontinuity in this function.

Let's evaluate the function step by step to determine its continuity

For x < 0:

In this interval, the function is defined as f(x) = 7 - x.

For x ≥ 0:

In this interval, the function is defined as f(x) = 7 - x².

To determine the continuity, we need to check the limit of the function as x approaches 0 from the left (x →  0⁻) and the limit as x approaches 0 from the right (x → 0⁺). If both limits exist and are equal, the function is continuous at x = 0.

Let's calculate the limits

Limit as x approaches 0 from the left (x → 0⁻):

lim (x → 0⁻) (7 - x) = 7 - 0 = 7

Limit as x approaches 0 from the right (x → 0⁺):

lim (x → 0⁺) (7 - x²) = 7 - 0² = 7

Both limits are equal to 7, so the function is continuous at x = 0.

Therefore, the function f(x) = 7 - x is continuous for all values of x, including x = 0. There are no points of discontinuity in this function.

To know more about continuous function:

https://brainly.com/question/28228313

#SPJ4

--The given question is incomplete, the complete question is given below "  Determine where the function is continuous /discontinuous. if  f(x) = 7-x 7-x if 0 5x"--




Solve the initial value problem for r as a vector function of t. dr Differential Equation: Initial condition: = 6(t+1)/2 +2e - + 1*jptit r(0) = 1 -k t + 1 r(t) = (i+O + k

Answers

To solve the initial value problem for r as a vector function of t, we can integrate the given differential equation with the initial condition to find the solution. The solution will be a vector function of t.

The given differential equation is not provided in the question. However, with the information provided, we can assume that the differential equation is dr/dt = 6(t+1)/2 + 2[tex]e^(-t)[/tex] + j.

To solve this differential equation, we can integrate both sides with respect to t. The integration will yield the components of the vector function r(t).

After integrating the differential equation, we obtain the solution as r(t) = (6([tex]t^2[/tex]/2 + t) - 2[tex]e^(-t)[/tex] + C1)i + (t + C2)j + (2t + C3)k, where C1, C2, and C3 are constants determined by the initial condition.

Using the initial condition r(0) = 1i - k, we can substitute t = 0 and solve for the constants C1, C2, and C3. Once the constants are determined, we can obtain the final solution for r(t) as a vector function of t.

Please note that the specific values of C1, C2, and C3 cannot be determined without the given differential equation or additional information.

Learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11

please help ASAP. do everything
correct.
2. (10 pts) Let / be a function. Give the formal definition of its derivative: f'(x) = Find the derivative of the function f(z)= 4r²-3r using the above definition of the derivative. Check your result

Answers

The derivative of the function f(z) = 4z² - 3z is 16z - 3.

How to calculate the value

The formal definition of the derivative of a function f(x) at x = a is:

f'(a) = lim_{h->0} (f(a+h) - f(a)) / h

In this case, we have f(z) = 4z² - 3z. So, we have:

f'(z) = lim_{h->0} (4(z+h)² - 3(z+h) - (4z² - 3z)) / h

f'(z) = lim_{h->0} (16z² + 16zh + 4h² - 3z - 3h - 4z² + 3z) / h

f'(z) = lim_{h->0} (16zh + 4h² - 3h) / h

f'(z) = lim_{h->0} h (16z + 4h - 3) / h

f'(z) = lim_{h->0} 16z + 4h - 3

The limit of a constant is the constant itself, so we have:

f'(z) = 16z + 4(0) - 3

f'(z) = 16z - 3

Therefore, the derivative of the function f(z) = 4z² - 3z is 16z - 3.

Learn more about functions on

https://brainly.com/question/11624077

#SPJ1

Determine whether the improper integral 3 [.. -dx converges or diverges. If the integral converges, find its value.

Answers

To determine whether the improper integral ∫₃^∞ (1/x) dx converges or diverges, we need to evaluate the integral.

The integral can be expressed as follows:

∫₃^∞ (1/x) dx = limₜ→∞ ∫₃^t (1/x) dx

Integrating the function 1/x gives us the natural logarithm ln|x|:

∫₃^t (1/x) dx = ln|x| ∣₃^t = ln|t| - ln|3|

Taking the limit as t approaches infinity:

limₜ→∞ ln|t| - ln|3| = ∞ - ln|3| = ∞

Since the result of the integral is infinity (∞), the improper integral ∫₃^∞ (1/x) dx diverges.

Therefore, the improper integral diverges and does not have a finite value.

Visit here to learn more about logarithm:

brainly.com/question/30226560

#SPJ11

a bundle of stacked and tied into blocks that are 1,2 metres high.how many bundles are used to make one block of card?

Answers

The number of bundles to be used to make one block of cardboard is 8 bundles.

How to calculate the number of bundles used to make one block of cardboard?

We shall convert the measurements to a consistent unit in order to estimate the number of bundles used to make one block of cardboard.

Now, we convert the height of the bundles and the block into the same unit like centimeters.

Given:

Height of each bundle = 150 mm = 15 cm

Height of one block = 1.2 meters = 120 cm

Next, we divide the height of the block by the height of each bundle to find the number of bundles:

Number of bundles = Height of block / Height of each bundle

Number of bundles = 120 cm / 15 cm = 8 bundles

Therefore, it takes 8 bundles to make one block of cardboard.

Learn more about measurements at brainly.com/question/26160352

#SPJ1

Question completion:

Your question is incomplete, but most probably your full question was:

The 150mm bundles are stacked and tied into blocks that are 1.2 meters high. how many bundles are used to make one block of cardboard​

identify the basic operations and construct a recurrence relation c(n) that characterizes the time complexity of the algorithm. determine the order of growth for c(n) by solving the recurrence relation. foo4 (k, a[0..n-1]) // description: counts the number of occurrences of k in a. // input: a positive integer k and an array of integers and // the length of the array is a power of 2. // output: the number of times k shows up in a.

