9. Find the local minimum and the local maximum values of the function f(x) = x3 – 3x2 +1 (12pts) 10. If 2x = f(x) = x4 – x2 +2 for all x, evaluate lim f(x) (8pts ) 1

Answers

Answer 1

The local minimum is -3 and the local maximum is 1 for the function f(x) = x³ - 3x² + 1.

To find the local minimum and local maximum values of the function f(x) = x³ - 3x² + 1, we need to find the critical points of the function first.

Step 1: Find the derivative of the function f(x):

f'(x) = 3x² - 6x

Step 2: Set the derivative equal to zero and solve for x to find the critical points:

3x² - 6x = 0

3x(x - 2) = 0

From this equation, we can see that x = 0 and x = 2 are the critical points.

Step 3: Determine the nature of the critical points by analyzing the second derivative:

f''(x) = 6x - 6

For x = 0:

f''(0) = 6(0) - 6 = -6

Since f''(0) is negative, the critical point x = 0 is a local maximum.

For x = 2:

f''(2) = 6(2) - 6 = 6

Since f''(2) is positive, the critical point x = 2 is a local minimum.

Therefore, the local minimum occurs at x = 2 with the value:

f(2) = (2)³ - 3(2)² + 1

= 8 - 12 + 1

= -3

The local maximum occurs at x = 0 with the value:

f(0) = (0)³ - 3(0)² + 1

= 0 - 0 + 1

= 1

Thus, the local minimum is -3 and the local maximum is 1 for the function f(x) = x³ - 3x² + 1.

To know more about local maximum check the below link:

https://brainly.com/question/11894628

#SPJ4


Related Questions

Some pastries are cut into rhombus shapes before serving.

A rhombus with horizontal diagonal length 4 centimeters and vertical diagonal length 6 centimeters.
Please hurry (will give brainliest)
What is the area of the top of this rhombus-shaped pastry?

10 cm2
12 cm2
20 cm2
24 cm2

Answers

The area of the top of this rhombus-shaped pastry is [tex]12 cm\(^2\).[/tex]

The area of a rhombus can be calculated using the formula: [tex]\[ \text{Area} = \frac{{d_1 \times d_2}}{2} \][/tex], where [tex]\( d_1 \) and \( d_2 \)[/tex] are the lengths of the diagonals.

In this problem, we are dealing with a rhombus-shaped pastry. A rhombus is a quadrilateral with all four sides of equal length, but its opposite angles may not be right angles. The area of a rhombus can be found by multiplying the lengths of its diagonals and dividing by 2.

Given that the horizontal diagonal length is [tex]4[/tex] centimeters and the vertical diagonal length is [tex]6[/tex] centimeters, we can substitute these values into the formula to find the area.

[tex]\[ \text{Area} = \frac{{4 \times 6}}{2} = \frac{24}{2} = 12 \, \text{cm}^2 \][/tex]

By performing the calculation, we find that the area of the top of the rhombus-shaped pastry  [tex]12 cm\(^2\).[/tex]

For more such questions on area:

https://brainly.com/question/25292087

#SPJ8

The point (–3, –5) is on the graph of a function. Which equation must be true regarding the function?

Answers

The equation that must be true is the one in the first option:

f(-3) = -5

Which equation must be true regarding the function?

We know that the point (–3, –5) is on the graph of a function.

Rememeber that the usual point notation is (input, output), and for a function the notation used is:

f(input) =  output.

In this point we can see that:

input = -3

output = -5

Then the equation that we know must be true is:

f(-3) = -5, which is the first option.

Learn more about functions at:

https://brainly.com/question/2328150

#SPJ1

Please help me solve.

Answers

The value of x is -1.

We take linear pair as

140 + y= 180

y= 180- 140

y= 40

Now, we know the complete angle is of 360 degree.

So, 140 + y + 65 + x+ 76 + x+ 41 = 360

140 + 40 + 65 + x+ 76 + x+ 41 = 360

Combine like terms:

362 + 2x = 360

Subtract 362 from both sides:

2x = 360 - 362

2x = -2

Divide both sides by 2:

x = -1

Learn more about angle here:

https://brainly.com/question/30944269

#SPJ1







1 Find the linearisation of h(x) = about (x+3)2 x =1. Solution = h(1) h'(x)= h' (1) Therefore L(x)=

Answers

The linearization of the function h(x) = (x + 3)^2 about the point x = 1 is determined.

The linearization equation L(x) is obtained using the value of h(1) and the derivative h'(x) evaluated at x = 1.

To find the linearization of the function h(x) = (x + 3)^2 about the point x = 1, we need to determine the linear approximation, denoted by L(x), that best approximates the behavior of h(x) near x = 1.

First, we evaluate h(1) by substituting x = 1 into the function: h(1) = (1 + 3)^2 = 16.

Next, we find the derivative h'(x) of the function h(x) with respect to x. Taking the derivative of (x + 3)^2, we get h'(x) = 2(x + 3).

To obtain the linearization equation L(x), we use the point-slope form of a linear equation. The equation is given by L(x) = h(1) + h'(1)(x - 1), where h(1) is the function value at x = 1 and h'(1) is the derivative evaluated at x = 1.

Substituting the values we found earlier, we have L(x) = 16 + 2(1 + 3)(x - 1) = 16 + 8(x - 1) = 8x + 8.

Therefore, the linearization of the function h(x) = (x + 3)^2 about the point x = 1 is given by L(x) = 8x + 8.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

8. (10 Points) Use the Gauss-Seidel iterative technique to find the 3rd approximate solutions to 2x₁ + x₂2x3 = 1 2x13x₂ + x3 = 0 X₁ X₂ + 2x3 = 2 starting with x = (0,0,0,0)*.

Answers

The third approximate solution is x = (869/1024, -707/1024, 867/1024, 0). The Gauss-Seidel iterative method can be used to find the third approximate solution to 2x₁ + x₂2x3 = 1, 2x₁3x₂ + x₃ = 0, and x₁x₂ + 2x₃ = 2. We will begin with x = (0, 0, 0, 0)*.*

The asterisk indicates that x is the starting point for the iterative method.

The process is as follows: x₁^(k+1) = (1 - x₂^k2x₃^k)/2,x₂^(k+1) = (-3x₁^(k+1) + x₃^k)/3, and x₃^(k+1) = (2 - x₁^(k+1)x₂^(k+1))/2.

We'll first look for x₁^(1), which is (1 - 0(0))/2 = 1/2.

Next, we'll look for x₂^(1), which is (-3(1/2) + 0)/3 = -1/2.

Finally, we'll look for x₃^(1), which is (2 - 1/2(-1/2))/2 = 9/8.

Thus, the first iterate is x^(1) = (1/2, -1/2, 9/8, 0).

Next, we'll look for x₁^(2), which is (1 - (-1/2)(9/8))/2 = 25/32.

