258.72 grams of CaBr2 is consumed when 96 g of Ca(OH)2 is produced in the given reaction.
What is molar mass?Molar mass is the mass of one mole of a substance, expressed in grams per mole (g/mol).
Equation:CaBr2 + 2KOH → Ca(OH)2 + 2KBr
From the equation, we can see that 1 mole of CaBr2 reacts with 2 moles of KOH to produce 1 mole of Ca(OH)2 and 2 moles of KBr.
We need to first determine the number of moles of Ca(OH)2 produced from 96 g of Ca(OH)2. The molar mass of Ca(OH)2 is:
Ca(OH)2 = 1 x 40.08 (molar mass of Ca) + 2 x 16.00 (molar mass of O) + 2 x 1.01 (molar mass of H)
= 74.10 g/mol
Number of moles of Ca(OH)2 produced = Mass of Ca(OH)2 / Molar mass of Ca(OH)2
= 96 g / 74.10 g/mol
= 1.295 moles
From the balanced equation, we know that 1 mole of CaBr2 reacts with 1 mole of Ca(OH)2. Therefore, the number of moles of CaBr2 consumed in the reaction is also 1.295 moles.
Now, we can calculate the mass of CaBr2 consumed using its molar mass. The molar mass of CaBr2 is:
CaBr2 = 1 x 40.08 (molar mass of Ca) + 2 x 79.90 (molar mass of Br)
= 199.88 g/mol
Mass of CaBr2 consumed = Number of moles of CaBr2 consumed x Molar mass of CaBr2
= 1.295 moles x 199.88 g/mol
= 258.72 g
To know more about molar mass, click here
https://brainly.com/question/30216315
#SPJ1
What additional product completes the model?
A. Carbon-8
B. Helium-4
C. Helium-8
D. Carbon-4
Carbon-4 and Helium-4 are additional products that complete the model. Carbon-4 is an isotope of carbon with four protons and four neutrons.
It is the most common form of carbon in nature and is found in the Earth's crust and the atmosphere. Helium-4 is an isotope of helium with two protons and two neutrons.
It is the most common form of helium in nature and is found in the Earth's atmosphere and in stars. Carbon-8 and Helium-8 are heavier isotopes of carbon and helium respectively, with eight protons and eight neutrons each. Carbon-8 and Helium-8 are not found in nature and are not part of the model.
Carbon-4 and Helium-4 are important components of the model because they are the building blocks of organic compounds and biological systems. For instance, carbon-4 is found in the organic compounds that make up proteins, DNA, and carbohydrates.
Helium-4 is found in the atmosphere and is important for climate regulation. Additionally, both carbon-4 and helium-4 are important components of nuclear reactions, which are used to generate energy.
Know more about Carbohydrates here
https://brainly.com/question/29775112#
#SPJ11
A solution of potassium hydroxide (koh) was titrated against a solution of hydrochloric acid. it took
35cm3 of the hydrochloric acid to completely neutralise 50cmº of potassium hydroxide. work out the
concentration of the potassium hydroxide solution in mol/dmº if the concentration of the acid was
2mol/dm3. round your answer to 1 d.p.
The concentration of the potassium hydroxide solution is 1.4 mol/dm³.
To calculate the concentration of the potassium hydroxide (KOH) solution, we can use the formula:
moles of acid = moles of base
For a titration involving hydrochloric acid (HCl) and potassium hydroxide (KOH), the balanced chemical equation is:
HCl + KOH → KCl + H2O
From the balanced equation, we can see that 1 mole of HCl reacts with 1 mole of KOH. Given the volume and concentration of the acid, we can first find the moles of HCl:
moles of HCl = volume (dm³) × concentration (mol/dm³)
moles of HCl = 0.035 dm³ × 2 mol/dm³
moles of HCl = 0.07 moles
Since moles of acid = moles of base, we have:
moles of KOH = 0.07 moles
Now, we can find the concentration of KOH:
concentration of KOH (mol/dm³) = moles of KOH / volume of KOH (dm³)
concentration of KOH = 0.07 moles / 0.050 dm³
concentration of KOH = 1.4 mol/dm³ (rounded to 1 decimal place)
Thus, the concentration of the potassium hydroxide solution is 1.4 mol/c.
Know more about Titration here:
https://brainly.com/question/30616813
#SPJ11
I need help..............................................
Identify the type of reaction.