Answers

Therefore, the total work done at each level is d * (n/2^i). Summing up the work done at all levels, we get: c(n) = d * (n/2^0 + n/2^1 + n/2^2 + ... + n/2^log(n)).

The basic operation in the algorithm is comparing the value of each element in the array with the given integer k. We can construct a recurrence relation to represent the time complexity of the algorithm.

Let's define c(n) as the time complexity of the algorithm for an array of length n. The recurrence relation can be expressed as follows:

c(n) = 2c(n/2) + d,

where c(n/2) represents the time complexity for an array of length n/2 (as the array is divided into two halves in each recursive call), and d represents the time complexity of the comparisons and other constant operations performed in each recursive call.

To determine the order of growth for c(n), we can solve the recurrence relation using the recursion tree or the Master theorem.

Using the recursion tree method, we can observe that the algorithm divides the array into halves recursively until the array size becomes 1. At each level of the recursion tree, the total work done is d times the number of elements at that level, which is n/2^i (where i represents the level of recursion).

To know more about level ,

https://brainly.com/question/16464253

#SPJ11

Given the function y=-5sin +4, What is the range?

Answers

The range of the function y = -5sin(x) + 4 is the set of all possible output values that the function can take.

In this case, the range is [4 - 9, 4 + 9], or [-5, 13]. The function is a sinusoidal curve that is vertically reflected and shifted upward by 4 units. The negative coefficient of the sine function (-5) indicates a downward stretch, while the constant term (+4) shifts the curve vertically.

The range of the sine function is [-1, 1], so when multiplied by -5, it becomes [-5, 5]. Adding the constant term of 4 gives the final range of [-5 + 4, 5 + 4] or [-5, 13].

The range of the function y = -5sin(x) + 4 is determined by the behavior of the sine function and the vertical shift applied to it. The range of the sine function is [-1, 1], representing its minimum and maximum values.

By multiplying the sine function by -5, the range is stretched downward to [-5, 5]. However, the curve is then shifted upward by 4 units due to the constant term. This vertical shift moves the entire range up by 4, resulting in the final range of [-5 + 4, 5 + 4] or [-5, 13]. Therefore, the function can take any value between -5 and 13, inclusive.

Learn more about function here : brainly.com/question/30721594

#SPJ11

DETAILS 0/2 Submissions Used Find the slope of the tangent line to the exponential function at the point (0, 1). y = ex/3 y (0, 1) 1 Enter a fraction, integer, or exact decimal. Do not approximate. Su

Answers

The slope of the tangent line to the exponential function y = (e^(x/3)) at the point (0, 1) is 1/3.

To find the slope of the tangent line to the exponential function y = e^(x/3) at the point (0, 1), we need to take the derivative of the function and evaluate it at x = 0.

Using the chain rule, we differentiate the function y = (e^(x/3)). The derivative of e^(x/3) is found by multiplying the derivative of the exponent (1/3) with respect to x and the derivative of the base e^(x/3) with respect to the exponent:

dy/dx = (1/3)e^(x/3)

Differentiating the exponent (1/3) with respect to x gives us (1/3). The derivative of the base e^(x/3) with respect to the exponent is e^(x/3) itself.

Plugging in x = 0, we get:

dy/dx | x=0 = (1/3)e^(0/3) = 1/3

Next, we evaluate the derivative at x = 0, as specified by the point (0, 1). Substituting x = 0 into the derivative equation, we have dy/dx = (1/3) * e^(0/3) = (1/3) * e^0 = (1/3) * 1 = 1/3.

Hence, the slope of the tangent line to the exponential function y = (e^(x/3)) at the point (0, 1) is 1/3.

To know more about slope of the tangent line refer here:

https://brainly.com/question/31326507#

#SPJ11

A 9-year projection of population trends suggests that t years from now, the population of a certain community will be P(t)=−t^3+21t^2+33t+40 thousand people. (a) At what time during the 9-year period will the population be growing most rapidly? (b) At what time during the 9-year period will the population be growing least rapidly? (c) At what time during the 9-year period will the rate of population growth be growing most rapidly?

Answers

To find the time during the 9-year period when the population is growing most rapidly, we need to determine the maximum value of the derivative of the population function P(t).

(a) The population function is P(t) = -t^3 + 21t^2 + 33t + 40. To find the time when the population is growing most rapidly, we need to find the maximum point of the population function. This can be done by taking the derivative of P(t) concerning t and setting it equal to zero:

P'(t) = -3t^2 + 42t + 33

Setting P'(t) = 0 and solving for t, we can find the critical points. In this case, we can use numerical methods or factorization to solve the quadratic equation. Once we find the values of t, we evaluate the second derivative to confirm that it is concave down at those points, indicating a maximum.

(b) To find the time during the 9-year period when the population is growing least rapidly, we need to determine the minimum value of the derivative P'(t). Similarly, we find the critical points by setting P'(t) = 0 and evaluate the second derivative to ensure it is concave up at those points, indicating a minimum.

(c) To determine the time when the rate of population growth is growing most rapidly, we need to find the maximum value of the derivative of P'(t). This can be done by taking the derivative of P'(t) concerning t and setting it equal to zero. Again, we find the critical points and evaluate the second derivative to confirm the maximum.

The specific values of t obtained from these calculations will provide the answers to questions (a), (b), and (c) regarding the population growth during the 9 years.

