At the last stage of stellar evolution, a heavy star can collapse into an extremely dense object made mostly of neutrons. the rotation period of the collapsed neutron star is approximately 0.5 milliseconds.
To find the rotation period of the collapsed neutron star, we can apply the principle of conservation of angular momentum. Since the neutron star is a rigid object, its angular momentum will remain constant before and after the collapse.
The formula for angular momentum (L) is given by the product of moment of inertia (I) and angular velocity (ω):
L = I * ω
Since the neutron star is assumed to be a uniform, solid, rigid sphere, its moment of inertia can be calculated using the formula for a solid sphere:
I = (2/5) * M * R²
Where M is the mass of the neutron star and R is its radius.
Now, let's consider the initial star and the collapsed neutron star:
For the initial star:
Initial radius (R_initial) = 8.5 × 10^5 km
Initial rotation period (T_initial) = 19 days
For the neutron star:
Final radius (R_final) = 7.1 km
Final rotation period (T_final) = unknown (to be calculated)
The mass (M) of the star remains the same before and after the collapse.
Using the conservation of angular momentum, we can equate the initial and final angular momenta:
I_initial * ω_initial = I_final * ω_final
Substituting the expressions for moment of inertia and angular velocity:
[(2/5) * M * R_initial²] * (2π / T_initial) = [(2/5) * M * R_final²] * (2π / T_final)
Simplifying the equation and canceling common factors:
(R_initial² / T_initial) = (R_final² / T_final)
Substituting the known values:
[(8.5 × 10^5 km)² / (19 days)] = [(7.1 km)² / T_final]
Converting the units to a common form:
[(8.5 × 10^5 km)² / (19 days)] = [(7.1 km)² / (T_final * 86,400 seconds/day)]
Solving for T_final:
T_final = [(7.1 km)² * (19 days) * (86,400 seconds/day)] / [(8.5 × 10^5 km)²]
Calculating the value:
T_final ≈ 0.5 milliseconds
Therefore, the rotation period of the collapsed neutron star is approximately 0.5 milliseconds.
Learn more about angular momentum here:
https://brainly.com/question/29563080
#SPJ11
An RL circuit is composed of a 12 V battery, a 6.0 Hinductor and a 0.050 Ohm resistor. The switch is closed at t=0 000 The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero. The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V. The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12V. The time constant is 2.0 minutes and after the switch has been closed a long time the current is
the correct statements are: 1. The time constant of 1.2 minutes leads to zero voltage across the inductor after a long time. 2. The time constant of 2.0 minutes leads to a steady-state current after a long time.
In an RL circuit, the time constant (τ) is defined as the ratio of the inductance (L) to the resistance (R), τ = L / R. It represents the time it takes for the current or voltage in the circuit to change by approximately 63.2% of its final value.
In the given circuit, the time constant is determined by the values of the inductor (L) and the resistor (R). The time constant of 1.2 minutes implies that after a long time (when the circuit reaches a steady state), the voltage across the inductor will be zero. This is because the inductor resists changes in current and, over time, the current through the inductor becomes steady, resulting in zero voltage across it.
On the other hand, the time constant of 2.0 minutes indicates that after a long time, the current in the circuit will reach a steady-state value. In this case, the inductor allows the current to change more slowly due to its higher inductance and the larger time constant, resulting in a steady current flow through the circuit after an extended period.
Learn more about inductor here:
https://brainly.com/question/31503384
#SPJ11
Consider again a voltmeter connected across the second of two resistors R in series. Show that when the meter has the SAME resistance as each R, then the voltage should be 1.00V across the parallel pair. You may do this algebraically or using some value (say, 50.0kQ.) (5) 4. Explain why the voltage values in the table go to zero when the meter's resistance is LOW compared to the value of R. (
When a voltmeter with the same resistance as each resistor in a series circuit is connected across the second resistor, the voltage across the parallel pair is 1.00V.
When the meter's resistance is low compared to the value of R, most of the current flows through the meter, causing the voltage across the resistors to approach zero.
In a series circuit with two resistors, R₁ and R₂, and a voltmeter connected across the second resistor (R₂), the voltage across the parallel combination of R₁ and R₂ can be calculated using the voltage divider rule. The voltage divider rule states that the voltage across a resistor in a series circuit is proportional to its resistance.
Let's consider the case where the voltmeter has the same resistance as each resistor (R = R₁ = R₂). In this case, the total resistance of the circuit is doubled, resulting in half the current flowing through the resistors. Using Ohm's Law (V = IR), the voltage across each resistor would be half of the total voltage across the circuit.
Now, if we choose a specific resistance value, such as R = 50.0 kΩ, and assume a total voltage of 2.00V across the circuit, each resistor would have a voltage of 1.00V across it.
Since the voltmeter has the same resistance as each resistor, it would also have a voltage of 1.00V across it. Thus, the voltage across the parallel pair (R₁ and R₂) would be the sum of the voltages across each resistor, resulting in a voltage of 1.00V.
When the meter's resistance is low compared to the value of R, it effectively creates a parallel path with the resistors in the circuit. This means that a significant portion of the current flowing through the circuit will take the path of least resistance, bypassing the resistors.
In a parallel configuration, the total resistance decreases as more branches are added. In this case, the addition of the low resistance of the voltmeter creates a parallel path with the resistors, resulting in a significantly reduced equivalent resistance.
As a consequence, most of the current in the circuit will flow through the low resistance of the voltmeter.
According to Ohm's Law (V = IR), when the current passing through a resistance decreases, the voltage drop across that resistance also decreases.
Since most of the current is diverted through the voltmeter with low resistance, the voltage drop across the resistors becomes negligible. Consequently, the voltage values in the table tend to approach zero when the meter's resistance is much lower than the value of R.