HgO --> Hg + O2
Combustion
Decomposition
Synthesis
Double Displacement
Single Replacement
The given reaction HgO → Hg + O₂ is a decomposition reaction.
The balanced chemical reaction is 2HgO → 2Hg + O₂
A decomposition reaction is a type of reaction in which a particular compound or molecule dissociates or decomposes to form smaller constituent particles.
Combustion is the burning of any substance in presence of oxygen to give out carbon dioxide, water and heat.
In Synthesis reaction , new compounds are synthesized from different reactants.
Displacement reactions involve exchange of cations and anions from reactants to form different products.
To know more about decomposition here
https://brainly.com/question/14024847
#SPJ4
This animal has a backbone; nurses its offspring; likes to gnaw; has a bushy tail; stores food for winter; and has stripes on its back.
The animal you are describing is a chipmunk. It has a backbone, nurses its offspring, likes to gnaw, has a bushy tail, stores food for winter, and has stripes on its back.
A chipmunk is a small mammal belonging to the Sciuridae family, which also includes squirrels. Chipmunks possess a backbone, making them vertebrates.
As mammals, they nurse theiroffsprin, providing them with nutrients and care. Their sharp incisors allow them to gnaw on various foods, such as nuts and seeds. Their bushy tail is an identifying feature that aids in balance while climbing and jumping.
Chipmunks are known for storing food, particularly during winter months when resources are scarce. This food hoarding is possible due to their cheek pouches, which they use to carry and store food. The distinctive stripes on their back serve as a camouflage, allowing them to blend into their environment and avoid predators.
To know more about offspring click on below link:
https://brainly.com/question/29188690#
#SPJ11
Which term describes a pure substance that is
composed of only one type of atom?
The term that describes a pure substance that is composed of only one type of atom is an element.
An element is a substance that cannot be broken down into simpler substances by chemical reactions. Each element has a unique number of protons in the nucleus of its atoms, which gives it a specific atomic number. For example, the element carbon has an atomic number of 6, meaning that each carbon atom has 6 protons in its nucleus.
Elements are the building blocks of all matter, and there are currently 118 known elements, ranging from hydrogen (which has an atomic number of 1) to oganesson (which has an atomic number of 118). Elements can exist in various states of matter, including solids, liquids, and gases, depending on their temperature and pressure.
Pure substances, like elements, have uniform properties and composition throughout. This means that every particle of an element has the same chemical and physical properties, such as its melting point, boiling point, and density. In contrast, a mixture is composed of two or more substances that are physically combined but not chemically bonded.
Mixtures can be separated into their component parts by physical means, while pure substances cannot.
In summary, an element is a pure substance that is composed of only one type of atom. It cannot be broken down into simpler substances by chemical reactions and has uniform properties and composition throughout.
To know more about element, visit:
https://brainly.com/question/13025901#
#SPJ11
1A 0. 205 g sample of CaCO3 (Mr = 100. 1 g/mol) is added to a flask along with 7. 50 mL of 2. 00 M HCl. CaCO3(aq) + 2HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)
Enough water is then added to make a 125. 0 mL solution. A 10. 00 mL aliquot of this solution is taken and titrated with 0. 058 M NaOH. NaOH(aq) + HCl(aq) → H2O(l) + NaCl(aq)
How many mL of NaOH are used?
7.3 mL of NaOH are used to titrate the 10.00 mL aliquot.
The balanced equation for the reaction between NaOH and HCl is:
NaOH(aq) + HCl(aq) → H₂O(l) + NaCl(aq)
To calculate the volume of NaOH used, determine how much HCl is left after it reacts with the CaCO₃, and then how much NaOH is required to neutralize that remaining HCl.