Next, we'll look for x₂^(2), which is (-3(25/32) + 9/8)/3 = -31/32.

Finally, we'll look for x₃^(2), which is (2 - (25/32)(-1/2))/2 = 54/64 = 27/32.

Thus, the second iterate is x^(2) = (25/32, -31/32, 27/32, 0).

Now we'll look for x₁^(3), which is (1 - (-31/32)(27/32))/2 = 869/1024.

Next, we'll look for x₂^(3), which is (-3(869/1024) + 27/32)/3 = -707/1024.

Finally, we'll look for x₃^(3), which is (2 - (25/32)(-31/32))/2 = 867/1024.

Thus, the third iterate is x^(3) = (869/1024, -707/1024, 867/1024, 0).

Therefore, the third approximate solution is x = (869/1024, -707/1024, 867/1024, 0).

Learn more about Gauss-Seidel iterative method : https://brainly.com/question/32730870

#SPJ11

Let R be the region in the first quadrant bounded above by the parabola y = 4-x²and below by the line y -1. Then the area of R is: √√3 units squared None of these This option 2√3 units squared

Answers

To find the area of the region R bounded above by the parabola y = 4 - [tex]x^2[/tex] and below by the line y = 1, we need to determine the points of intersection between these two curves.

Setting y = 4 -[tex]x^2[/tex] equal to y = 1, we have:

4 - [tex]x^2[/tex] = 1

Rearranging the equation, we get:

[tex]x^2[/tex] = 3

Taking the square root of both sides, we have:

[tex]x[/tex]= ±√3

Since we are only interested in the region in the first quadrant, we consider [tex]x[/tex] = √3 as the boundary point.

Now, we can set up the integral to calculate the area:

A =[tex]\int\limits^_ \,[/tex][0 to √3][tex](4 - x^2 - 1)[/tex] dx  [tex]\sqrt{3}[/tex]  

Simplifying, we have:

A =[tex]\int\limits^_ \,[/tex][0 to √3] [tex](3 - x^2)[/tex]dx

Integrating, we get:

A =[tex][3x - (x^3)/3][/tex] evaluated from 0 to √3

Substituting the limits, and simplifying further, we have:

A = 3√3 - √3

Therefore, the area of region R is 3√3 - √3 square units.

Learn more about Integration area here:

https://brainly.com/question/31961389

#SPJ11

Use the information given about the angle 0, 0 50 2r., to find the exact value of each trigonometric function.
sec 0 = 9 sino> 0

Answers

To find the exact values of each trigonometric function, we need to solve for the angle 0 using the given information. From the equation sec 0 = 9 sin 0, we can rewrite it in terms of cosine and sine:

sec 0 = 1/cos 0 = 9 sin 0

To simplify the equation, we can square both sides:

(1/cos 0)^2 = (9 sin 0)^2

1/cos^2 0 = 81 sin^2 0

Using the Pythagorean identity sin^2 0 + cos^2 0 = 1, we can substitute 1 - sin^2 0 for cos^2 0:

1/(1 - sin^2 0) = 81 sin^2 0

Now, let's solve for sin^2 0:

81 sin^4 0 - 81 sin^2 0 + 1 = 0

This is a quadratic equation in sin^2 0. Solving it, we find:

sin^2 0 = (81 ± √(6560))/162

Since sin^2 0 cannot be negative, we discard the negative square root. Therefore:

sin^2 0 = (81 + √(6560))/162

Now, we can find sin 0 by taking the square root:

sin 0 = √((81 + √(6560))/162)

With the value of sin 0, we can find the exact values of other trigonometric functions using the identities:

cos 0 = √(1 - sin^2 0)

tan 0 = sin 0 / cos 0

cosec 0 = 1 / sin 0

cot 0 = 1 / tan 0

Substituting the value of sin 0 obtained, we can calculate the exact values for each trigonometric function.

To learn more about trigonometric function click here brainly.com/question/31425947

#SPJ11

A chain, 40 ft long, weighs 5 lb/ft hangs over a building 120 ft high. How much work is done pulling the chain to the top of the building.

Answers

Answer: To calculate the work done in pulling the chain to the top of the building, we need to determine the total weight of the chain and the distance it is lifted.

Given:

Length of the chain (L) = 40 ft

Weight per foot of the chain (w) = 5 lb/ft

Height of the building (h) = 120 ft

First, we calculate the total weight of the chain:

Total weight of the chain = Length of the chain × Weight per foot of the chain

Total weight of the chain = 40 ft × 5 lb/ft

Total weight of the chain = 200 lb

Next, we calculate the work done:

Work = Force × Distance

In this case, the force is the weight of the chain (200 lb), and the distance is the height of the building (120 ft). So we have:

Work = Total weight of the chain × Height of the building

Work = 200 lb × 120 ft

Work = 24,000 ft-lb

Therefore, the work done in pulling the chain to the top of the building is 24,000 foot-pounds (ft-lb).

Step-by-step explanation: :)

00 n Determine whether the alternating senes (-1)+1. converges or diverges n³+1 n=1 Choose the correct answer below and, if necessary, fill in the answer box to complete your choice. OA. The series does not satisfy the conditions of the Alternating Series Test but converges because it is a p-series with p= OB. The series does not satisfy the conditions of the Alternating Series Test but diverges by the Root Test because the limit used does not exist OC. The series converges by the Alternating Series Test OD. The series does not satisfy the conditions of the Alternating Series Test but converges because it is a geometric series with r= O E. The senes does not satisfy the conditions of the Alternating Series Test but diverges because it is a p-series with p =

Answers

The series does not satisfy the conditions of the Alternating Series Test but converges because it is a geometric series with[tex]r= (n^3 + 1).[/tex] The correct answer is OD.

The given series is [tex](-1)^n * (n^3 + 1),[/tex] where n starts from 1. To determine whether the series converges or diverges, let's consider the conditions of the Alternating Series Test.

According to the Alternating Series Test, for a series to converge: The terms of the series must alternate in sign (which is satisfied in this case as we have ([tex]-1)^n).[/tex] The absolute value of the terms must decrease as n increases. The limit of the absolute value of the terms as n approaches infinity must be 0.

Since the terms of the series do not satisfy the condition of decreasing in absolute value, we do not need to check the limit of the absolute value of the terms.

The series does not satisfy the conditions of the Alternating Series Test. The series oes not satisfy the conditions of the Alternating Series Test but converges because it is a geometric series with [tex]= (n^3 + 1).[/tex]

Therefore, the correct answer is OD.

Know more about Alternating Series , refer here

https://brainly.com/question/30400869

#SPJ11

discouraging consumers from purchasing products from an insurer is called

Answers

Discouraging consumers from purchasing products from an insurer is referred to as "consumer dissuasion." It involves implementing strategies or tactics to dissuade potential customers from choosing a particular insurance company or its products.