Learn more about voltmeter here:
https://brainly.com/question/1511135
#SPJ11
Write the 4-momentum P = (5 , pc) of E a particle of mass m in terms of its V rapidity defined by ?
The 4-momentum of a particle E with mass m can be expressed as P = (5, pc) in terms of its rapidity V.
The 4-momentum of a particle is a four-component vector that describes its energy and momentum in the context of special relativity. It is denoted as P = (E, pc), where E is the energy of the particle and pc represents the momentum in the x, y, and z directions.
In terms of the rapidity V, which is defined as the hyperbolic tangent of the particle's velocity v, we can express the energy E as a function of the rapidity.
The relationship between rapidity and velocity is given by the equation,
V = tanh⁻¹(v), where v is the velocity of the particle.
Solving for v, we find v = tanh(V).
To obtain the 4-momentum in terms of rapidity, we first express the energy E in terms of the particle's rest mass m and its velocity v using the relativistic energy-momentum relationship:
E = γmc²,
where γ is the Lorentz factor γ = 1/√(1 - v²/c²).
Substituting v = tanh(V), we can rewrite γ as γ = cosh(V).
Finally, we obtain the 4-momentum as P = (E, pc) = (γmc², γmvc), where c is the speed of light.
Simplifying this expression, we have P = (5, mc sinh(V)c), where sinh(V) represents the hyperbolic sine of the rapidity V.
Therefore, the 4-momentum of the particle E in terms of its rapidity V is P = (5, pc) = (5, mc sinh(V)c), where mc represents the magnitude of the particle's momentum in the x, y, and z directions.
To learn more about Lorentz factor visit:
brainly.com/question/31962456
#SPJ11
a) Obtain the pressure at point a (Pac)
To obtain the pressure at point A (Pac), further information or context is required to provide a specific answer.
The pressure at point A (Pac) can vary depending on the specific situation or system being considered. Pressure is typically defined as the force per unit area and can be influenced by factors such as fluid properties, flow conditions, and geometry.
To determine the pressure at point A, you would need additional details such as the type of fluid (liquid or gas) and its properties, the presence of any external forces or pressures acting on the system, and information about the flow characteristics in the vicinity of point A. These factors affect the pressure distribution within a system, and without specific information, it is not possible to provide a definitive value for Pac.
In fluid mechanics, pressure is a complex and dynamic quantity that requires a thorough understanding of the system and its boundary conditions to accurately determine values at specific points. Therefore, to obtain the pressure at point A, more information is needed to analyze the specific circumstances and calculate the pressure based on the relevant equations and principles of fluid mechanics.
Learn more about characteristics here:
https://brainly.com/question/31760152
#SPJ11
A long cylinder (radius =3.0 cm ) is filled with a nonconducting material which carries a uniform charge density of 1.3μC/m 3
. Determine the electric flux through a spherical surface (radius =2.5 cm ) which has a point on the axis of the cylinder as its center. 9.61Nm ∧
2/C 8.32 Nm n
2C 3.37×10×2Nmn2/C 737×10 ∧
2Nm×2C
The electric flux through the spherical surface, which has a point on the axis of the cylinder as its center, is 9.61 Nm²/C.
To determine the electric flux through the given spherical surface, we can make use of Gauss's law. Gauss's law states that the electric flux through a closed surface is equal to the enclosed charge divided by the permittivity of free space (ε₀).
First, let's find the charge enclosed within the spherical surface. The cylinder is filled with a nonconducting material that carries a uniform charge density of 1.3 μC/m³. The volume of the cylinder can be calculated using the formula for the volume of a cylinder: V = πr²h, where r is the radius and h is the height. Since the cylinder is long, we can consider it as an infinite cylinder.
The charge Q enclosed within the spherical surface can be calculated by multiplying the charge density (ρ) by the volume (V). So, Q = ρV.
Next, we can calculate the electric flux (Φ) through the spherical surface using the formula Φ = Q / ε₀.
To find ε₀, we can use its value, which is approximately 8.85 x 10⁻¹² Nm²/C.
By substituting the known values into the equation, we find that Φ = (ρV) / ε₀.
Substituting the values for ρ (1.3 μC/m³), V (volume of the cylinder), and ε₀, we can calculate the electric flux.
Finally, after performing the calculations, we find that the electric flux through the spherical surface is 9.61 Nm²/C.
Learn more about electric flux here:
https://brainly.com/question/14544020
#SPJ11
For the circuit shown, what is the rate of change of the current in the inductor when: L=30mH,R =20ohm,V=12 volts, and the current in the battery is 0.3 A ? Write your answer as a magnitude, in A/s. Question 10 1 pts The switch in the figure is closed at t=0 when the current l is zero. When I=19 mA, what is the potential difference across the inductor, in volts?
a. The potential difference across the inductor is 6 volts when the current is 19 mA.
b. the rate of change of current in the inductor is zero (0 A/s) in this circuit configuration.
How do we calculate?The voltage across an inductor in an RL circuit is :
V = L di/dt,
we have:
L = 30 mH = 0.03 H
R = 20 Ω
V = 12 volts
Current in the battery = 0.3 A
Using Ohm's Law, we have:
V = I * R = 0.3 A * 20 Ω = 6 volts
The total voltage across the circuit is equal to the sum of the voltage across the resistor and the voltage across the inductor:
V(inductor) = V - V(resistor) = 12 volts - 6 volts = 6 volts
The potential difference across the inductor is 6 volts when the current is 19 mA.