Step 1: Calculate the moles of HCl used to react with CaCO₃
The balanced equation for the reaction between CaCO₃ and HCl is:
CaCO₃(aq) + 2HCl(aq) → CaCl₂(aq) + H2O(l) + CO₂(g)
From the balanced equation, we can see that 1 mole of CaCO₃ reacts with 2 moles of HCl. Therefore, the number of moles of HCl used to react with the CaCO₃ is:
moles HCl = (7.50 mL)(2.00 mol/L) = 0.015 mol
Step 2: Calculate the concentration of HCl in the 125.0 mL solution
Started with 7.50 mL of 2.00 M HCl, which is equivalent to 0.015 moles of HCl. We added enough water to make a 125.0 mL solution, so the concentration of HCl in the solution is:
C = moles of HCl / volume of solution in L
C = 0.015 mol / 0.125 L = 0.12 M
Step 3: Calculate the moles of HCl remaining in the 10.00 mL aliquot
moles NaOH = moles HCl remaining in aliquot
(C of NaOH)(volume of NaOH) = (C of HCl)(moles of HCl remaining in aliquot)
(0.058 mol/L)(volume of NaOH) = (0.12 mol/L)(moles of HCl remaining in 10.00 mL aliquot)
moles of HCl remaining in 10.00 mL aliquot = moles of HCl in 125.0 mL solution - moles of HCl used to react with CaCO₃
moles of HCl remaining in 10.00 mL aliquot = (0.12 mol/L)(0.125 L) - 0.015 mol = 0.0035 mol
Substituting this into the equation gives:
(0.058 mol/L)(volume of NaOH) = (0.12 mol/L)(0.0035 mol)
volume of NaOH = (0.12 mol/L)(0.0035 mol) / (0.058 mol/L) = 0.0073 L
Step 4: Convert the volume of NaOH to mL
volume of NaOH = 0.0073 L x (1000 mL / 1 L) = 7.3 mL
Therefore, 7.3 mL of NaOH are used to titrate the 10.00 mL aliquot.
To know more about volume
https://brainly.com/question/1578538
#SPJ4
7. La constante de equilibrio Kc, se halla :
a) haciendo una simple división de las concentraciones Molares
b) con el cociente de la velocidad de los productos sobre los reactivos c) dividiendo las velocidades de las ecuaciones que forman la reacción química
d) con el cociente de las concentraciones de las sustancias presentes en la ecuación
By making a simple division of the Molar concentrations. The correct option is a.
The equilibrium constant Kc is a measure of the equilibrium between the forward and reverse reactions of a chemical reaction. It is a ratio of the concentrations of the products to the concentrations of the reactants at equilibrium.
The equilibrium constant Kc:
Kc = [products]/[reactants]
here [products] is the concentration of the products at equilibrium and [reactants] is the concentration of the reactants at equilibrium.
If the concentrations of the products and reactants are given in molar concentrations (M), we can express the equilibrium constant as a ratio of Molar concentrations using the following equation:
Kc = [products]M / [reactants]M
Therefore, to find the equilibrium constant Kc, we simply need to divide the Molar concentrations of the products and reactants by their respective coefficients.
Therefore, the correct option is a) by making a simple division of the Molar concentrations.
Learn more about Molar concentrations Visit: brainly.com/question/26255204
#SPJ4
Correct Question:
The equilibrium constant Kc is found:
a) by making a simple division of the Molar concentrations
b) with the quotient of the speed of the products over the reactants
c) dividing the speeds of the equations that form the chemical reaction
d) with the quotient of the concentrations of the substances present in the equation
4. 3 moles of a gas are at a temperature of 28°C with a pressure of 1. 631 atm. What volume does the gas occupy?
The gas occupies a volume of approximately 28.18 liters at a temperature of 28°C and a pressure of 1.631 atm
To determine the volume the gas occupies at a temperature of 28°C and a pressure of 1.631 atm, we will use the Ideal Gas Law, which is defined as PV = nRT. In this equation, P represents pressure, V represents volume, n represents the number of moles of the gas, R is the ideal gas constant, and T is the temperature in Kelvin.
First, we need to convert the temperature from Celsius to Kelvin: T(K) = T(°C) + 273.15. In this case, T(K) = 28 + 273.15 = 301.15 K.
Now, we can use the Ideal Gas Law to find the volume of the gas. The ideal gas constant (R) is 0.0821 L atm/mol K. Therefore, we have:
1.631 atm (V) = 3 moles (0.0821 L atm/mol K) (301.15 K)
To find the volume (V), we can rearrange the equation and isolate V:
V = (3 moles * 0.0821 L atm/mol K * 301.15 K) / 1.631 atm
V = 45.98271 L/mol / 1.631 atm
V ≈ 28.18 L
So, the gas occupies a volume of approximately 28.18 liters at a temperature of 28°C and a pressure of 1.631 atm.
To know more about temperature, visit:
https://brainly.com/question/29133754#
#SPJ11
Determine the wavelength of a 66.8 kg person running at 2.72 m/s.
The wavelength of a 66.8 kg person running at a speed of 2.72 m/s through an opening of width 0.80 m is 1.44 m.