Consumer dissuasion is a practice employed by insurers to discourage consumers from selecting their products or services. This strategy is often used to manage risk by discouraging individuals or groups that insurers perceive as having a higher likelihood of filing claims or incurring higher costs. Insurers may employ various techniques to dissuade potential customers, such as setting higher premiums, imposing strict eligibility criteria, or offering limited coverage options. The purpose of consumer dissuasion is to selectively attract customers who are deemed less risky or more profitable for the insurer, thereby ensuring a healthier portfolio and reducing potential losses. By implementing strategies that discourage certain segments of the market, insurers can manage their risk exposure and maintain profitability. It is important to note that consumer dissuasion practices should adhere to applicable laws and regulations governing the insurance industry, including fair and transparent practices. Insurers are expected to provide clear and accurate information to consumers, enabling them to make informed decisions about insurance coverage and products.

Learn more about insurance company here:

https://brainly.com/question/32110345

#SPJ11









QUESTION 17.1 POINT Find the following antiderivative: (281-x² + 3) de Do not include the constant "+" in your answer. For example, if you found the antiderivative was 2x + C you would enter 2x Provi

Answers

The antiderivative of (281 - x² + 3) is (284x - (1/3) * x³) + C, where C is the constant of integration.

How to calculate the value

Let's integrate each term:

∫(281 - x² + 3) dx

= ∫281 dx - ∫x² dx + ∫3 dx

The integral of a constant is simply the constant multiplied by x:

= 281x - ∫x² dx + 3x

= 281x - (1/3) * x^(2+1) + 3x

Simplifying the exponent:

= 281x - (1/3) * x³ + 3x

Now we can combine the terms:

= 281x + 3x - (1/3) * x³

= (284x - (1/3) * x^3) + C

So, the antiderivative of (281 - x² + 3) is (284x - (1/3) * x³) + C, where C is the constant of integration.

Learn more about integrals on

https://brainly.com/question/27419605

#SPJ1







Evaluate the following in de finite integrals: * 9 dix 4

Answers

The value of the definite integral ∫(9 * dx) from 0 to 4 is 36.

What is the result of definite integral 9 with respect to x from 0 to 4?

When evaluating the definite integral ∫(9 * dx) from 0 to 4, we are essentially finding the area under the curve of the constant function f(x) = 9 between the limits of x = 0 and x = 4.

Since the integrand is a constant (9), integrating it with respect to x simply yields the product of the constant and the interval of integration.

Integrating a constant results in a linear function, where the coefficient of x represents the value of the constant. In this case, integrating 9 with respect to x gives us 9x.

To find the value of the definite integral, we substitute the upper limit (4) into the antiderivative and subtract the result obtained by substituting the lower limit (0).

Therefore, we have:

∫(9 * dx) from 0 to 4 = [9x] evaluated from 0 to 4

                     = 9(4) - 9(0)

                     = 36.

Thus, the value of the definite integral ∫(9 * dx) from 0 to 4 is 36.

Learn more about definite integral

brainly.com/question/30760284

#SPJ11

Which product of prime polynomials is equivalent to 8x4 + 36x3 – 72x2?

4x(2x – 3)(x2 + 6)
4x2(2x – 3)(x + 6)
2x(2x – 3)(2x2 + 6)
2x(2x + 3)(x2 – 6)

Answers

Answer:

4x2(2x – 3)(x + 6)

Step-by-step explanation:

Given expression: 8x^4 + 36x^3 - 72x^2

Step 1: Identify the greatest common factor (GCF) of the terms.

In this case, the GCF is 4x^2. We can factor it out from each term.

Step 2: Divide each term by the GCF.

Dividing each term by 4x^2, we get:

8x^4 / (4x^2) = 2x^2

36x^3 / (4x^2) = 9x

-72x^2 / (4x^2) = -18

Step 3: Rewrite the expression using the factored form.

Now that we have factored out the GCF, we can write the expression as:

8x^4 + 36x^3 - 72x^2 = 4x^2(2x^2 + 9x - 18)

The factored form is 4x^2(2x^2 + 9x - 18).

Step 4: Compare the factored form with the given options.

a. 4x(2x - 3)(x^2 + 6)

b. 4x^2(2x - 3)(x + 6)

c. 2x(2x - 3)(2x^2 + 6)

d. 2x(2x + 3)(x^2 - 6)

Among the options, the one that matches the factored form is:

b. 4x^2(2x - 3)(x + 6)

So, the correct answer is option b. 4x2(2x – 3)(x + 6)

ind the slope of the line that passes through the pair of points. (2, 6), (7, 0)

Answers

Answer:

m = -6/5

Step-by-step explanation:

Slope = rise/run or (y2 - y1) / (x2 - x1)

Points (2,6) (7,0)

We see the y decrease by 6 and the x increase by 5, so the slope is

m = -6/5

the slope of the line is -1.2 or -1 1/5 or if not simplified -6/5

2= x1

6= y1

7=x2

0=y2

using the formula y2-y1/x2-x1

now set up the equation

0-6/7-2

-6/5

-1 1/5 or -1.2

The number of fish swimming upstream to spawn is approximated by the function given below, where a represents the temperature of the water in degrees Celsius. Find when the number of fish swimming upstream will reach the maximum. P(x)= x³ + 3x² + 360x + 5174 with 5 ≤ x ≤ 18 a) Find P'(x) b) Which of the following are correct? The question has multiple answers. Select all correct choices. The domain is a closed interval. There are two critical points in this problem Compare critical points and end points. b) The maximum number of fish swimming upstream will occur when the water is degrees Celsius (Round to the nearest degree as needed).

Answers

a) To find P'(x), we need to take the derivative of the function P(x).P(x) = x³ + 3x² + 360x + 5174

Taking the derivative using the power rule, we get:

P'(x) = 3x² + 6x + 360

b) Let's analyze the given choices:

1) The domain is a closed interval: This statement is correct since the domain is specified as 5 ≤ x ≤ 18, which includes both endpoints.

2) There are two critical points in this problem: To find the critical points, we set P'(x) = 0 and solve for x:

3x² + 6x + 360 = 0

Using the quadratic formula, we find:

x = (-6 ± √(6² - 4(3)(360))) / (2(3))

x = (-6 ± √(-20)) / 6

Since the discriminant is negative, there are no real solutions to the equation. Therefore, there are no critical points in this problem.

3) Compare critical points and end points: Since there are no critical points, this statement is not applicable.

4) The maximum number of fish swimming upstream will occur when the water is degrees Celsius: To find when the function reaches its maximum, we can examine the concavity of the function. Since there are no critical points, we can determine the maximum value by comparing the values of P(x) at the endpoints of the interval.