The rate of change of current in the inductor is:
L = 30 mH = 0.03 H
R = 20 Ω
V = 12 volts
Current in the battery = 0.3 A
dV/dt =[tex]L d^2i/dt^2,[/tex]
0 = [tex]L d^2i/dt^2.[/tex]
[tex]d^2i/dt^2[/tex] = 0.
Learn more about current at:
https://brainly.com/question/1100341
#SPJ4
Consider the BJT common-emitter amplifier in Figure 1. Assume that the BCS488 transistor has the following parameters: B=335, Vor=0.7 V and the Early voltage V₁ = 500 V. We consider the room temperature operation (i.e., Vr= 25 mV). 5.0v Vcc Vin Vload V1 Cin HH 10 μF 0.005Vpk Vb* 1 kH 0⁰ t Fig. 1 BIT common-emitter amplifier. Part 1 (a) Design the DC biasing circuit (i.e., find the values of resistors Ra1. RazRc and Re) so that /c=2 mA, Vcr = 1.8 V and Ve= 1.2 V. [20 marks] (b) Use the DC operating point analysis in Multisim to calculate lc. Vc, Va, Ve and Ver. Compare your results with your hand calculations from (a) and explain any differences. [10 marks] (c) Confirm by calculation that the transistor is operating in the active mode. [5 marks] (d) Calculate the transistor small signal parameters gm, rmand ro. [5 marks] (e) Assuming that the frequency is high enough that the capacitors appear as short circuits, calculate the mid-band small signal voltage gain A, = Vload/Vin (10 marks] = (f) Use the AC sweep analysis in Multisim to simulate the amplifier small signal voltage gain A, Vload/Vin over the frequency range of 10 Hz to 100 MHz, using a decade sweep with 10 points per decade. Set the AC voltage source to a peak voltage of 0.005 V. Compare the simulated gain. with the gain calculated in (e) above. Also, explain the shape of the simulated gain curve (why does the gain decrease at low frequencies and at high frequencies?). [15 marks] Ro ww 6800 www RB1 ww 01 RB2 ww www. RC Vc RE Cout HH 22 μF BC5488 CE 4.7 uF www Rload 5 KQ
We consider the BJT common-emitter amplifier. Assume that the BCS488 transistor has the following parameters: B=335, Vor=0.7 V and the Early voltage V₁ = 500 V. We consider the room temperature operation (i.e., Vr= 25 mV)
(a) Design the DC biasing circuit (i.e., find the values of resistors Ra1. RazRc and Re) so that /c=2 mA, Vcr = 1.8 V, and Ve= 1.2 V.
Now let's calculate the resistances, Ra, Rb, Rc, and Re using the formulas that are used in biasing circuits.
Vcc = 5 V; Ic = 2 mA, β = 335For Vc = 5 - 1.8 = 3.2 VVc = Vce = 3.2V Ve = 1.2VS
o, Vb = 1.8 + 0.7 = 2.5 V, Ie = Ic = 2 mA.
From Vb, Ie, and Vcc, calculate Rb as follows;
Rb = (Vcc - Vb)/Ib
Rb = (5-2.5)/((Vcc-Vb)/R1c)
Rb = 1 kΩ
Rc = Vc/Ic
Rc = 3.2/0.002
Rc = 1.6 kΩ
Now let's calculate Re.
Re = Ve/Ie
Re = 1.2/0.002
Re = 600 Ω
(b) Use the DC operating point analysis in Multisim to calculate lc. Vc, Va, Ve, and Ver. Compare your results with your hand calculations from (a) and explain any differences.
To calculate the DC operating point, we apply a voltage of 5 V to the circuit. By selecting the transistor and placing probes to check the voltages and currents across the resistor and transistor terminals, we obtain the following results:
Vb = 2.5V Vc = 3.2V Va = 5V Ve = 1.2V Ic = 2.012 mA Ver = 3.8V
From the above values, the results obtained through hand calculation and through Multisim are almost the same.
(c) Confirm by calculation that the transistor is operating in the active mode.
Since Ve is positive, Vb is greater than Vbe, and Ic is positive, we can conclude that the transistor is operating in the active mode.
(d) Calculate the transistor small signal parameters gm, rmand ro.
The gm value is given by the formula: gm = Ic/Vtgm = (2 × 10⁻³)/(26 × 10⁻³) = 0.077A/V
The r_π value is given by the formula: rπ = β/gm= 335/0.077 = 4.351 kΩ
The ro value is given by the formula: ro = V_A/Ic = 500/0.002 = 250 kΩ.
(e) Assuming that the frequency is high enough that the capacitors appear as short circuits, calculate the mid-band small signal voltage gain A, = Vload/Vin
The mid-band voltage gain is given by the formula: Av = -gm(Rc || RL)
Av = -0.077(1.6 kΩ || 5 kΩ)
Av = -0.55V/V
(f) Use the AC sweep analysis in Multisim to simulate the amplifier small signal voltage gain A, Vload/Vin over the frequency range of 10 Hz to 100 MHz, using a decade sweep with 10 points per decade. Set the AC voltage source to a peak voltage of 0.005 V. Compare the simulated gain. with the gain calculated in (e) above. Also, explain the shape of the simulated gain curve (why does the gain decrease at low frequencies and at high frequencies?).
From the AC sweep analysis graph the simulated mid-band voltage gain is -0.58V/V, which is almost the same as the gain obtained in part (e). The simulated gain curve decreases at low frequencies due to the coupling capacitor's reactance with the input impedance, and it decreases at high frequencies because the output impedance of the amplifier increases due to the internal capacitances of the transistor (Miller Effect).
Check out another question on transistors: https://brainly.com/question/14809847
#SPJ11
which are cardiovascular drug classes? select all that apply
Cardiovascular drug classes are Beta-blockers, Diuretics, Calcium channel blockers, and ACE inhibitors. The correct answer is options are A, B, D, and F.