What is wavelength?Wavelength is a concept used in physics to describe the distance between two points of a wave. It is usually measured in meters or nanometers and is expressed as the inverse of the frequency of the wave. Wavelength is an important concept in fields such as electromagnetism, optics, and acoustics. It is used to describe the size of a wave, the frequency of a wave, and the speed at which a wave travels.
Wavelength (λ) is the distance between two successive crests of a wave. For a person running at a constant speed, the wavelength is determined by the speed of the person and the frequency of the wave.
Frequency (f) is the number of waves passing through a given point in a given time.
So, the wavelength of a 66.8 kg person running at a speed of 2.72 m/s through an opening of width 0.80 m is calculated as follows:
λ = (2.72 m/s) / (2 x 0.80 m) = 1.44 m
Therefore, the wavelength of a 66.8 kg person running at a speed of 2.72 m/s through an opening of width 0.80 m is 1.44 m.
To learn more about wavelength
https://brainly.com/question/29425795
#SPJ4
A gas at 850. mmhg occupies 1.5 l. the temperature is raised from 15 °c to 35 °c causing the volume to change to 2.5 l. what is the final pressure of the gas?
The final pressure of the gas is 1,430 mmHg.
Using the combined gas law, we can relate the initial pressure, volume, and temperature to the final pressure and volume:
(P₁V₁)/T₁ = (P₂V₂)/T₂
where P₁, V₁, and T₁ are the initial pressure, volume, and temperature, and P₂ and V₂ are the final pressure and volume.
Plugging in the given values, we get:
(850 mmHg x 1.5 L)/288 K = (P₂ x 2.5 L)/308 K
Solving for P₂, we get:
P₂ = (850 mmHg x 1.5 L x 308 K)/(2.5 L x 288 K) = 1430 mmHg
Therefore, 1,430 mmHg is the final pressure of the gas.
To know more about pressure, refer here:
https://brainly.com/question/1890275#
#SPJ11
Three ions that contain the element phosphorus are phosphate (PO43–), hydrogen phosphate (HPO42–), and dihydrogen phosphate (H2PO4–). Compare the formulas of these three ions. Also notice any other instances in which hydrogen is added to a polyatomic ion from the table. Then complete the description of the pattern you see. Select the correct answer from each drop-down menu
The three ions containing phosphorus are phosphate (PO₄³⁻), hydrogen phosphate (HPO₄²⁻), and dihydrogen phosphate (H₂PO₄⁻).
The pattern observed is that adding hydrogen atoms successively reduces the negative charge of the ion by one unit.
1. Observe the formulas of the three ions: PO₄³⁻, HPO₄²⁻, and H₂PO₄⁻.
2. Notice that hydrogen atoms are added successively: 0, 1, and 2.
3. Observe the charges of the ions: -3, -2, and -1.
4. Recognize the pattern: adding hydrogen atoms reduces the negative charge by one unit.
In other instances where hydrogen is added to polyatomic ions, a similar pattern occurs. The negative charge decreases as more hydrogen atoms are added. This pattern is consistent across various polyatomic ions containing hydrogen.
To know more about polyatomic ions click on below link:
https://brainly.com/question/12852496#
#SPJ11
does that identity of an atom change during radioactive decay
Answer:
Yes, radioactive decay will change the identity of an atom.
Explanation:
This is because the radioactive decay involves the emission of particles that change the number of protons in the nucleus. The number of protons is what determines the identity of the atom.
Answer:
in most instances, the atom changes its identity to become a new element
Explanation:
What is the descrepancy gap between customers& expectation and perception towards service quality of front office staff/ night auditor
The discrepancy gap between customer expectations and perceptions towards service quality of front office staff/night auditor is commonly referred to as the "service gap."
This gap arises when customers have certain expectations regarding the level of service they will receive, but their actual perceptions of the service fall short of those expectations.
The service gap can be caused by a variety of factors, including inadequate training of front office staff, poor communication between staff and customers, inconsistencies in service delivery, and failure to meet customer needs and preferences.
To reduce the service gap, it is important for organizations to have a clear understanding of customer expectations and to ensure that their service delivery meets or exceeds those expectations.
This may involve implementing better training programs for front office staff, improving communication with customers, and implementing systems for monitoring and measuring customer satisfaction.
To know more about service gap refer to-
https://brainly.com/question/6483983
#SPJ11
A. describe the following heat equations, and identify the indicated variables.
i. q = mcꕔt; identify c.
ii. q = mlvapor; identify lvapor
iii. q = mlfusion; identify lfusion
Heat equations are mathematical equations that are used to calculate the amount of heat energy transferred between two objects. The first heat equation, q = mcꕔt, relates the amount of heat transferred (q) to the mass of the object (m), the specific heat capacity (c), and the temperature change (ꕔt).