P(5) = 5³ + 3(5)² + 360(5) + 5174

    = 625 + 75 + 1800 + 5174

    = 7674

P(18) = 18³ + 3(18)² + 360(18) + 5174

     = 5832 + 972 + 6480 + 5174

     = 18458

From the calculations, we can see that the maximum number of fish swimming upstream occurs when the water temperature is 18 degrees Celsius.

In summary:

a) P'(x) = 3x² + 6x + 360

b) The correct choices are:

- The domain is a closed interval.

- The maximum number of fish swimming upstream will occur when the water is 18 degrees Celsius.

Learn more about derivatives here: brainly.com/question/29144258

#SPJ11

To estimate the height of a building, two students find the angle of elevation from a point (at ground level) down the street from the building to the top of the building is 40°. From a point that is 350 feet closer to the building, the angle of elevation (at ground level) to the top of the building is 53°. If we assume that the street is level, use this information to estimate the height of the building. The height of the building is ____

Answers

To estimate the height of the building, we can use the concept of similar triangles and trigonometry. By setting up equations based on the given angles of elevation, we can solve for the height of the building.

To estimate the height of the building, we use the fact that the angles of elevation from two different points create similar triangles. By setting up equations using the tangent function, we can relate the height of the building to the distances between the points and the building. Solving the resulting system of equations will give us the height of the building.

In the first observation, with an angle of elevation of 40°, we have the equation tan(40°) = h/x, where h is the height of the building and x is the distance from the first point to the building.

In the second observation, with an angle of elevation of 53°, we have the equation tan(53°) = h/(x + 350), where x + 350 is the distance from the second point to the building.

By dividing the second equation by the first equation, we can eliminate h and solve for x. Once we have the value of x, we can substitute it back into either of the original equations to find the height of the building, h.

To learn more about Angle of Elevation

brainly.com/question/29008290

#SPJ11

In triangle UVW. m/U 129. m/V 18°, and u = 57.
1) What is the measure of angle W?
2) What is the length of side v?
3) What is the length of side w?
4) What is the area of the triangle? (A = bh)
-
-

Answers

1) The measure of angle W is 33 degrees.
2) The length of side v is 106.5 units.
3) The length of side w is 45.2 units.
4) The area of the triangle is 2409.6 square units.

Evaluate the given expression and express the result using the usual format for writing numbers (instead of scientific notation) 54P2

Answers

The value of the given expression 54P2 is 2,916.

The expression 54P2 represents the permutation of 54 objects taken 2 at a time. In other words, it calculates the number of distinct ordered arrangements of selecting 2 objects from a set of 54 objects.

To evaluate 54P2, we use the formula for permutations:

nPr = n! / (n - r)!

where n is the total number of objects and r is the number of objects selected.

Substituting the values into the formula:

54P2 = 54! / (54 - 2)!

     = 54! / 52!

To simplify the expression, we need to calculate the factorial of 54 and the factorial of 52.

54! = 54 * 53 * 52!

52! = 52 * 51 * 50 * ... * 1

Now we can substitute these values back into the formula

54P2 = (54 * 53 * 52!) / 52

Simplifying further, we cancel out the 52! terms:

54P2 = 54 * 53

     = 2,862

Therefore, the value of 54P2 is 2,862 when expressed using the usual format for writing numbers.

Learn more about permutations here:

https://brainly.com/question/29855401

#SPJ11

Is y = ex + 5e-2x a solution of the differential equation y' + 2y = 2ex? Yes Ο No Is this differential equation pure time, autonomous, or nonautomonous? O pure time autonomous nonautonomous

Answers

The type of differential equation, y' + 2y = 2ex is a nonautonomous differential equation because it depends on the independent variable x.

To determine if y = ex + 5e^(-2x) is a solution of the differential equation y' + 2y = 2ex, we need to substitute y into the differential equation and check if it satisfies the equation.

First, let's find y' by taking the derivative of y with respect to x:

y' = d/dx (ex + 5e^(-2x))

= e^x - 10e^(-2x)

Now, substitute y and y' into the differential equation:

y' + 2y = (e^x - 10e^(-2x)) + 2(ex + 5e^(-2x))

= e^x - 10e^(-2x) + 2ex + 10e^(-2x)

= 3ex

As we can see, the right side of the differential equation is 3ex, which is not equal to the left side of the equation, y' + 2y. Therefore, y = ex + 5e^(-2x) is not a solution of the differential equation y' + 2y = 2ex.

Regarding the type of differential equation, y' + 2y = 2ex is a nonautonomous differential equation because it depends on the independent variable x.

To learn more about “differential equations” refer to the https://brainly.com/question/1164377

#SPJ11

A die is tossed 120 times. Use the normal curve approximation to the binomial distribution to find the probability of getting the following result Exactly 19 5's Click here for page 1 of the Areas under the Normal Curve Table Click here for page 2 of the Areas under the Normal Curve Table The probability of getting exactly 19 5's is (Round to 4 decimal places.) urve - page 1 Z Z .00 .01 .02 1.03 .04 .05 .06 А .0000 .0040 .0080 .0120 .0160 .0199 0239 .0279 .0319 .0359 .0398 .0438 .0478 .0517 .0557 0596 1.0636 .0675 .0714 0754 .0793 .0832 .0871 1.0910 .0948 1.0987 .1026 1064 1.48 .49 .50 .51 .52 .53 .54 .55 .56 .57 1.58 .59 .60 .61 .62 .07 .08 .09 .10 .11 .12 .13 .14 .15 16 .17 .18 .19 20 .21 .22 .23 .24 25 .26 A .1844 .1879 .1915 . 1950 .1985 .2019 2054 .2088 .2123 2157 1.2190 2224 .2258 2291 2324 .2357 2389 .2422 .2454 .2486 .2518 2549 2580 2612 .2642 .2673 2704 2734 z .96 .97 .98 .99 1.00 (1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 А z .3315 1.44 .3340 1.45 .3365 1.46 .3389 1.47 .3413 1.48 3438 1.49 .3461 1.50 .3485 1.51 3508 1.52 .3531 1.53 1.3554 1.54 .3577 1.55 .3599 1.56 .3621 1.57 3643 1.58 .36651.59 .3686 1.60 .3708 3729 1.62 .3749 1.63 3770 1.64 .3790 1.65 .3810 1.66 .3830 1.67 .3849 1.68 .3869 1.69 .3888 1.70 3907 1.71 A 4251 .4265 1.4279 .4292 1.4306 4319 .4332 .4345 4357 4370 1.4382 .4394 4406 .4418 4430 1.4441 4452 .4463 .4474 1.4485 1.4495 4505 4515 .4525 4535 4545 4554 .4564 1.63 1.61 .64 1.65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .27 Print Done ine NOI page 2 Z 1.92 1.93 1.94 1.95 1.96 (1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 12.12 2.13 12.14 2.15 12.16 2.17 2.18 2.19 A Z 1.4726 2.42 .4732 2.43 4738 2.44 .4744 2.45 4750 2.46 4756 2.47 .4762 2.48 .4767 2.49 4773 2.50 .4778 2.51 4783 2.52 .4788 2.53 4793 2.54 4798 2.55 1.4803 2.56 4808 2.57 4812 2.58 .4817 2.59 .4821 2.60 4826 2.61 .4830 2.62 .4834 2.63 .4838 2.64 1.4842 2.65 .4846 2.66 4850 2.67 .4854 2.68 4857 2.69 A Z .4922 2.92 .4925 2.93 .4927 2.94 .4929 2.95 .4931 2.96 .4932 2.97 1.4934 2.98 .4936 2.99 .4938 3.00 4940 3.01 .4941 3.02 .4943 3.03 .4945 3.04 4946 3.05 4948 3.06 .4949 13.07 4951 3.08 4952 3.09 1.4953 3.10 4955 3.11 .4956 3.12 .4957 3.13 4959 3.14 .4960 3.15 .4961 3.16 4962 3.17 4963 3.18 .4964 3.19 A Z 1.4983 3.42 .4983 3.43 .4984 3.44 .4984 3.45 .4985 3.46 .4985 3.47 .4986 3.48 1.4986 3.49 1.4987 3.50 1.4987 3.51 .4987 3.52 1.4988 3.53 4988 3.54 1.4989 3.55 .4989 3.56 .4989 3.57 .4990 3.58 4990 3.59 4990 3.60 4991 |3.61 .4991 3.62 4991 3.63 4992 (3.64 .4992 3.65 4992 3.66 .4992 3.67 .4993 3.68 .4993 3.69 A 4997 .4997 1.4997 .4997 1.4997 .4997 1.4998 .4998 .4998 .4998 .4998 4998 4998 .4998 4998 .4998 .4998 .4998 1.4998 ,4999 .4999 4999 1.4999 1.4999 .4999 4999 4999 .4999