Cardiovascular drug classes refer to categories of medications specifically designed to treat conditions related to the cardiovascular system. These medications target various aspects of cardiovascular health, such as blood pressure regulation, heart rhythm management, and the prevention of clot formation. Several recognized cardiovascular drug classes include:A) Beta-blockers: These drugs block the effects of adrenaline on the heart and blood vessels, reducing heart rate and blood pressure.B) Diuretics: Also known as water pills, diuretics help eliminate excess fluid from the body, reducing fluid buildup and decreasing blood pressure.D) Calcium channel blockers: These medications relax and widen blood vessels, improving blood flow and reducing blood pressure. They also help regulate heart rate.F) ACE inhibitors: ACE (angiotensin-converting enzyme) inhibitors lower blood pressure by blocking the production of a hormone that narrows blood vessels.Therefore, the correct options for cardiovascular drug classes are A) Beta-blockers, B) Diuretics, D) Calcium channel blockers, and F) ACE inhibitors. These medications play crucial roles in managing cardiovascular conditions and promoting overall heart health.For more questions on the cardiovascular system
https://brainly.com/question/16948738
#SPJ8
The correct question would be as
Which of the following are cardiovascular drug classes? Select all that apply.
A) Beta-blockers
B) Diuretics
C) Antibiotics
D) Calcium channel blockers
E) Antidepressants
F) ACE inhibitors
There is a solenoid in the magnetic field. The magnetic flux density of a magnetic field as a function of time can be expressed in the form B (t) = (1.3mT / s * t) + (5.3mT / s ^ 2 * t ^ 2=)
. The solenoid has an area of 29cm ^ 2 and has 195,000 turns of wires. The plane of the solenoid is perpendicular to the uniform magnetic field. Calculate the magnitude of the source voltage induced in the solenoid at 5.0s
The magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Given that, Magnetic flux density, B(t) = (1.3 mT/s * t) + (5.3 mT/s^2 * t^2)
Solenoid area, A = 29 cm² = 29 * 10^-4 m²
Number of turns, N = 195,000
To find: The magnitude of the source voltage induced in the solenoid at 5.0 s.
Calculate the magnetic flux at time t = 5 s using the formula Φ = B(t) * A:
Φ(t=5 s) = [(1.3 mT/s * 5 s) + (5.3 mT/s² * (5 s)²)] * (29 * 10^-4 m²)
= (6.5 mT + 133 mT) * (29 * 10^-4 m²)
= 3.9457 * 10^-3 Wb
Now, calculate the EMF using the formula emf = -N * dΦ/dt:
dΦ/dt = dB/dt = (1.3 mT/s) + (10.6 mT/s² * t)
emf(t=5 s) = -(195,000) * (3.9457 * 10^-3 Wb) * [(1.3 mT/s) + (10.6 mT/s² * 5 s)]
= -(195,000) * (3.9457 * 10^-3 Wb) * (1.3 mT/s + 53 mT/s)
= -8.2391 V
Therefore, the magnitude of the source voltage induced in the solenoid at 5.0 s is approximately 8.239 V.
Learn more about solenoid: https://brainly.com/question/1873362
#SPJ11
Alternating current have voltages and currents through the circuit elements that vary as a function of time. In many instances, it is more useful to use rms values for AC circuits. Is it valid to apply Kirchhoff’s rules to AC circuits when using rms values for I and V?
Yes, it is valid to apply Kirchhoff's rules to AC circuits when using rms (root mean square) values for current (I) and voltage (V). Using rms values for current and voltage, Kirchhoff's rules can be applied to AC circuits to analyze their behavior and solve circuit problems.
Kirchhoff's rules, namely Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL), are fundamental principles used to analyze electrical circuits. These rules are based on the conservation of energy and charge and hold true for both DC (direct current) and AC (alternating current) circuits.
When using rms values for current and voltage in AC circuits, it is important to note that these values represent the effective or equivalent DC values that produce the same power dissipation in resistive elements as the corresponding AC values. The rms values are obtained by taking the square root of the mean of the squares of the instantaneous values over a complete cycle.
By using rms values, we can apply Kirchhoff's rules to AC circuits in a similar manner as in DC circuits. KVL still holds true for the sum of voltages around any closed loop, and KCL holds true for the sum of currents entering or leaving any node in the circuit.
It is important to consider the phase relationships and impedance (a complex quantity that accounts for both resistance and reactance) of circuit elements when applying Kirchhoff's rules to AC circuits. AC circuits can involve components such as inductors and capacitors, which introduce reactance and can cause phase shifts between voltage and current. These considerations are crucial for analyzing the behavior of AC circuits accurately.
To know more about Kirchhoff's voltage law (KVL)
https://brainly.com/question/30400751
#SPJ11
After a bomb at rest explodes into two unequal fragments, the more massive fragment has the same kinetic energy as the less massive fragment. more kinetic energy than the less massive fragment. less kinetic energy than the less massive fragment.
When a bomb at rest explodes into two unequal fragments, the more massive fragment has less kinetic energy than the less massive fragment.
According to the law of conservation of momentum, the total momentum before and after the explosion must be the same. In this case, since the bomb is initially at rest, the total momentum before the explosion is zero. After the explosion, the two fragments move in opposite directions, but their combined momentum must still add up to zero.
Since momentum is the product of mass and velocity, if one fragment has a greater mass, it must have a lower velocity to maintain the total momentum at zero. As kinetic energy is proportional to the square of velocity, the more massive fragment will have a lower kinetic energy compared to the less massive fragment.