The specific heat capacity is the amount of heat energy required to raise the temperature of one gram of a substance by one degree Celsius. The second heat equation, q = mlvapor, relates the amount of heat required to vaporize a substance (q) to the mass of the substance (m) and the latent heat of vaporization (lvapor).
The latent heat of vaporization is the amount of heat required to transform a unit mass of a substance from a liquid phase to a gaseous phase. Finally, the third heat equation, q = mlfusion, relates the amount of heat required to melt a substance (q) to the mass of the substance (m) and the latent heat of fusion (lfusion).
The latent heat of fusion is the amount of heat required to transform a unit mass of a substance from a solid phase to a liquid phase.
to know more about Heat equations refer here
https://brainly.com/question/28205183#
#SPJ11
How many grams of sulfuric acid (h2so4) are dissolved in a 2 liter solution that is 18 molar?
There are 3530.88 grams of sulfuric acid (H₂SO₄) dissolved in a 2-liter solution that is 18 molar.
To calculate the grams of sulfuric acid (H₂SO₄) dissolved in a 2-liter solution that is 18 M (molar), you can follow these steps:
1. Determine the moles of H₂SO₄ in the solution:
Moles of H₂SO₄ = Molarity × Volume of solution
Moles of H₂SO₄ = 18 M × 2 L = 36 moles
2. Calculate the grams of H₂SO₄ using the molar mass:
Grams of H₂SO₄ = Moles × Molar mass of H₂SO₄
The molar mass of H₂SO₄ = (2 × H) + (1 × S) + (4 × O) = (2 × 1.01) + (32.07) + (4 × 16.00) = 98.08 g/mol
3. Multiply the moles of H₂SO₄ by its molar mass:
Grams of H₂SO₄ = 36 moles × 98.08 g/mol = 3530.88 grams
So, 3530.88 grams of sulfuric acid (H₂SO₄) are dissolved in a 2-liter solution that is 18 molar.
Learn more about sulfuric acid at https://brainly.com/question/10220770
#SPJ11
Calculate the cell potential for the following unbalanced reaction that takes place in an electrochemical cell at 25 °C when [Mg2+] = 0. 000612 M and [Fe3+] = 1. 29 M
Mg(s) + Fe3+ (aq) = Mg2+ (aq) + Fe(s)
E°(Mg2+/Mg) = -2. 37 V and E°(Fe3+/Fe) = -0. 036 V
The cell potential for the given reaction at 25°C is -2.3895 V.
First, we need to balance the equation;
Mg(s) + Fe³⁺(aq) → Mg²⁺(aq) + Fe(s)
Next, we can use the Nernst equation to calculate the cell potential (Ecell) at 25°C;
Ecell = E°cell - (RT/nF)ln(Q)
where; E°cell is the standard cell potential
R is the gas constant (8.314 J/mol·K)
T is the temperature in Kelvin (298 K)
n is number of electrons transferred in balanced reaction
F is the Faraday constant (96,485 C/mol)
Q is the reaction quotient
Since the reaction is not balanced in terms of electrons transferred, we need to balance it and determine the number of electrons transferred:
Mg(s) + Fe³⁺(aq) → Mg²⁺(aq) + Fe(s) + 2e⁻
n = 2
The reaction quotient (Q) will be calculated using concentrations of the reactants and products;
Q = [Mg²⁺][Fe(s)] / [Mg(s)][Fe³⁺]
Substituting the given values, we get;
Q = (0.000612 M)(1) / (1)(1.29 M)
Q = 0.000474
Now, we can calculate the cell potential (Ecell) using the Nernst equation;
Ecell = E°cell - (RT/nF)ln(Q)
= (-2.37 V) - (0.0257 V)log10(0.000474)
= -2.37 V - 0.0195 V
= -2.3895 V
Therefore, the cell potential is -2.3895 V.
To know more about cell potential here
https://brainly.com/question/1313684
#SPJ4
20. 0 g of Potassium reacts with water to produce Potassium hydroxide and hydrogen gas.
2 K + 2 H2O —> 2 KOH + H2
How many miles of hydrogen are there?
When 20.0 g of Potassium reacts with water, 0.256 moles of hydrogen gas are produced.