Answers

The probability of getting exactly 19 5's is 0.00132

How to find the probability of getting Exactly 19 5's

From the question, we have the following parameters that can be used in our computation:

Number of toss, n = 120

The probability of getting a 5 is

p = 1/6

So, the complement probability is

q = 1 - 1/6

Evaluate

q = 5/6

The probability is then calculated as

P = nCr * p^r * q^(n - r)

Substitute the known values in the above equation, so, we have the following representation

P = 200C19 * (1/6)^19 * (5/6)^(200 - 19)

Evaluate

P = 0.00132

Hence, the probability of getting the following result Exactly 19 5's is 0.00132

Read more about probability at

https://brainly.com/question/31649379

#SPJ1

11. Sketch the curve r= 4cos (30), then find the area of the region enclosed by one loop of this curve. (8 pts.)

Answers

the area of the region enclosed by one loop of this curve is 6π square units.

The equation r = 4cos(30°) represents a polar curve. To sketch the curve, we'll plot points by evaluating r for different values of the angle θ.

First, let's convert the angle from degrees to radians:

30° = π/6 radians

Now, let's evaluate r for different values of θ:

For θ = 0°:

r = 4cos(30°) = 4cos(π/6) = 4(√3/2) = 2√3

For θ = 30°:

r = 4cos(30°) = 4cos(π/6) = 4(√3/2) = 2√3

For θ = 60°:

r = 4cos(60°) = 4cos(π/3) = 4(1/2) = 2

For θ = 90°:

r = 4cos(90°) = 4cos(π/2) = 4(0) = 0

For θ = 120°:

r = 4cos(120°) = 4cos(2π/3) = 4(-1/2) = -2

For θ = 150°:

r = 4cos(150°) = 4cos(5π/6) = 4(-√3/2) = -2√3

For θ = 180°:

r = 4cos(180°) = 4cos(π) = 4(-1) = -4

We can continue evaluating r for more values of θ, but based on the above calculations, we can see that the curve starts at r = 2√3, loops around to r = -2√3, and ends at r = -4. The curve resembles an inverted heart shape.

To find the area of the region enclosed by one loop of this curve, we can use the formula for the area of a polar region:

A = (1/2) ∫[α, β] (r(θ))^2 dθ

For one loop, we can choose α = 0 and β = 2π. Substituting the given equation r = 4cos(30°) = 4cos(π/6) = 2√3, we have:

A = (1/2) ∫[0, 2π] (2√3)^2 dθ

 = (1/2) ∫[0, 2π] 12 dθ

 = (1/2) * 12 * θ |[0, 2π]

 = 6π

To know more about curve visit:

brainly.com/question/31154149

#SPJ11

I
will give thump up. thank you!
Determine the vertical asymptote(s) of the given function. If none exists, state that fact. f(x) = 7* x X6 O x= 7 O none OX= -6 O x = 6

Answers

The vertical asymptote of the function f(x) = [tex]7x^6[/tex] is none.

A vertical asymptote occurs when the value of x approaches a certain value, and the function approaches positive or negative infinity. In the case of the function f(x) =[tex]7x^6,[/tex] there are no vertical asymptotes. As x approaches any value, the function does not approach infinity nor does it have any restrictions. Therefore, there are no vertical asymptotes for this function. The graph of the function will not have any vertical lines that it approaches or intersects.

learn more about asymptote here

brainly.com/question/29051912

#SPJ11

The function f(x) = x – In (3e" + 1) has = (a) two horizontal asymptotes and no vertical asymptotes (b) only one horizontal asymptote and one vertical asymptote (c) only one vertical asymptote and n

Answers

We examine the behaviour of the function f(x) = x - ln(3ex + 1) as x approaches infinity and negative infinity to find its and vertical asymptotes.

1. Horizontal Asymptotes: Since the natural logarithm of a positive number less than 1 is negative, when x negative infinity, the ln(3ex + 1) also negative infinity. The overall function moves closer to negative infinity as x moves closer to negative infinity because x is deducted from ln(3ex + 1), which moves closer to negative infinity.

learn more about behaviour here :

https://brainly.com/question/30756377

#SPJ11

How do I do this without U-sub using trig sub
14 √ ₁ x ³ √T-x² dx J вл 0 Use Theta = arcsin to convert x bounds to theta bounds (edited)

Answers

The solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

What is trigonometry?

One of the most significant areas of mathematics, trigonometry has a wide range of applications. The study of how the sides and angles of a right-angle triangle relate to one another is essentially what the field of mathematics known as "trigonometry" is all about.

To solve the integral ∫(0 to 1) x³√(T - x³) dx using a trigonometric substitution, you can follow these steps:

Step 1: Identify the appropriate trigonometric substitution. In this case, let's use x = √T sinθ, which implies dx = √T cosθ dθ.

Step 2: Convert the given bounds of integration from x to θ. When x = 0, sinθ = 0, which gives θ = 0. When x = 1, sinθ = 1, which gives θ = π/2.