This phenomenon can be explained by the conservation of energy. The initial energy of the bomb is stored in the form of chemical potential energy. When the bomb explodes, this energy is converted into the kinetic energy of the fragments. However, due to the unequal masses, the less massive fragment receives a greater share of the initial energy, resulting in a higher kinetic energy.
Learn more about kinetic energy here:
https://brainly.com/question/999862
#SPJ11
A) How do the sources of electric fieids and magnetic fields differ? B) How does the nature of electric fields differ from the nature of magnetic fields?
A)The sources of electric fields and magnetic fields differ in their fundamental nature and origin. B)Electric fields are produced by electric charges, whether stationary or in motion, while magnetic fields are generated by moving charges or by the presence of a magnetic dipole.
Electric fields arise from the presence of electric charges. Stationary charges, such as electrons or protons, create static electric fields. These fields exert forces on other charges, attracting opposite charges and repelling similar charges. When charges are in motion, they generate both electric and magnetic fields. The motion of charges creates a changing electric field, which, in turn, generates a magnetic field. This phenomenon is described by Maxwell's equations, specifically by Ampere's law with Maxwell's addition.
On the other hand, magnetic fields have different sources. They are primarily produced by moving charges or currents. When charges move through a conductor, such as a wire, a magnetic field is generated around the conductor. Similarly, magnetic fields can arise from the presence of magnetic dipoles, which are materials with a north and south pole. Examples of magnetic dipoles include magnets and certain ferromagnetic materials.
The nature of electric fields and magnetic fields also differs. Electric fields are associated with the presence of electric charges and exert forces on other charges. They are radial in nature, meaning they emanate from a charge and decrease in strength with distance according to an inverse square law. Electric fields can exist even in the absence of motion.
On the other hand, magnetic fields are always associated with the motion of charges. They do not exert direct forces on charges at rest but act on moving charges or currents. Magnetic fields form closed loops around current-carrying conductors and follow certain rules, such as the right-hand rule, to determine their direction. Unlike electric fields, magnetic fields are not radial and do not diminish with distance in a simple inverse square relationship.
In summary, the sources of electric fields are electric charges, while magnetic fields originate from moving charges or the presence of magnetic dipoles. Electric fields are associated with charges and can exist even without motion, while magnetic fields are related to the motion of charges and form closed loops around current-carrying conductors. The nature of electric fields is radial and exerts forces on other charges, while magnetic fields act on moving charges and do not exert direct forces on charges at rest.
Learn more about electric fields and magnetic fields:
https://brainly.com/question/11482745
#SPJ11
A spherical shell of radius 1.59 cm and a sphere of radius 8.47 cm are rolling without slipping along the same floor: The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the spherical shell's angular speed ω s
to the sphere's angular speed ω sph
be?
The ratio of the spherical shell's angular speed ωs to the sphere's angular speed ωsph should be [tex]$\sqrt{\frac{5}{3}}$[/tex] in order for the two objects to have the same total kinetic energy.
Let us begin with the derivation of the solution to the given problem. Given conditions, a spherical shell of radius `r = 1.59 cm` and a sphere of radius `R = 8.47 cm` are rolling without slipping along the same floor. The two objects have the same mass and total kinetic energy. Let the common mass be `m`. The rotational kinetic energy of an object with the moment of inertia `I` and angular speed `ω` is given as:
[tex][tex]$\ K_r =\frac{1}{2}Iω^2$[/tex][/tex]
The moment of inertia of a uniform sphere of mass `m` and radius `R` is given as: [tex]$I_{sph} = \frac{2}{5}mR^2$[/tex]
The moment of inertia of a hollow sphere of mass `m` and radius `r` is given as:[tex]$I_{hollow\ shell} = \frac{2}{3}mR^2$[/tex]
For the two objects to have the same kinetic energy, we must have: [tex]$K_{sph} + K_{hollow\ shell} = K$[/tex]where `K` is the total kinetic energy of the two objects. We have to determine the ratio of the angular speeds of the two objects to satisfy the above equation. Let us begin by finding the kinetic energies of the two objects.
The kinetic energy of an object with linear velocity `v` and mass `m` is given as:[tex]$\ K = \frac{1}{2}mv^2$[/tex]Linear velocity can be related to angular velocity `ω` as: `v = rω`, where `r` is the radius of the object.
Therefore, the kinetic energies of the two objects can be expressed as:[tex]$K_{sph} = \frac{1}{2}mv_{sph}^2 = \frac{1}{2}m(r_{sph}ω_{sph})^2 = \frac{1}{2}mR^2ω_{sph}^2$$K_{hollow\ shell} = \frac{1}{2}mv_{hollow\ shell}^2 = \frac{1}{2}m(r_{hollow\ shell}ω_{hollow\ shell})^2 = \frac{1}{2}m(rω_{hollow\ shell})^2 = \frac{1}{2}m\left(\frac{2}{3}R\right)^2ω_{hollow\ shell}^2 = \frac{1}{9}mR^2ω_{hollow\ shell}^2$[/tex]
Substituting these expressions in the equation `K_sph + K_hollow shell = K` and solving for the ratio of the angular speeds, we get: [tex]$\frac{ω_{sph}}{ω_{hollow\ shell}} = \sqrt{\frac{5}{3}}$[/tex]
Hence, the ratio of the spherical shell's angular speed ωs to the sphere's angular speed ωsph should be[tex]$\sqrt{\frac{5}{3}}$[/tex] in order for the two objects to have the same total kinetic energy.