To determine the moles of hydrogen produced when 20.0 g of potassium reacts with water to form potassium hydroxide and hydrogen gas, follow these steps:
1. Determine the molar mass of potassium (K): The atomic weight of potassium is 39.1 g/mol.
2. Calculate the moles of potassium (K) used: moles = mass / molar mass
moles of K = 20.0 g / 39.1 g/mol ≈ 0.512 moles
3. Use the stoichiometry of the balanced equation to find the moles of hydrogen (H₂) produced: 2 moles K produce 1-mole H₂, so the ratio is 1:0.5.
4. Calculate the moles of H₂ produced: moles of H2 = moles of K * (1 mole H₂ / 2 moles K)
moles of H₂ = 0.512 moles * (1/2) ≈ 0.256 moles
So, when 20.0 g of potassium reacts with water to produce potassium hydroxide and hydrogen gas, there are approximately 0.256 moles of hydrogen.
Learn more about moles at https://brainly.com/question/29367909
#SPJ11
What is the mass of a cube of titanium, in micrograms, that measures 3. 67 X 104 micrometers for each edge. The density of Titanium is 4. 5 g/cm3. Answer to be in scientific notation
The mass of the cube of titanium is 2.02 x 10^6 micrograms.
To find the mass of the cube of titanium in micrograms, we first need to find its volume:
Volume = (edge length)^3 = (3.67 x 10^4 micrometers)^3
= 4.49 x 10^14 cubic micrometers
Next, we need to convert the density of titanium from grams per cubic centimeter to micrograms per cubic micrometer:
4.5 g/cm^3 = 4.5 x 10^9 micrograms/ (10^4 micrometers)^3
= 4.5 x 10^9 micrograms/ (10^12 cubic micrometers)
Now we can calculate the mass of the cube:
Mass = Volume x Density
= 4.49 x 10^14 cubic micrometers x 4.5 x 10^9 micrograms/ (10^12 cubic micrometers)
= 2.02 x 10^6 micrograms
Learn more about mass at https://brainly.com/question/86444
#SPJ11
Write the equilibrium expression for the ionization of hoi
The equilibrium expression for the ionization of HOI is:
Kc = [H⁺][OI⁻]/[HOI]
In this expression, [H⁺] represents the concentration of hydrogen ions, [OI⁻] represents the concentration of hypoiodite ions, and [HOI] represents the concentration of the undissociated hypohalous acid. The equilibrium constant, Kc, is a measure of the extent to which the reaction has reached equilibrium.
In the case of HOI, the equilibrium constant can be used to determine the degree of ionization of the acid in solution. If Kc is large, it indicates that the reaction favors the formation of ions and that the acid is strong. If Kc is small, it indicates that the reaction favors the formation of undissociated acid and that the acid is weak. The value of Kc can also be used to calculate the concentrations of the different species in the solution at equilibrium, given the initial concentrations and the stoichiometry of the reaction.
To learn more about equilibrium expression, here
https://brainly.com/question/27110003
#SPJ4
The complete question is:
Write the equilibrium expression for the ionization of HOI?
What is this answer to the problem
1. 2 moles of Calcium 8016 grams = 8.01x103 grams, 2. 3 moles of Sodium 69 grams = 2.07x1023 particles, and many more given below:
What is Calcium?Calcium is an essential mineral that is found in the human body. It is necessary for the proper functioning of many organs, including the heart and muscles. Calcium is also important for the formation and maintenance of healthy bones and teeth. It plays a role in nerve and muscle function, blood clotting, and hormone secretion. Adequate calcium intake is important for both children and adults to ensure proper growth, development, and overall health.
3. 392 grams of Technetium = 9.10x1022 particles
4. 3.01x1024 particles of Chromium = 8.41x10-2 moles
5. 5 moles of Fluorine = 25 grams
6. 24 grams of Helium = 4.67x1023 particles
7. 1.806x1024 particles of Sulfur = 4.86x10-2 moles
8. 3 moles of Platinum = 195.2 grams
9. 240 grams of Argon = 6.67x1023 particles
To learn more about Calcium
https://brainly.com/question/30594488
#SPJ1
Lead can be prepared from galena (lead II sulfide) by roasting the galena in the presence of oxygen to form lead II oxide and sulfur dioxide. Heating the metal oxide with more galena creates the molten metal and more sulfur dioxide. If we start with 25 mol of PbS, how many moles of SO2 do we create from both steps of the reaction? How many moles of lead do we form?