For more questions on  derivative

https://brainly.com/question/23819325

#SPJ8

The rectangular coordinates of a point are given. Plot the point. (-7√2.-7√2) 15 10 10 15 -15 -10 O -5 55 -15 -10 -5 -15 -10 -5 10 15 -15 -10 -15 Find two sets of polar coordinates for the point for 0 ≤ 0 < 2. (smaller r-value) (r, 0) = (larger r-value) -5 -10 -15 15 10 X -10 -5 15t 10 5 -5 -10 15 151 10 5 -5 -10 -15 5 10 15 10 15

Answers

The polar coordinates are also shown in the graph with r = 14 and θ = (3π/4).

The given rectangular coordinate of a point is (-7√2, -7√2).

The point is to be plotted on the graph in order to find two sets of polar coordinates for the point for 0 ≤ 0 < 2.

It is given that the point lies in the third quadrant so, the polar coordinates will be between π and (3/2)π.

We have, r = √((-7√2)² + (-7√2)²) = √(98 + 98) = √196 = 14

The angle can be found as below:`

tan θ = y/x``θ = tan-1 (y/x)`θ = tan⁻¹(-7√2/-7√2) = 135°

Since the point lies in the third quadrant and it is to be measured in the anticlockwise direction from the positive x-axis, the angle in radians will be;

θ = (135° * π) / 180° = (3π/4)

Two sets of polar coordinates for the point for 0 ≤ 0 < 2 are:

r = 14 and θ = (3π/4) or (11π/4)r = -14 and θ = (-π/4) or (7π/4)

The point with rectangular coordinates of (-7√2, -7√2) is shown below:

The polar coordinates are also shown in the graph with r = 14 and θ = (3π/4).

Learn more about polar coordinates :

https://brainly.com/question/31904915

#SPJ11

Results for this submission Entered Answer Preview Result -1.59808 2 – 3V3 2 incorrect The answer above is NOT correct. (9 points) Find the directional derivative of f(x, y, z) = yx + 24 at the poin

Answers

The directional derivative of f(x, y, z) = yx + 24 at a point is not provided in the given submission. Therefore, the main answer is missing.

In the 80-word explanation, it is stated that the directional derivative of f(x, y, z) = yx + 24 at a specific point is not given. Consequently, a complete solution cannot be provided based on the information provided in the submission.

Certainly! In the given submission, there is an incomplete question or statement, as the actual point at which the directional derivative is to be evaluated is missing. The function f(x, y, z) = yx + 24 is provided, but without the specific point, it is not possible to calculate the directional derivative. The directional derivative represents the rate of change of a function in a specific direction from a given point. Without the point of evaluation, we cannot provide a complete solution or calculate the directional derivative.

Learn more about directional here:

https://brainly.com/question/32262214

#SPJ11

Please show all your steps. thanks!
2. Evaluate the integrale - 18e + 1) dr by first using the substitution = e to convert the integral to an integral of a rational function, and then using partial fractions.

Answers

The integral ∫(-18e+1)dr, using the substitution and partial fractions method, simplifies to -17e + C, where C is the constant of integration.

To evaluate the integral ∫(-18e+1)dr using the substitution and partial fractions method, we follow these steps:

Step 1: Perform the substitution

Let's substitute u = e. Then, we have dr = du/u.

The integral becomes:

∫(-18e+1)dr = ∫(-18u+1)(du/u)

Step 2: Expand the integrand

Now, expand the integrand:

(-18u+1)(du/u) = -18u(du/u) + (1)(du/u) = -18du + du = -17du

Step 3: Evaluate the integral

Integrate -17du:

∫-17du = -17u + C

Step 4: Substitute back the original variable

Replace u with e:

-17u + C = -17e + C

Therefore, the integral ∫(-18e+1)dr, using the substitution and partial fractions method, simplifies to -17e + C, where C is the constant of integration.

To know more about integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

Evaluate S.x?o?dx+xzºdy where C is the triangle vertices (0,0), (1,3), and (0,3).

Answers

The evaluation of the given expression is 7/2 for the triangle.

The given expression is:[tex]S.x?o?dx + xzº dy[/tex]

The polygonal shape of a triangle has three sides and three angles. It is one of the fundamental geometric shapes. Triangles can be categorised depending on the dimensions of their sides and angles. Triangles that are equilateral have three equal sides and three equal angles that are each 60 degrees.

Triangles with an equal number of sides and angles are said to be isosceles. Triangles in the scalene family have three distinct side lengths and three distinct angles. Along with other characteristics, triangles also have the Pythagorean theorem side-length relationship and the fact that the sum of interior angles is always 180 degrees. In many areas of mathematics and science, including trigonometry, navigation, architecture, and others, triangles are frequently employed.

The triangle vertices are (0,0), (1,3), and (0,3).Using the given vertices, let's draw the triangle. The graph of the given triangle is shown below:Figure 1

Now, we need to evaluate the expression [tex]S.x?o?dx + xzº dy[/tex] along the triangle vertices (0,0), (1,3), and (0,3).

For this, let's start with the vertex (0,0). At vertex (0,0): x = 0, y = 0 S(0,0) = ∫[0,0] x ? dx + 0º ? dy= 0 + 0 = 0

At vertex [tex](1,3): x = 1, y = 3S(1,3) = ∫[0,3] x ? dx + 1º ? dy= [x²/2]ₓ=₀ₓ=₁ + y ? ∣[y=0]ₓ=₁=[1/2] + 3 = 7/2[/tex]

At vertex (0,3): x = 0, y = 3S(0,3) = [tex]∫[0,3] x ? dx + 0º ? dy= [x²/2]ₓ=₀ₓ=₀ + y ? ∣[y=0]ₓ=₀=0 + 0 = 0[/tex]

Therefore, the evaluation of the given expression [tex]S.x?o?dx+xzºdy[/tex] is: [tex]S.x?o?dx + xzº dy[/tex]= 0 + 7/2 + 0 = 7/2. Answer: 7/2


Learn more about triangle here:

https://brainly.com/question/1674684


#SPJ11

What is the length of RS in this triangle to the nearest hundredth unit? Select one: a. 24.59 b. 19.62 c. 21.57 d. 23.28​

Answers

The value of RS is 21.57

What is trigonometric ratio?