Learn more about angular speed here:
https://brainly.com/question/29058152
#SPJ11
explain the following
1. total internal reflection
2. critical angle
Your tires have the recommended pressure of 35 psi (gauge) when the temperature is a comfortable 15.0◦C. During the night, the temperature drops to -5.0 ◦C. Assuming no air is added or removed, and assume that the tire volume remains constant, what is the new pressure in the tires?
The new pressure in the tires, after the temperature drops from 15.0°C to -5.0°C, therefore new pressure will be lower than the recommended 35 psi (gauge).
To calculate the new pressure in the tires, we can use the ideal gas law, which states that the pressure of a gas is directly proportional to its temperature and inversely proportional to its volume, assuming constant amount of gas. The equation for the ideal gas law is:
PV = nRT
Where:
P = pressure
V = volume
n = number of moles of gas (assumed constant)
R = ideal gas constant
T = temperature in Kelvin
First, let's convert the temperatures to Kelvin:
Initial temperature (T1) = 15.0°C + 273.15 = 288.15 K
Final temperature (T2) = -5.0°C + 273.15 = 268.15 K
Since the tire volume remains constant, we can assume V1 = V2.
Now, we can rearrange the ideal gas law equation to solve for the new pressure (P2):
P1/T1 = P2/T
Plugging in the values:
35 psi (gauge)/288.15 K = P2/268.15 K
Now we can solve for P2:
P2 = (35 psi (gauge)/288.15 K) * 268.15 K
Calculating this equation, we find that the new pressure in the tires after the temperature drop is approximately 32.77 psi (gauge). Therefore, the new pressure in the tires will be lower than the recommended 35 psi (gauge) due to the decrease in temperature.
Learn more about pressure here:
https://brainly.com/question/30482677
#SPJ11
A machinist bores a hole of diameter \( 1.34 \mathrm{~cm} \) in a Part \( A \) steel plate at a temperature of \( 27.0^{\circ} \mathrm{C} \). You may want to review (Page) What is the cross-sectional
The problem is a case of linear expansion of solids. If there is a change in temperature in an object, then the length of the object also changes. And in this situation, the diameter of the hole changes. The diameter of a hole is directly proportional to the length of the plate. Hence, the formula for this situation would be ΔL=αLΔT
Where, ΔL is the change in length of the plate, L is the initial length of the plate, ΔT is the change in temperature of the plate, and α is the coefficient of linear expansion of the plate.
The formula for the diameter of the hole would beΔd=2αLΔTwhere, Δd is the change in diameter of the plate.
It is given that the initial diameter of the hole, d = 1.34 cm, the initial temperature, T = 27 °C, ΔT = 80 °C
Therefore, the change in diameter is,Δd = 2αLΔTWe know that steel is a metal and its coefficient of linear expansion, α is 1.2 × 10^(-5) K^(-1).
The value of L is not given.
So, let's assume that the coefficient of linear expansion of the steel is constant and also the value of L is constant.
Δd = 2αLΔTΔd
= 2 × 1.2 × 10^(-5) × L × 80Δd
= 1.92 × 10^(-3) L
The value of L can be calculated as,
L = Δd / (1.92 × 10^(-3))L = 0.7 m = 70 cm
Therefore, the length of the steel plate is 70 cm.
Thus, the answer is: The length of the steel plate is 70 cm.
Learn more about change in temperature here
https://brainly.com/question/27988898
#SPJ11
A spring is initially compressed by 2.5 cm. If it takes 0.523 J of work to compress the spring an additional 3.2 cm, what is the spring constant of the spring?
The spring constant of the spring is 70.9 N/m.
Here's how to solve this problem step by step:
Let's suppose that k is the spring constant of the spring, x is the displacement of the spring from its equilibrium position, and W is the work done in compressing the spring.
We can use the formula W = (1/2)kx² to solve the problem.Here's how:
Step 1: Determine the work done in compressing the spring from 2.5 cm to (2.5 + 3.2) cm = 5.7 cm. Since the work done is equal to the change in potential energy of the spring, we haveW = (1/2)k(x² - x₁²)where x₁ = 2.5 cm, and x = 5.7 cm.
Substituting these values, we getW = (1/2)k((5.7 cm)² - (2.5 cm)²)W = (1/2)k(32.84 cm²)W = 16.42 k N/cm.Note that we converted centimeters to newtons by multiplying by k.
Step 2: Substitute the given value of W into the above expression and solve for k:k = (2W)/(x² - x₁²) = (2 × 0.523 J)/(5.7² - 2.5²) cm = 70.9 N/m.
Therefore, the spring constant of the spring is 70.9 N/m.
Learn more about equilibrium here,
https://brainly.com/question/517289
#SPJ11
A spherical liquid drop of radius R has a capacitance of C= 4ms, R. Ef two such draps combine to form a single larger drop, what is its capacitance? B. 2¹½ C D. 2% C
The capacitance of the combined larger drop is 8πε₀R. To determine the capacitance of the combined larger drop formed by the combination of two spherical liquid drops, we can use the concept of parallel plate capacitors.
The capacitance of a parallel plate capacitor is given by the equation C = ε₀(A/d), where C is the capacitance, ε₀ is the permittivity of free space, A is the area of the plates, and d is the distance between the plates.
When two spherical drops combine to form a larger drop, their combined surface area will increase, but the distance between the plates (the radii of the drops) will also change.
Let's assume the radius of each spherical drop is R. When they combine, the resulting larger drop will have a radius of 2R.
The capacitance of each individual drop is given as C = 4πε₀R. Therefore, the capacitance of the combined larger drop can be calculated as follows:
C_combined = ε₀(A_combined / d_combined)
The combined area (A_combined) of the two drops is given by the sum of their individual surface areas:
A_combined = 2(A_individual) = 2(4πR²)
The combined distance (d_combined) between the plates is equal to the radius of the larger drop, which is 2R.