PbS + O2 -> PbO + SO2
PbO + PbS -> Pb + SO2
Here, 50 mol of SO2 will be created, and 25 mol of lead will be formed from both steps of the reaction.
To determine the moles of SO2 created and moles of lead formed in both steps of the reaction, we'll first need to examine each step individually.
Step 1: PbS + O2 -> PbO + SO2
Starting with 25 mol of PbS, this reaction occurs in a 1:1 molar ratio with SO2. Thus, 25 mol of SO2 will be created in this step.
Step 2: PbO + PbS -> Pb + SO2
Since 25 mol of PbO is created in step 1, the same amount of PbS is available to react in step 2. This reaction also occurs in a 1:1 molar ratio with SO2, meaning that another 25 mol of SO2 will be created in this step.
The total amount of SO2 created in both steps is the sum of the moles produced in each step:
25 mol (from step 1) + 25 mol (from step 2) = 50 mol of SO2
Additionally, since the second step forms lead (Pb) in a 1:1 molar ratio with PbS, we will have 25 mol of lead formed.
To know more about the balancing of moles of a reaction, click below.
https://brainly.com/question/15364329
#SPJ11
The number of calories in 10 grams of sugar is an example of a(n) ___________________. intensive extensive unique chemical
The number of calories in 10 grams of sugar is an example of an intensive property. So the correct answer is 1.
Intensive properties are properties that do not depend on the amount or size of the sample being measured. In this case, the number of calories is a characteristic of sugar that remains constant regardless of the amount of sugar being measured. Other examples of intensive properties include density, boiling point, melting point, and color. On the other hand, extensive properties are properties that do depend on the amount or size of the sample being measured, such as mass, volume, and energy. Unique and chemical are not related to the concept of intensive or extensive properties. Correct Option 1.
To know more about Intensive properties, here
brainly.com/question/13733851
#SPJ4
--The complete Question is, Fill in the blanks.
The number of calories in 10 grams of sugar is an example of a(n) ___________________.
intensive propertyextensive propertyunique propertychemical property --To determine experimentally if a reaction is exthermic a student should use a
To determine experimentally if a reaction is exothermic, a student should use a calorimeter. A calorimeter is a device used to measure the heat exchange during a chemical reaction, enabling the student to identify if the reaction is exothermic or endothermic. In an exothermic reaction, heat is released, causing the temperature of the surroundings to increase.
To perform the experiment, follow these steps:
1. Choose the appropriate chemical reaction to test.
2. Prepare the calorimeter by placing a known amount of water in the calorimeter's inner container.
3. Measure and record the initial temperature of the water.
4. Add the reactants (in their appropriate amounts) to the water, and quickly seal the calorimeter to minimize heat loss to the surroundings.
5. Stir the mixture gently to ensure proper mixing and heat distribution.
6. Monitor the temperature change of the water over time, recording the highest temperature reached.
7. Calculate the amount of heat released or absorbed by the reaction using the formula: q = mcΔT, where q is heat, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.
8. If the heat calculated is positive and the temperature increased, the reaction is exothermic; if negative and the temperature decreased, the reaction is endothermic.
In conclusion, a student should use a calorimeter to experimentally determine if a reaction is exothermic, as it allows for the accurate measurement of heat exchange and can indicate whether heat is released or absorbed during the reaction.
To know more about exothermic refer here
https://brainly.com/question/31214950#
#SPJ11
Gold reacts with the elements in group 7 of the periodic table. 0. 175g of gold reacts with chlorine. The equation for the reaction is: 2Au + 3Cl = 2AuCl3. Calculate the mass of chlorine needed to react with 0. 175g of gold. Give your answer in mg. Relative atomic masses(Ar) : Cl = 35. 5 Au= 197
Here, 47.29 mg of chlorine is needed to react with 0.175g of gold.
To calculate the mass of chlorine needed to react with 0.175g of gold, we will use the equation and the relative atomic masses provided.