Trigonometric ratios are used to calculate the measures of one (or both) of the acute angles in a right triangle, if you know the lengths of two sides of the triangle.

sin(θ) = opp/hyp

cos(θ) = adj/hyp

tan(θ) = opp/adj

The side facing the acute angle is the opposite and the longest side is the hypotenuse.

therefore, adj is 22 and RS is the hypotenuse.

Therefore;

cos(θ) = 20/x

cos 22 = 20/x

0.927 = 20/x

x = 20/0.927

x = 21.57

Therefore the value of RS is 21.57

learn more about trigonometric ratio from

https://brainly.com/question/1201366

#SPJ1

18. Let y = arctan(x2). Find f'(2). WIN b) IN IN e) None of the above

Answers

The correct answer is option A. 4/17. The derivative of the given equation can be found by using chain rule. The chain rule is a method for finding the derivative of composite functions, or functions that are made by combining one or more functions.

Given the equation: y = arc tan(x2).

It tells us how to find the derivative of the composite function f(g(x)).

Here, the value of f(x) is arc tan(x) and g(x) is x2,

hence f'(g(x))= 1/(1+([tex]g(x))^2[/tex]) and g'(x) = 2x.

Therefore by chain rule;`

(dy)/(dx) = 1/([tex]1+x^4[/tex]) ×2x

`Now, we have to find the value of f'(2).

`x = 2`So,`(dy)/(dx) = 1/(1+x^4) × 2x = 1/(1+2^4) ×2(2) = 4/17`

Therefore, the value of f'(2) is 4/17.

The correct answer is option A. 4/17

To know more about chain rule

https://brainly.com/question/30895266

#SPJ11

due tomorrow help me find the perimeter and explain pls!!

Answers

Answer:

x = 7

Step-by-step explanation:

Step 1:  Find measures of other two sides of first rectangle:

The figure is a rectangle and rectangles have two pairs of equal sides.

Thus:

the side opposite the (2x - 5) ft side is also (2x - 5) ft long, and the side opposite the 3 ft side is also 3 ft long.

Step 2:  Find measures of other two sides of second rectangle:

the side opposite the 5 ft side is also 5 ft long,and the side opposite the x ft long is also x ft.

Step 3:  Find perimeter of first and second rectangle:

The formula for perimeter of a rectangle is given by:

P = 2l + 2w, where

P is the perimeter,l is the length,and w is the width.

Perimeter of first rectangle:  

In the first rectangle, the length is (2x - 5) ft and the width is 3 ft.

Now, we can substitute these values for l and w in perimeter formula to find the perimeter of the first rectangle:

P = 2(2x - 5) + 2(3)

P = 4x - 10 + 6

P = 4x - 4

Thus, the perimeter of the first rectangle is (4x - 4) ft

Perimeter of the second rectangle:

In the second rectangle, the length is 5 ft and the width is x ft.  

Now, we can substitute these values in for l and w in the perimeter formula:

P = 2(5) + 2x

P = 10 + 2x

Thus, the perimeter of the second rectangle is (10 + 2x) ft.

Step 4:  Set the two perimeters equal to each to find x:

Setting the perimeters of the two rectangles equal to each other will allow us to find the value for x that would make the two perimeters equal each other:

4x - 4 = 10 + 2x

4x = 14 + 2x

2x = 14

x = 7

Thus, x = 7

Optional Step 5:  Check validity of answer by plugging in 7 for x in both perimeter equations and seeing if we get the same answer for both:

Plugging in 7 for x in perimeter equation of first rectangle:

P = 4(7) - 4

P = 28 - 4

P = 24 ft

Plugging in 7 for x in perimeter equation of second rectangle:

P = 10 + 2(7)

P = 10 + 14

p = 24 FT

Thus, x = 7 is the correct answer.

Hello, I need help with these two please.
11. [-/3 Points] DETAILS LARCALC11 1.3.083. Consider the following function. rex) = 4x + 6 Find the limit. (r + r) - 72 ANT INLO Need Help? Road 3 Watch it Submit Answer 12. [-/3 Points] DETAILS LARCA

Answers

The limit of the given function is 4. and Therefore, the value of f(2) is -10.

11. The given function is re x) = 4x + 6.

Now, we need to find the limit (r + r) - 72.

To find the limit of the given function, substitute the value of r + h in the given function.

re x) = 4x + 6= 4(r + h) + 6= 4r + 4h + 6

Now, we have to substitute both the values of re x) and r in the given limit.

lim h→0 (re x) - re x)) / h

= lim h→0 [(4r + 4h + 6) - (4r + 6)] / h

= lim h→0 (4h) / h= lim h→0 4= 4

Therefore, the limit of the given function is 4.

Given function is f(x) = x³ - 7x² + 2x + 6Now, we need to find the value of f(2).

To find the value of f(2), substitute x = 2 in the given function.

f(x) = x³ - 7x² + 2x + 6= 2³ - 7(2²) + 2(2) + 6= 8 - 28 + 4 + 6= -10

Therefore, the value of f(2) is -10.

To know more about function

https://brainly.com/question/11624077

#SPJ11

Use the definition of Laplace Transform to show that L {int} = s£{tint}-²

Answers

We have shown that the Laplace transform of the integral of a function f(t) is given by L{∫[0 to t] f(u) du} = s * L{f(t)} - f(0).