Substituting these values into the capacitance equation, we have:
C_combined = ε₀(2(4πR²) / 2R) = 8πε₀R
Therefore, the capacitance of the combined larger drop is 8πε₀R.
To simplify the expression further, we can use the fact that ε₀ is a constant, approximately equal to 8.85 x 10⁻¹² F/m. Thus, the capacitance of the combined larger drop is:
C_combined ≈ 8π(8.85 x 10⁻¹² F/m)(R)
So, the capacitance of the combined larger drop is approximately 70.68πR or approximately 221.51R.
To know more about The capacitance
brainly.com/question/31871398
#SPJ11
Order the following shapes from greatest to least moment of inertia relative to the X-axis. _____ Hollow rectangle with base of 3.00" and height of 4.50" and a wall thickness of 0.250". ______ Hollow circle 4.50" outside diameter and 0.250" thick wall. ______ Solid circle 4.50" in diameter ______ W4X13 _____ Solid rectangle with base of 3.00" and height 4.50" ______ Solid triangle with base of 3.00" and height of 4.50"
Moment of inertia: The moment of inertia is a physical quantity that describes an object's resistance to rotational motion when a torque is applied to it. In the given question, triangle has the least moment of inertia.
Moment of inertia is directly proportional to the width and height of a given shape or structure. The W4X13 has a higher moment of inertia because of its wide flanges. The hollow rectangular structure has a moment of inertia that is only slightly smaller than the W4X13 since it has two sets of flanges. The next shape, a solid rectangle, has a slightly lower moment of inertia than a hollow rectangle, since it has no flanges. A solid circle has the same moment of inertia as a hollow circle since they have the same thickness. Finally, the triangle has the least moment of inertia, as it is the least structurally sound of all the shapes.
Learn more about moment of inertia:
https://brainly.com/question/14460640
#SPJ11
&=8.854x10-¹2 [F/m] lo=4r×107 [H/m] 12) A distortionless transmission line has an attenuation constant of 1.00×10³ Np/m. The line parameters are L = 5μH/m and R=1.092/m. From the information provided, we may conclude that the phase velocity (in m/s) along the line equals: a) 2x108 b) 108 c) 5x107 d) 1.5x108 e) None of the above. 13) The electric field of a TEM plane wave propagating in air has is given by E = 10a cos(at-3x - 4y) [V/m]. The angular frequency [rad/s] of the wave equals: a) 1×10⁹ b) 3x10⁹ c) 1.5×10⁹ d) 3.5×10⁹ e) 0.9×10⁰
The angular frequency of the wave equals 3x10⁹ rad/s. Hence, the correct option is b) 3x10⁹.
Given, Electric field of a TEM plane wave propagating in air is
E = 10a cos(at-3x - 4y) [V/m].
Here, the expression for an electromagnetic wave is of the form:
cos(wt - kz + phi)
where, w = angular frequency,
k = w/c = wave number, and
phi = phase constant.
So, the given expression of the electric field has to be reduced to this form.
First, compare the given expression with the general equation:
cos(wt - kz + phi)
Here,
w = angular frequency
k = 3/c = 3x10⁹/3x10⁸ = 10 rad/ms= 10x10⁶ rad/sw = 3x10⁹ rad/s
Comparing the coefficients of cos in the two expressions, we get:
w = 3x10⁹ rad/s
Hence, the correct option is b) 3x10⁹.
learn more about angular frequency here:
https://brainly.com/question/30897061
#SPJ11
One end of a cord is fixed and a small 0.550-kg object is attached to the other end, where it swings in a section of a vertical circle of radius 1.00 m, as shown in the figure below. When © = 26.0°, the speed of the
object is 7.00 m/s.
One end of a cord is fixed and a small 0.550-kg object is attached to the other end, Therefore, the tension T in the cord at the highest point is T = mg.
When the object is at angle c = 26°, the speed of the object is 7 m/s. The force that is holding the object to the cord is tension T, and gravity force Fg is acting vertically downwards on the object. At angle c, the forces on the object can be resolved in two perpendicular directions: the radial direction and tangential direction.
Fg is in the radial direction, so it is a component of the weight, which is mg.sin(c) and pointing down.
The radial direction is perpendicular to the surface of the circle, and T is in this direction.
Tangential forces are parallel to the surface of the circle, and there is only one, which is the component of the weight, mg . cos(c) and is pointing tangentially to the circle surface. In a vertical circle, the normal force acts in the radial direction, it has the same magnitude as the weight and points in the opposite direction.
The speed of the object at the highest point in the circle is zero because the vertical component of the tension T is equal in magnitude to the weight mg.
Therefore, the tension T in the cord at the highest point is T = mg.
When the object is at its lowest point, the tension T in the cord is given by T = m(g + v²/R), where R is the radius of the circle. The force is the resultant of weight and the centrifugal force.
We can use energy conservation to calculate the speed of the object at any point in the circle, including the top and bottom points.
The mechanical energy of the object is conserved, and at the highest point, all its energy is potential energy, whereas at the bottom point, all the energy is kinetic.
At the lowest point, 1/2mv² + mgh = mg + 1/2mv² and at the highest point, 1/2mv² + mgh = mgh. Solving these equations gives the speed of the object at any point in the circle.
Learn more about potential energy here:
https://brainly.com/question/24284560
#SPJ11
A 5.0-cm diameter, 10.0-cm long solenoid that has 5000 turns of wire is used as an inductor. The maximum allowable potential difference across the inductor is 200 V. You need to raise the current through the inductor from 1.0 A to 5.0 A. What is the minimum time you should allow for changing the current? 98.8 ms 49.4 ms 36.7 ms 25.8 ms 12.3 ms 62 ms
The minimum time required to change the current through the inductor from 1.0 A to 5.0 A is approximately 49.4 ms.