Step 3: Substitute x and dx in terms of θ in the integral:

∫(0 to π/2) (√T sinθ)³ √(T - (√T sinθ)²) (√T cosθ) dθ

= ∫(0 to π/2) [tex]T^{(3/2)}[/tex] sin³θ cos²θ dθ

Step 4: Simplify the integrand using trigonometric identities. Recall that sin²θ = 1 - cos²θ.

=[tex]T^{(3/2)}[/tex] ∫(0 to π/2) sin^3θ (1 - sin²θ) cosθ dθ

Step 5: Expand the integrand and split it into two separate integrals:

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (sin³θ - [tex]sin^5[/tex]θ) cosθ dθ

Step 6: Integrate each term separately. The integral of sin³θ cosθ can be evaluated using a u-substitution.

Let u = sinθ, du = cosθ dθ.

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) u³ du

= [tex]T^{(3/2)} [u^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [(sinθ)^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [1/4] - T^{(3/2)} [0][/tex]

= [tex]T^{(3/2)}/4[/tex]

The integral of [tex]sin^5[/tex]θ cosθ can be evaluated using integration by parts.

Let dv = [tex]sin^5[/tex]θ cosθ dθ, u = sinθ, v = -1/6 cos²θ.

=[tex]T^{(3/2)}[/tex][-1/6 cos²θ sinθ] (0 to π/2) - [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (-1/6 cos²θ) cosθ dθ

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}[/tex]/6 ∫(0 to π/2) cos³θ dθ

Using the reduction formula for the integral of cos^nθ, where n is a positive integer, we have:

∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ - (1/4) ∫(0 to π/2) cos³θ dθ

Rearranging the equation:

(5/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) [sinθ] (0 to π/2)

= (3/4) [1 - 0]

= 3/4

Substituting back into the expression:

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}/6 (3/4)[/tex]

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^({3/2)}/8[/tex]

= [tex]T^{(3/2)} [-1/6 (0) (1) - (-1/6) (1) (0)] + T^{(3/2)}/8[/tex]

=[tex]T^{(3/2)}/8[/tex]

Step 7: Combine the results from both integrals:

∫[tex](0 to 1) x^3√(T - x^2) dx = T^{(3/2)}/4 + T^{(3/2)}/8[/tex]

= [tex](3T^{(3/2)})/8[/tex]

Therefore, the solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

Learn more about trigonometry on:

https://brainly.com/question/31614326

#SPJ4

Find the volume of the solid obtained by rotating the region bounded by Y=3x +2 y=x2+2 x=0 Rotating X=2 Washer method OR Disc Method

Answers

1) The intersection points are x = 0 and x = 3. These will be our limits of integration.

2)  R = distance from x-axis to outer curve[tex]= 3x + 2 - 2 = 3x[/tex]

    r = distance from x-axis to inner curve =[tex]x^2 + 2 - 2 = x^2[/tex]

3) V = π ∫[tex](0 to 3) (9x^2 - x^4) dx[/tex]

4) V = π [27 - 81/5]

5) V = (54/5)π

How to find the volume?

To find the volume of the solid obtained by rotating the region bounded by the curves [tex]y = 3x + 2, y = x^2 + 2[/tex], and x = 0 using the washer method (or disc method) about the line x = 2, we can follow these steps:

1. Determine the limits of integration:

  The region is bounded by[tex]y = 3x + 2[/tex] and [tex]y = x^2 + 2[/tex]. To find the limits of integration for x, we need to determine the x-values at which the two curves intersect.

 

  Setting the two equations equal to each other:

   [tex]3x + 2 = x^2 + 2[/tex]

 

  Rearranging and simplifying:

  [tex]x^2 - 3x = 0[/tex]

 

  Factoring:

  x(x - 3) = 0

 

Therefore, the intersection points are x = 0 and x = 3. These will be our limits of integration.

2. Determine the radius of each washer:

  The washer method involves finding the difference in areas of two circles: the outer circle and the inner circle.

  The outer radius (R) is the distance from the axis of rotation (x = 2) to the outer curve [tex](y = 3x + 2).[/tex]

  The inner radius (r) is the distance from the axis of rotation (x = 2) to the inner curve[tex](y = x^2 + 2)[/tex]

  The formula for the outer and inner radii is:

  R = distance from x-axis to outer curve[tex]= 3x + 2 - 2 = 3x[/tex]

  r = distance from x-axis to inner curve =[tex]x^2 + 2 - 2 = x^2[/tex]

3. Set up the integral for the volume using the washer method:

  The volume of each washer is given by: π[tex][(R^2) - (r^2)]dx[/tex]

 

The volume of the solid can be calculated by integrating the volumes of all the washers from x = 0 to x = 3:

  V = ∫(0 to 3) π[tex][(3x)^2 - (x^2)^2]dx[/tex]

  Simplifying:

  V = π ∫[tex](0 to 3) (9x^2 - x^4) dx[/tex]

4. Evaluate the integral:

  Integrating the expression, we get:

  V = π [tex][3x^3/3 - x^5/5][/tex] evaluated from 0 to 3

  V = π[tex][(3(3)^3/3 - (3)^5/5) - (3(0)^3/3 - (0)^5/5)][/tex]

  V = π [27 - 81/5]

5. Finalize the volume:

  Simplifying the expression, we have:

  V = π [(135/5) - (81/5)]

  V = π (54/5)

  V = (54/5)π

Therefore, the volume of the solid obtained by rotating the region bounded by [tex]y = 3x + 2, y = x^2 + 2[/tex], and x = 0 about the line x = 2 using the washer method is (54/5)π cubic units.

To know more about Volume of Revolution, refer here:

https://brainly.com/question/28742603

#SPJ4

Perform a first derivative test on the function f(x) = 3x - 5x + 1; [-5,5). a. Locate the critical points of the given function. b. Use the first derivative test to locate the local maximum and minimum values. c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist). a. Locate the critical points of the given function. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The critical point(s) is/are at x = (Simplify your answer. Use a comma to separate answers as needed.) B. The function does not have a critical point.

Answers

To find the critical points of the function f(x) = 3x^2 - 5x + 1, we need to find the values of x where the derivative of f(x) is equal to zero or undefined.

a. Taking the derivative of f(x) with respect to x:

f'(x) = 6x - 5

Setting f'(x) equal to zero and solving for x:

6x - 5 = 0

6x = 5

x = 5/6

So the critical point of the function is at x = 5/6.

b. To use the first derivative test, we need to determine the sign of the derivative on either side of the critical point.

Considering the interval (-∞, 5/6):

Choosing a value of x less than 5/6, let's say x = 0:

f'(0) = 6(0) - 5 = -5 (negative)

Considering the interval (5/6, ∞):

Choosing a value of x greater than 5/6, let's say x = 1:

f'(1) = 6(1) - 5 = 1 (positive)

Since the derivative changes sign from negative to positive at x = 5/6, we can conclude that there is a local minimum at x = 5/6.

c. Since the given interval is [-5, 5), we need to check the endpoints as well.