What is laplace transformation?

The Laplace transformation is an integral transform that converts a function of time into a function of a complex variable s, which represents frequency or the Laplace domain.

To show that the Laplace transform of the integral of a function f(t) is given by L{∫[0 to t] f(u) du} = s * L{f(t)} - f(0), we can use the definition of the Laplace transform and properties of linearity and differentiation.

According to the definition of the Laplace transform, we have:

L{f(t)} = ∫[0 to ∞] f(t) * [tex]e^{(-st)[/tex] dt

Now, let's consider the integral of the function f(u) from 0 to t:

I(t) = ∫[0 to t] f(u) du

To find its Laplace transform, we substitute u = t - τ in the integral:

I(t) = ∫[0 to t] f(t - τ) d(τ)

Now, let's apply the Laplace transform to both sides of this equation:

L{I(t)} = L{∫[0 to t] f(t - τ) d(τ)}

Using the linearity property of the Laplace transform, we can move the integral inside the transform:

L{I(t)} = ∫[0 to t] L{f(t - τ)} d(τ)

Using the property of the Laplace transform of a time shift, we have:

L{f(t - τ)} = [tex]e^{(-s(t - \tau))[/tex] * L{f(τ)}

Simplifying the exponent, we get:

L{f(t - τ)} = [tex]e^{(-st)} * e^{(s\tau)[/tex] * L{f(τ)}

Now, substitute this expression back into the integral:

L{I(t)} = ∫[0 to t] [tex]e^{(-st)} * e^{(s\tau)[/tex] * L{f(τ)} d(τ)

Rearranging the terms:

L{I(t)} = [tex]e^{(-st)[/tex] * ∫[0 to t] [tex]e^{(s\tau)[/tex] * L{f(τ)} d(τ)

Using the definition of the Laplace transform, we have:

L{I(t)} = [tex]e^{(-st)[/tex] * ∫[0 to t] [tex]e^{(s\tau)[/tex] * ∫[0 to ∞] f(τ) * [tex]e^{(-s\tau)[/tex] d(τ) d(τ)

By rearranging the order of integration, we have:

L{I(t)} = ∫[0 to ∞] ∫[0 to t] [tex]e^{(-st)} * e^{(s\tau)[/tex] * f(τ) d(τ) d(τ)

Integrating with respect to τ, we get:

L{I(t)} = ∫[0 to ∞] (1/(s - 1)) * [[tex]e^{((s - 1)t)} - 1[/tex]] * f(τ) d(τ)

Using the integration property, we can split the integral:

L{I(t)} = (1/(s - 1)) * ∫[0 to ∞] [tex]e^{((s - 1)t)[/tex] * f(τ) d(τ) - ∫[0 to ∞] (1/(s - 1)) * f(τ) d(τ)

The first term of the integral can be recognized as the Laplace transform of f(t), and the second term simplifies to f(0) / (s - 1):

L{I(t)} = (1/(s - 1)) * L{f(t)} - f(0) / (s - 1)

Simplifying further, we get:

L{I(t)} = (s * L{f(t)} - f(0)) / (s - 1)

Therefore, we have shown that the Laplace transform of the integral of a function f(t) is given by L{∫[0 to t] f(u) du} = s * L{f(t)} - f(0).

To learn more about laplace transformation visit:

https://brainly.com/question/29583725

#SPJ4

preliminary study testing a simple random sample of 132 clients, 19 of them were discovered to have changed their vacation plans. use the results of the preliminary study (rounded to 2 decimal places) to estimate the sample size needed so that a 95% confidence interval for the proportion of customers who change their plans will have a margin of error of 0.12.

Answers

A sample size of at least 34 consumers is necessary to generate a 95% confidence interval for the percentage of customers who alter their plans with a margin of error of 0.12.

To estimate the sample size needed for a 95% confidence interval with a margin of error of 0.12, we can use the formula:

n = (Z^2 * p* q) / E^2

Where:

n = required sample size

Z = Z-score corresponding to the desired confidence level (95% confidence level corresponds to a Z-score of approximately 1.96)

p = proportion of clients who changed their vacation plans in the preliminary study (19/132 ≈ 0.144)

q = complement of p (1 - p)

E = desired margin of error (0.12)

Plugging in the values, we can calculate the required sample size:

n = [tex](1.96^2 * 0.144 * (1 - 0.144)) / 0.12^2[/tex]

n ≈ (3.8416 * 0.144 * 0.856) / 0.0144

n ≈ 0.4899 / 0.0144

n ≈ 33.89

Rounding up to the nearest whole number, the estimated sample size needed is approximately 34.

Therefore, to obtain a 95% confidence interval for the proportion of customers who change their plans with a margin of error of 0.12, a sample size of at least 34 clients is required.

To know more about confidence interval refer here:

https://brainly.com/question/32546207?#

#SPJ11


Find the circumference of a circle with the given diameter or radius.
Use 2 for T.
7. d= 70 cm
8. r = 14 cm

Answers

The circumference of a circle whose diameter and radius is given would be listed as follows;

7.)220cm

8.)88cm

How to calculate the circumference of the given circle?

To calculate the circumference of the given circle, the formula that should be used would be given below as follows;

Circumference of circle = 2πr

For 7.)

where;

π = 22/7

r = diameter/2 = 70/2 = 35cm

circumference = ,2×22/7× 35

= 220cm

For 8.)