1. First, find the moles of gold:
Moles of gold = mass / relative atomic mass
Moles of gold = 0.175g / 197g/mol
= 0.0008883 mol
2. According to the balanced equation, 2 moles of gold react with 3 moles of chlorine. So, we need to find the moles of chlorine required:
Moles of chlorine = (3/2) * moles of gold
Moles of chlorine = (3/2) * 0.0008883 mol
= 0.001332 mol
3. Now, find the mass of chlorine needed:
Mass of chlorine = moles of chlorine * relative atomic mass
Mass of chlorine = 0.001332 mol * 35.5g/mol
= 0.04729g
4. Finally, convert the mass from grams to milligrams:
Mass of chlorine in mg = 0.04729g * 1000mg/g
= 47.29mg
To know more about the molar concept, click below.
https://brainly.com/question/23711705
#SPJ11
Calculate the pH of [H+] = 4.71x10^-10
The pH of a solution with [H+] = 4.71x[tex]10^-^1^0[/tex] is approximately 9.327, as pH is a measure of the acidity or basicity of a solution as it is defined as the negative logarithm of the concentration of hydrogen ions in moles per liter (pH = -log[H+]).
The lower the pH, the more acidic the solution, while a higher pH indicates a more basic solution. In the given problem, the concentration of hydrogen ions ([H+]) is 4.71x [tex]10^-^1^0[/tex]
To calculate the pH,
pH = -log[H+]
where [H+] is the concentration of hydrogen ions in moles per liter.
Substituting [H+] = 4.71x[tex]10^-^1^0[/tex] into the formula,
pH = -log(4.71x[tex]10^-^1^0[/tex]) = -(-9.327) = 9.327
Therefore, the pH of a solution with [H+] = 4.71x[tex]10^-^1^0[/tex] is approximately 9.327.
Learn more about the pH here.
https://brainly.com/question/491373
#SPJ1
Help with my chemistry homework please
The term mole concept is used here to determine the number of grams of sucrose. The mole concept is a convenient method to express the amount of the substance. The grams of sucrose is 1509.5 g.
One mole of a substance is that amount of it which contains as many particles or entities as there are atoms in exactly 12 g of carbon 12. The equation used to calculate the number of moles is:
Number of moles = Given mass / Molar mass
1. Mass = 4.41 × 342.3 = 1509.5 g
2. Moles = 350 / 105.98 = 3.302
3. Mass = 7.38 × 36.45 = 269.001 g
To know more about mole concept, visit;
https://brainly.com/question/30307377
#SPJ1
Can anyone give me the answers of the image???
Ans 1 = 2 fe +3 cl2 = 2 fecl3
blank 1 = 2
blank 2 = 3
blank 3 = 2
Ans.2 = 4fe +3 o2 = 2fe2o3
blank 1 = 4
blank 2 = 3
blank 3 = 2
Ans.3 = c6h6o3 +H2o = 2c2h3
blank 1 = 1
blank 2 = 1
blank 3 = 2
Which salt solutions could be used to prepare a buffer solution?.
Buffer solutions are made by mixing a weak acid and its conjugate base or a weak base and its conjugate acid. The pH of a buffer solution remains relatively constant when small amounts of an acid or a base are added to it.
Therefore, salt solutions containing the conjugate acid-base pair of a weak acid or a weak base could be used to prepare a buffer solution.
For example, to prepare an acetate buffer solution, one could mix a solution of sodium acetate ([tex]NaOAc[/tex]) with acetic acid ([tex]HOAc[/tex]).
The [tex]OAc^-[/tex]anion in the sodium acetate solution acts as a weak base and reacts with any added[tex]H^+[/tex] ions to form[tex]HOAc[/tex], which acts as a weak acid and buffers the solution's pH. Similarly, the [tex]NH4^+[/tex] cation in ammonium chloride ([tex]NH4Cl[/tex]) can react with [tex]OH^-[/tex]ions to form [tex]NH3[/tex], which acts as a weak base and buffers the pH of the solution.
Therefore, salt solutions containing the conjugate acid-base pair of a weak acid or a weak base can be used to prepare buffer solutions.
To know more about Buffer solutions refer to-
https://brainly.com/question/24262133
#SPJ11
Help what’s the answer??
The mass of CO2 produced is 20.9 g
The formula of the limiting reactant is O2
How do you know the limiting reactant?The reactant that produces the smallest amount of product is the limiting reactant.
Number of moles of glucose = 9.91 g/180 g/mol
= 0.055 moles
Number of moles of oxygen = 15.2 g/32 g/mol= 0.475 moles
1 mole of glucose reacts with 6 moles of oxygen
0.055 moles of glucose reacts with 0.055 * 6/1
= 0.33 moles
Thus oxygen is the limiting reactant
Mass of CO2 produced = 0.475 moles * 44 g/mol
= 20.9 g
Learn more about limiting reactant:https://brainly.com/question/14225536
#SPJ1