At x = -5:

f(-5) = 3(-5)^2 - 5(-5) + 1 = 75 + 25 + 1 = 101

At x = 5:

f(5) = 3(5)^2 - 5(5) + 1 = 75 - 25 + 1 = 51

Therefore, the absolute maximum value of the function on the interval [-5, 5) is 101 at x = -5, and the absolute minimum value is 51 at x = 5.

learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11









Consider the following function () -- 1.6 -2,0.8 SES 1.2 (a) Approximate / by a Taylor polynomial with degreen at the number a. 70x) - (b) Use Taylor's Inequality to estimate the accuracy of the appro

Answers

a) the Taylor polynomial of degree 2 centered at a = 0 that approximates f(x) is P(x) = 1.6 - 2x + 0.8x^2.

b) Taylor polynomial P(x) is bounded by:

|E(x)| ≤ M |x - a|^(n + 1)/(n + 1)!

What is Taylor Polynomial?

Taylor polynomials look a little ugly, but if you break them down into small steps, it's actually a fast way to approximate a function. Taylor polynomials can be used to approximate any differentiable function.

Certainly! Let's break down the problem into two parts:

(a) Approximating f(x) by a Taylor polynomial:

To approximate the function f(x) using a Taylor polynomial, we need to determine the degree and center of the polynomial. In this case, we are asked to approximate f(x) by a Taylor polynomial of degree 2 centered at a = 0.

The general form of a Taylor polynomial of degree n centered at a is given by:

P(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + ... + f^n(a)(x - a)^n/n!

To find the Taylor polynomial of degree 2 centered at a = 0, we need the function's value, first derivative, and second derivative at that point.

Given the function f(x) = 1.6 - 2x + 0.8x^2, we can calculate:

f(0) = 1.6,

f'(x) = -2 + 1.6x,

f''(x) = 1.6.

Plugging these values into the Taylor polynomial formula, we get:

P(x) = 1.6 + (-2)(x - 0) + (1.6)(x - 0)^2/2!

Simplifying further, we have:

P(x) = 1.6 - 2x + 0.8x^2.

Therefore, the Taylor polynomial of degree 2 centered at a = 0 that approximates f(x) is P(x) = 1.6 - 2x + 0.8x^2.

(b) Using Taylor's Inequality to estimate the accuracy of the approximation:

Taylor's Inequality allows us to estimate the maximum error between the function f(x) and its Taylor polynomial approximation.

The inequality states that if |f''(x)| ≤ M for all x in an interval around the center a, then the error E(x) between f(x) and its Taylor polynomial P(x) is bounded by:

|E(x)| ≤ M |x - a|^(n + 1)/(n + 1)!

In our case, the Taylor polynomial of degree 2 is P(x) = 1.6 - 2x + 0.8x^2, and the second derivative f''(x) = 1.6 is constant. Therefore, |f''(x)| ≤ 1.6 for all x.

To learn more about Taylor Polynomial from the given link

https://brainly.com/question/28398208

#SPJ4

Problem 2. (4 points) Use the ratio test to determine whether n5" Σ converges or diverges. (n + 1)! n=9 (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n

Answers

Using the ratio test, the given series Σ(n+1)!/n⁵ diverges, where n ranges from 9 to infinity.

To determine whether the series Σ(n+1)!/n⁵ converges or diverges, we can use the ratio test. The ratio test states that if the absolute value of the ratio of consecutive terms approaches a limit L as n approaches infinity, then the series converges if L is less than 1 and diverges if L is greater than 1.

Let's calculate the ratio of successive terms:

[tex]\[\frac{(n+2)!}{(n+1)!} \cdot \frac{n^5}{n!}\][/tex]

Simplifying the expression, we have:

[tex]\[\frac{(n+2)(n+1)(n^5)}{n!}\][/tex]

Canceling out the common factors, we get:

[tex]\[\frac{(n+2)(n+1)(n^4)}{1}\][/tex]

Taking the absolute value of the ratio, we have:

[tex]\[\left|\frac{(n+2)(n+1)(n^4)}{1}\right|\][/tex]

As n approaches infinity, the terms (n+2)(n+1)(n⁴) will also approach infinity. Therefore, the limit of the ratio is infinity.

Since the limit of the ratio is greater than 1, the series diverges according to the ratio test.

The complete question is:

"Use the ratio test to determine whether the series Σ(n+1)!/n⁵ converges or diverges, where n ranges from 9 to infinity."

Learn more about ratio test:

https://brainly.com/question/29579790

#SPJ11

15. Let y = x sinx. Find f'(n). a) b)1 e) None of the above d) - Inn c) Inn Find f'(4). 16. Let y = In (x+1)",2x (x-3)* a) 1 b) 1.2 c) - 2.6 e) None of the above d) - 1.4 to at the point (1,0). 17. Su

Answers

The derivative of the function [tex]\(f(x) = x \sin(x)\)[/tex] with respect to x is [tex]\(f'(x) = \sin(x) + x \cos(x)\)[/tex]. Thus, the derivative of [tex]\(f(x)\)[/tex] evaluated at x = 4 is \[tex](f'(4) = \sin(4) + 4 \cos(4)\)[/tex].

The derivative of a function measures the rate at which the function is changing at a given point. To find the derivative of [tex]\(f(x) = x \sin(x)\)[/tex], we can apply the product rule. Let [tex]\(u(x) = x\)[/tex] and [tex]\(v(x) = \sin(x)\)[/tex]. Applying the product rule, we have [tex]\(f'(x) = u'(x)v(x) + u(x)v'(x)\)[/tex]. Differentiating [tex]\(u(x) = x\)[/tex] gives us [tex]\(u'(x) = 1\)[/tex], and differentiating [tex]\(v(x) = \sin(x)\)[/tex] gives us [tex]\(v'(x) = \cos(x)\)[/tex]. Plugging these values into the product rule, we obtain [tex]\(f'(x) = \sin(x) + x \cos(x)\)[/tex]. To find [tex]\(f'(4)\)[/tex], we substitute [tex]\(x = 4\)[/tex] into the derivative expression, giving us [tex]\(f'(4) = \sin(4) + 4 \cos(4)\)[/tex]. Therefore, the correct answer is [tex]\(\sin(4) + 4 \cos(4)\)[/tex].

To learn more about derivative refer:

https://brainly.com/question/31399580

#SPJ11

) Find the work done by the Force field F (x,y) = y1 +x? ] moving a particle along C: 7 (t) = (4-1) 1 - 4 ] on ost 52

Answers

the work done by the force field F in moving the particle along the curve C is -403 units of work.