Radius = 14cm

circumference = 2×22/7×14

= 88cm

Learn more about circumference here:

https://brainly.com/question/31216718

#SPJ1

= = (1 point) Let f(t) = f'(t), with F(t) = 5+3 + 2t, and = let a = 2 and b = 4. Write the integral Só f(t)dt and evaluate it using the Fundamental Theorem of Calculus. Sa dt = =

Answers

The problem asks us to write the integral of f(t) and evaluate it using the Fundamental Theorem of Calculus. Given f(t) = F'(t), where [tex]F(t) = 5t^3 + 2t[/tex], and interval limits a = 2 and b = 4, we need to find the integral of f(t) and compute its value.

According to the Fundamental Theorem of Calculus, if f(t) = F'(t), then the integral of f(t) with respect to t from a to b is equal to F(b) - F(a). In this case, [tex]F(t) = 5t^3 + 2t[/tex].

To find the integral Só f(t)dt, we evaluate F(b) - F(a) using the given interval limits. Plugging in the values, we have:

So[tex]f(t)dt = F(b) - F(a)[/tex]

= [tex]F(4) - F(2)[/tex]

= [tex](5(4)^3 + 2(4)) - (5(2)^3 + 2(2))[/tex]

=[tex](320 + 8) - (40 + 8)[/tex]

=[tex]328 - 48[/tex]

= [tex]280[/tex].

Therefore, the value of the integral Só f(t)dt, evaluated using the Fundamental Theorem of Calculus and the given function and interval limits, is 280.

Learn more about integral here;

https://brainly.com/question/30094386

#SPJ11

Evaluate the integral 12 2 fa? (2 (23 – 2)"?dat by making the substitution u = : 23 – 2. + C

Answers

Therefore, the integral ∫2^(3 – 2x) dx, with the substitution u = 2^(3 – 2x), evaluates to:

(-1 / (2(ln 2))) ln (8) + (1 / ln 2) x + C, where C is the constant of integration.

To evaluate the integral ∫2^(3 – 2x) dx using the substitution u = 2^(3 – 2x), let's proceed with the following steps:

Let u = 2^(3 – 2x)

Differentiate both sides with respect to x to find du/dx:

du/dx = d/dx [2^(3 – 2x)]

To simplify the derivative, we can use the chain rule. The derivative of 2^x is given by (ln 2) * 2^x. Applying the chain rule, we have:

du/dx = d/dx [2^(3 – 2x)] = (ln 2) * 2^(3 – 2x) * (-2) = -2(ln 2) * 2^(3 – 2x)

Now, we can solve for dx in terms of du:

du = -2(ln 2) * 2^(3 – 2x) dx

dx = -du / [2(ln 2) * 2^(3 – 2x)]

Substituting this value of dx and u = 2^(3 – 2x) into the integral, we have:

∫2^(3 – 2x) dx = ∫-du / [2(ln 2) * u]

              = -1 / (2(ln 2)) ∫du / u

              = (-1 / (2(ln 2))) ln |u| + C

Finally, substituting u = 2^(3 – 2x) back into the expression:

∫2^(3 – 2x) dx = (-1 / (2(ln 2))) ln |2^(3 – 2x)| + C

              = (-1 / (2(ln 2))) ln |2^(3) / 2^(2x)| + C

              = (-1 / (2(ln 2))) ln |8 / 2^(2x)| + C

              = (-1 / (2(ln 2))) ln (8) - (-1 / (2(ln 2))) ln |2^(2x)| + C

              = (-1 / (2(ln 2))) ln (8) - (-1 / (2(ln 2))) (2x ln 2) + C

              = (-1 / (2(ln 2))) ln (8) + (1 / ln 2) x + C

to know more about integral visit:

brainly.com/question/31059545

#SPJ11

A week before the end of the study, all employees were told that there will be lay-offs in Company Z. The participants were all worried while taking the post-test and
greatly affected their final scores. What threat to internal validity was observed in this scenario?

Answers

The threat to internal validity observed in the given scenario is the "reactivity effect" or "reactive effects of testing." The participants' awareness of the impending lay-offs and their resulting worry and anxiety during the post-test significantly influenced their final scores, potentially compromising the internal validity of the study.

The reactivity effect refers to the changes in participants' behavior or performance due to their awareness of being observed or the experimental manipulation itself. In this scenario, the participants' knowledge of the impending lay-offs and their resulting worry and anxiety created a reactive effect during the post-test. This heightened emotional state could have adversely affected their concentration, motivation, and overall performance, leading to lower scores compared to their actual abilities.

The threat to internal validity arises because the observed changes in the participants' scores may not accurately reflect their true abilities or the effectiveness of the intervention being studied. The influence of the lay-off announcement confounds the interpretation of the results, as it becomes challenging to determine whether the changes in scores are solely due to the intervention or the participants' emotional state induced by the external factor.

To mitigate this threat, researchers can employ various strategies such as pre-testing participants to establish baseline scores, implementing control groups, or using counterbalancing techniques. These methods help isolate and account for the reactive effects of testing, ensuring more accurate and valid conclusions can be drawn from the study.

Learn  more about accurate here:

https://brainly.com/question/12740770

#SPJ11

It has been theorized that pedophilic disorder is related to irregular patterns of activity in the ____ or the frontal areas of the brain. a) cerebellum b) hippocampus c) amygdala d) prefrontal cortex

Answers

It has been theorized that pedophilic disorder is related to irregular patterns of activity in the prefrontal cortex or the frontal areas of the brain. Option D

What is the prefrontal cortex?

The prefrontal cortex is an essential part of the brain that has a crucial function in managing executive functions, making logical choices, controlling impulses, and regulating social behavior.

A potential reason for deviant sexual desires and actions in people with pedophilic disorder could be attributed to a malfunctioning region or regions in the brain.

It is crucial to carry out more studies with the aim of identifying the exact neural elements and mechanisms involved, due to the incomplete comprehension of the neurobiological basis of the pedophilic disorder.

Learn more about prefrontal cortex at: https://brainly.com/question/30127074

#SPJ1

Use Green's Theorem to evaluate f xy’dx + xºdy, where C is the rectangle with с vertices (0,0), (6,0), (6,3), and (0,3)

Answers

To evaluate the line integral using Green's Theorem, we need to calculate the double integral of the curl of the vector field over the region bounded by the rectangle C.

1. First, we need to parameterize the curve C. In this case, the rectangle is already given by its vertices: (0,0), (6,0), (6,3), and (0,3).

2. Next, we calculate the partial derivatives of the components of the vector field: ∂Q/∂x = 0 and ∂P/∂y = x.

3. Then, we calculate the curl of the vector field: curl(F) = ∂Q/∂x - ∂P/∂y = -x.

4. Now, we apply Green's Theorem, which states that the line integral of the vector field F along the curve C is equal to the double integral of the curl of F over the region R bounded by C.

5. Since the curl of F is -x, the double integral becomes ∬R -x dA, where dA represents the differential area element over the region R.

Learn more about Green's Theorem:

https://brainly.com/question/30763441

#SPJ11

To completely specify the shape of a Normal distribution you must give:
A: the mean and the standard deviation
B: the five number summary
C: the median and the quarties

Answers

A: The mean and the standard deviation.

To completely specify the shape of a Normal distribution, you need to provide the mean and the standard deviation. The mean determines the center or location of the distribution, while the standard deviation controls the spread or variability of the distribution.

The five number summary (minimum, first quartile, median, third quartile, and maximum) is typically used to describe the shape of a distribution, but it is not sufficient to completely specify a Normal distribution. The five number summary is more commonly associated with describing the shape of a skewed or non-Normal distribution.

Similarly, while the median and quartiles provide information about the central tendency and spread of a distribution, they alone do not fully define a Normal distribution. The mean and standard deviation are necessary to completely characterize the Normal distribution.

to know more about deviation visit:

brainly.com/question/31835352

#SPJ11

please help
3. Sketch the hyperbola. Note all pertinent characteristics: (x+1)* _ (0-1)2 = 1. Identify the vertices and foci. 25 9

Answers

The given equation of the hyperbola is (x + 1)^2/25 - (y - 0)^2/9 = 1.From this equation, we can determine the key characteristics of the hyperbola.Center: The center of the hyperbola is (-1, 0), which is the point (h, k) in the equation.

Transverse Axis: The transverse axis is along the x-axis, since the x-term is positive and the y-term is negative.Vertices: The vertices lie on the transverse axis. The distance from the center to the vertices in the x-direction is given by a = √25 = 5. So, the vertices are (-1 + 5, 0) = (4, 0) and (-1 - 5, 0) = (-6, 0).Foci: The distance from the center to the foci is given by c = √(a^2 + b^2) = √(25 + 9) = √34. So, the foci are located at (-1 + √34, 0) and (-1 - √34, 0).Asymptotes: The slopes of the asymptotes can be found using the formula b/a, where a and b are the semi-major and semi-minor axes respectively. So, the slopes of the asymptotes are ±(3/5).

To sketch the hyperbola, plot the center, vertices, and foci on the coordinate plane. Draw the transverse axis passing through the vertices and the asymptotes passing through the center. The shape of the hyperbola will be determined by the distance between the vertices and the foci.

To learn more about  hyperbola click on the link below:

brainly.com/question/10294555

#SPJ11

find f. (use c for the constant of the first antiderivative and d for the constant of the second antiderivative.) f ″(x) = 32x3 − 18x2 8x

Answers

the function f(x) has been determined.

To find the function f(x) given its second derivative f''(x) = 32x^3 - 18x^2 - 8x, we need to perform antiderivatives twice.

First, we integrate f''(x) with respect to x to find the first derivative f'(x):

f'(x) = ∫ (32x^3 - 18x^2 - 8x) dx

To integrate each term, we use the power rule of integration:

∫ x^n dx = (x^(n+1))/(n+1) + C,

where C is the constant of integration.

Applying the power rule to each term:

∫ 32x^3 dx = (32/4)x^4 + C₁ = 8x^4 + C₁

∫ -18x^2 dx = (-18/3)x^3 + C₂ = -6x^3 + C₂

∫ -8x dx = (-8/2)x^2 + C₃ = -4x^2 + C₃

Now we have:

f'(x) = 8x^4 - 6x^3 - 4x^2 + C,

where C is the constant of the first antiderivative.

To find the original function f(x), we integrate f'(x) with respect to x:

f(x) = ∫ (8x^4 - 6x^3 - 4x^2 + C) dx

Again, applying the power rule:

∫ 8x^4 dx = (8/5)x^5 + C₁x + C₄

∫ -6x^3 dx = (-6/4)x^4 + C₂x + C₅

∫ -4x^2 dx = (-4/3)x^3 + C₃x + C₆

Combining these terms, we get:

f(x) = (8/5)x^5 - (6/4)x^4 - (4/3)x^3 + C₁x + C₂x + C₃x + C₄ + C₅ + C₆

Simplifying:

f(x) = (8/5)x^5 - (3/2)x^4 - (4/3)x^3 + (C₁ + C₂ + C₃)x + (C₄ + C₅ + C₆)

In this case, C₁ + C₂ + C₃ can be combined into a single constant, let's call it C'.