To find the work done by the force field F(x, y) = ⟨y, 1 + x⟩ in moving a particle along the curve C: r(t) = ⟨4t - 1, t^2 - 4⟩, where t ranges from 5 to 2, we can use the line integral formula for work:

W = ∫C F · dr

where F · dr represents the dot product between the force field and the differential vector along the curve.

First, let's find the differential vector dr:

dr = ⟨dx, dy⟩

Since r(t) = ⟨4t - 1, t^2 - 4⟩, we can differentiate it with respect to t to find dx and dy:

dx = d(4t - 1) = 4dt

dy = d(t^2 - 4) = 2t dt

Now, let's substitute the values into the dot product F · dr:

F · dr = ⟨y, 1 + x⟩ · ⟨dx, dy⟩

= ⟨y, 1 + x⟩ · ⟨4dt, 2t dt⟩

= 4y dt + 2xt dt

Since y = t^2 - 4 and x = 4t - 1, we can substitute these values into the equation:

F · dr = 4(t^2 - 4) dt + 2(4t - 1)t dt

= 4t^2 - 16 + 8t^2 - 2t dt

= 12t^2 - 2t - 16 dt

Now, we can integrate this expression over the given range of t from 5 to 2:

W = ∫C F · dr

= ∫5^2 (12t^2 - 2t - 16) dt

= [4t^3 - t^2 - 16t]5^2

Evaluating the integral at the upper and lower limits:

W = [4(2)^3 - (2)^2 - 16(2)] - [4(5)^3 - (5)^2 - 16(5)]

Simplifying the expression:

W = [32 - 4 - 32] - [500 - 25 - 80]

W = -8 - 395

W = -403

To know more about ranges visit:

brainly.com/question/29204101

#SPJ11

Other Questions
which region of north america is most vulnerable to desertification I'm making a AD for my special ed class room and I am interviewing people. Make 10 unique questions I can ask my fellow classmates about the things they have learned in this room. Spectral radiation at 2 = 2.445 um and with intensity 5.7 kW/m2 um sr) enters a gas and travels through the gas along a path length of 21.5 cm. The gas is at uniform temperature 1100 K and has an absorption coefficient 63.445 = 0.557 m-'. What is the intensity of the radiation at the end of the path (25 points) Find two linearly independent solutions of 2xy" my' +(1:2 +1)y=0, x > 0 of the form y = 2"(1+212 + a22 +2323 + ...) Y2 = 2" (1 + b2x + b222 + b3x3 + ...) where r > 12 Enter Ti= 6. ||-5 = 5 and D|- 8. The angle formed by and Dis 35, and the angle formed by A and is 40. The magnitude of E is twice as magnitude of A. Determine B. What is B in terms of A, D and E? /5T./1C E Please explain the reasonIs 1 1 n+n cos2 (3n) convergent or divergent ? O convergent divergent draw a simple undirected graph g that has 12 vertices, 18 edges, and 3 connected components. why would it be impossible to draw g with 3 connected components if g had 66 edges? The visitors to the campsite they are in the ratio Men to women =5:4 and women to children 3:7 calculate the ratio men to women to children in its simplest form 69 points Which statement accurately describes part of the process by which the U.S. Constitution can be amended? Responses Only the House of Representatives votes on amendments. Only the House of Representatives votes on amendments. Two-thirds of the Congress must pass the amendment. Two-thirds of the Congress must pass the amendment. Only the Senate can propose amendments. Only the Senate can propose amendments. All of the states must agree to the amendment. All of the states must agree to the amendment. Although the scientific method allows for isolating cause and effect, research should not violate any of several ethical principles. The ethical principle of non-maleficence states that? a. The research should not cause mental or physical harm. b. The risks of research should not outweigh the benefits. c. The risks and benefits of the research should not be disproportionately distributed to one group of people over another. d. The participants should be enabled to behave how they see fit. Twist Corporation has a current accounts receivable balance of $417,615. Credit sales for the year just ended were $2,949,600. a. What is the receivables turnover? 43 Sandwiches at a sandwich shop move through the following process: Order 30 seconds per sandwich Retrieve and cut sandwich roll - 15 seconds per sandwich Add ingredients = 20 seconds per sandwich Toast sandwich = 20 seconds per sandwich Wrap and complete the order = 40 seconds par sandwich Total throughput time is 125 seconds. If huo amployees split the wrap up and order completion sleps, where is the bottleneck? Toasting the sandwich Ordering Wrapping up and completing the order Adding ingredients NEXT > BOOKMARK Results:1. Machine A costs the most but offers the highest increase in coffee output. Operating the machine can be difficult, so employees will need training.2. Machine B costs $100 less than machine A, produces acceptable coffee output, and is simple to use. No training is required.3. Machine C costs the least, produces slightly less than the current machine, and is simple to use. No training is required.11Select the correct answer from each drop-down menu.Complete the sentence to tell why the writer has created this proposal.The writer has written the proposal toA) determine which kind of coffee most people likeB) compare different coffee makers before making a purchase C) analyze the budget for buying a new coffee maker Databases that are smaller than enterprise databases and focus on their creators' specific information requirements are known as ________.A) shadow systemsB) data warehousesC) data stewardsD) referential schemas pls show work(2) Evaluate the limit by recognizing it as the limit of a Riemann sum: lim-+ 22+++...+) (2n) Based on the crystal-field strengths Cl < F < H2O < NH3 < H2NC2H4NH2, which octahedral titanium(III) complex below has its d-d electronic transition at the shortest wavelength?a. [Ti(OH2)6]3+b. [TiF6]3c. [Ti(H2NC2H4NH2)3]3+d. [Ti(NH3)6]3+e. [TiCl6]3 4. Determine whether the series =1 is conditionally convergent, sin(n) n absolutely convergent, or divergent and explain why. When testing insulin levels on swimming fish, hypoglycemia results inMultiple Choiceslow, lethargic movements.fast, darting movements.regular, smooth movements. C Program#include #define LEN 10char * getnchar(char * str, int n);int exer1(void){char input[LEN];char *check;getchar();printf("Please enter 9 characters: ");check = getnchar(input, LEN - 1);if (check == NULL)puts("Input failed.");elseputs(input);puts("Done.\n");return 0;}char * getnchar(char * str, int n){int i;int ch;for (i = 0; i < n; i++){ch = getchar();if (ch != EOF)str[i] = ch;elsebreak;}if (ch == EOF)return NULL;else{str[i] = '\0';return str;}}Answer these questions: 1. What is the maximum number of characters you can input?2. What happens when you enter more than this number?3. What is passed to the *getnchar() function?4. What is returned from the *getnchar() function?5. What happens when you press ctrl-d before any input? Why? (Which line of code effects this?)6. What change would you need to make to allow the user to enter up to 50 characters into input[].7. Aside from pressing ctrl-d at the beginning of a line, is there any way to enter less than 9 characters? Shareholders of public companies are represented by the Board of TrusteesSelect one:a.Trueb.False