So the final expression for f(x) is:

f(x) = (8/5)x^5 - (3/2)x^4 - (4/3)x^3 + C'x + C₄ + C₅ + C₆

to know more about integration visit:

brainly.com/question/31401227

#SPJ11

Question 1 Use a and b = < 5, 1, -2> = Find all [answer1] Find [answer2] b Find b a [answer3] Find a b [answer4] Find a × b [answer5] 1 pts

Answers

1: The dot product of vectors a and b is 0. 2: The magnitude (length) of vector b is √30. 3: The dot product of vector b and vector a is 0. 4: The dot product of vector a and vector b is 0.5: The cross product of vectors a and b is <-3, -4, 9>.

In summary, the given vectors a and b have the following properties: their dot product is 0, the magnitude of vector b is √30, the dot product of vector b and vector a is 0, the dot product of vector a and vector b is 0, and the cross product of vectors a and b is <-3, -4, 9>.

To find the dot product of two vectors, we multiply their corresponding components and then sum the results. In this case, a • b = (5 * 5) + (1 * 1) + (-2 * -2) = 25 + 1 + 4 = 30, which equals 0.

To find the magnitude of a vector, we take the square root of the sum of the squares of its components. The magnitude of vector b, denoted as ||b||, is √((5^2) + (1^2) + (-2^2)) = √(25 + 1 + 4) = √30.

The dot product of vector b and vector a, denoted as b • a, can be found using the same formula as before. Since the dot product is a commutative operation, it yields the same result as the dot product of vector a and vector b. Therefore, b • a = a • b = 0.

The cross product of two vectors, denoted as a × b, is a vector perpendicular to both a and b. It can be calculated using the cross product formula. In this case, the cross product of vectors a and b is given by the determinant:

|i j k |

|5 1 -2|

|5 1 -2|

Expanding the determinant, we have (-2 * 1 - (-2 * 1))i - ((-2 * 5) - (5 * 1))j + (5 * 1 - 5 * 1)k = -2i + 9j + 0k = <-2, 9, 0>.

Learn more about product:

https://brainly.com/question/16522525

#SPJ11

Other Questions
A gardner is mowing a 20 x 40 yard rectangular pasture using a diagonal pattern. In need of help asap! TABLE 1: MEDIAN HOUSEHOLD INCOME FOR SELECTED PLACES, 2018Place / Median Household IncomeUnited States / $57,652New York State / $62,765New York City metropolitan area / $75,368City of New York / $57,782TABLE 2: MEDIAN HOUSEHOLD INCOME, 2018FIVE BOROUGHS OF NEW YORK CITYPlace / Median Household IncomeBronx / $36,593Brooklyn / $52,782Manhattan / $79,781Queens / $62,008Staten Island / $76,244Source: United States Census BureauTable 1 shows that the United States and New York City have similar median household income values. Compare the data in Table 1 to the data in Table 2. Based on this comparison, which of the following statements is most accurate?A. Each borough of New York City has a household income distribution similar to that of the United States.B. Each borough of New York City has a household income distribution similar to that of New York State.C. Each borough of New York City has a household income distribution similar to that of the New York City metropolitan area.D. Each borough of New York City has a household income distribution similar to that of the City of New York.E. A comparison of data from one scale to a different set of scales can result in a flawed analysis. can someone plsssssssss helpppp me how to dooo this and the answerr if z+y=x+xy^2 what is x expressed in terms of y and z? An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away. What is the minimum angular velocity w_min needed to keep the person from slipping downward? The acceleration due to gravity is 9.8 m/s^2, the coefficient of static friction between the person and the wall is 0.78, and the radius of the cylinder is 6.82 m. Answer in units of rad/s. Please show work. Suppose that f(x, y) = 3x4 + 3y4 2xy. = Then the minimum value of f is Round your answer to four decimal places as needed. what are the four mechanisms fo heat loss? why is temperature regulation so important in the pediatric patient, specifically in the infant patient younger than 6 months old? what are the physiological symptoms seen? how are they trated and/or prevented? usebasic calc 2 techniques to solveTT/2 Evaluate the integral s sino cose de 2 COS 0 State answer in exact form Let T: R2 - R? be a linear transformation defined by (CD) - (22). 18 Is T linear? Why? this major plant association features a mix of very low (in height) plants, including grasses, forbs, small shrubs, mosses, and lichens, but no trees. difference between queue processor and job scheduler in pega LO 5 03 00:19:15 Evaluate. Use reduced fractions instead of decimals in your answer. [9 sec8x d Find the absolute extreme values of (x) = x^4 16x^3 +70x^2 on the interval [1, 6 ]." assume you want to construct a portfolio from the following two securities. what is the expected return on your portfolio if you invest $800,000 in security 1 and $200,000 in security 2? security 1: expected return 16.0%, beta 1.12 security 2: expected return 12.5% beta 0.94 a. 15.8% b. 15.6% c. 15.3% d. 14.9% e. 14.3% Let z= 3x2 + 3xy? and P. (-1,2,-9). Find the tangent plane at Po. How much gold already at its melting point would melt if 6000 Joules of thermal energy were used to heat it?For gold the specific latent heat of fusion is 120 000 J/kg and the specific latent heat of vaporisation is 64 000 J/kg.ASAP please the assignment is due tonight. QUESTION: Given the function f(x) f (x) = sqrt (22 7) Find 1. f'(x) 2. f'(-4) managerial accounting information is normally provided to managers An unlined tunnel which will carry water for a hydroelectric project is to be constructed in granite. The maximum water pressure acting on the granite is estimated to be 10MPa. The modulus of elasticity of the granite is measured to be 3.4 x 104 MPa: 1) How much will 3 m of rock around the tunnel be strained by the force of the water? ii) If the weight of the rock is 25.9 kN/m' and the tunnel is overlain by 20 m of rock, what is the rock stress in KN m acting on the top of the tunnel