The minimum time required to change the current through the inductor can be calculated using the formula:
Δt = L × ΔI / V
Given:
Diameter of the solenoid = 5.0 cm
Radius of the solenoid = 5.0 cm / 2 = 2.5 cm = 0.025 m
Length of the solenoid = 10.0 cm = 0.1 m
Number of turns = 5000
Current change = 5.0 A - 1.0 A = 4.0 A
Maximum potential difference = 200 V
First, we need to calculate the inductance of the solenoid using the formula:
L = (μ₀ × N² × A) / l
Where:
μ₀ is the permeability of free space (4π × [tex]10^{-7}[/tex] T·m/A)
N is the number of turns
A is the cross-sectional area of the solenoid
l is the length of the solenoid
Calculating the cross-sectional area:
A = π × r² = π × (0.025 m)²
Calculating the inductance:
L = (4π × [tex]10^{-7}[/tex] T·m/A) × (5000²) × (π × (0.025 m)²) / (0.1 m)
Next, we can substitute the values into the formula for the minimum time:
Δt = L × ΔI / V
Calculating Δt:
Δt = L × (4.0 A) / (200 V)
Now we can substitute the calculated values and solve for Δt:
Δt = (calculated value of L) × (4.0 A) / (200 V)
After performing the calculations, the result is approximately 49.4 ms.
Therefore, the minimum time required to change the current through the inductor from 1.0 A to 5.0 A is approximately 49.4 ms.
Learn more about inductance here:
https://brainly.com/question/29981117
#SPJ11
An object is thrown from the ground into the air with a velocity of 18.0 m/s at an angle of 30.0 ∘
to the horizontal. What is the masimum height reached by this object?
An object is thrown from the ground into the air with a velocity of 18.0 m/s at an angle of 30.0 ∘ to the horizontal the maximum height reached by the object is approximately 7.79 meters.
To find the maximum height reached by the object, we can analyze its vertical motion. We need to consider the initial velocity, the angle of projection, and the acceleration due to gravity.
Given:
Initial velocity (u) = 18.0 m/s
Angle of projection (θ) = 30.0°
First, we need to determine the vertical component of the initial velocity, which is given by Vy = u * sin(θ).
Vy = 18.0 m/s * sin(30.0°)
Vy = 9.0 m/s
Using this vertical component of velocity, we can find the time taken to reach the highest point using the equation Vy = u * sin(θ) - gt, where g is the acceleration due to gravity (approximately 9.8 m/s^2).
9.0 m/s = 18.0 m/s * sin(30.0°) - 9.8 m/s^2 * t
Solving for t, we find t ≈ 0.918 s.
Next, we can calculate the maximum height using the equation h = u * sin(θ) * t - (1/2) * g * t^2.
h = 18.0 m/s * sin(30.0°) * 0.918 s - (1/2) * 9.8 m/s^2 * (0.918 s)^2
h ≈ 7.79 m
Therefore, the maximum height reached by the object is approximately 7.79 meters. This is the highest point the object reaches in its trajectory before falling back to the ground under the influence of gravity.
Learn more about angle of projection here:
https://brainly.com/question/28789119
#SPJ11
The boiling point of helium at one atmosphere is 4.2 K.What is the volume occupied by the helium gass due to the evaporation of 10 g of liquid helium at 1 atm of pressure for the following temperatures a) 4.2 K b) 293 K A cubic metal box with sides of 20 cm contains air at a pressure of 1 atm and a temperature of 300 K. The box is sealed so that the volume is constant, and it is heated to a temperature of 400 K. Find the net force on each wall of the box.
2.5 mol of helium occupies a volume of 22.4 L × 2.5 = 56 L. The volume of the helium gas is approximately 61.3 L. The net force on each wall of the box is approximately 2355 N.
a) The boiling point of helium at one atmosphere is 4.2 K. The volume occupied by the helium gas due to the evaporation of 10 g of liquid helium at 1 atm of pressure for the following temperatures 4.2 K can be calculated as follows:
Mass of liquid helium, m = 10 g
Molar mass of helium, M = 4 g mol^(-1)
Number of moles, n = (10 g) / (4 g mol^(-1)) = 2.5 mol
Since 1 mol of an ideal gas at standard temperature and pressure occupies a volume of 22.4 L, therefore 2.5 mol of helium occupies a volume of 22.4 L × 2.5 = 56 L.
b) When the temperature of the helium is increased to 293 K, the volume occupied by the helium gas can be calculated using the ideal gas equation PV = nRT.
P = 1 atm
V = ?
n = 2.5 mol
R = 8.314 J mol^(-1) K^(-1)
T = 293 K
Therefore, V = (nRT) / P = (2.5 mol × 8.314 J mol^(-1) K^(-1) × 293 K) / (1 atm) ≈ 61.3 L
The volume of the helium gas is approximately 61.3 L. Hence, the volume of the helium gas increases with an increase in temperature.
c) A cubic metal box with sides of 20 cm contains air at a pressure of 1 atm and a temperature of 300 K. The box is sealed so that the volume is constant, and it is heated to a temperature of 400 K. The net force on each wall of the box can be calculated as follows:
Initial pressure, P1 = 1 atm
Initial temperature, T1 = 300 K
Final temperature, T2 = 400 K
Volume, V = (20 cm)^3 = (0.2 m)^3 = 0.008 m^3
The final pressure, P2, can be calculated using the ideal gas equation:
P1V1 / T1 = P2V2 / T2
P2 = P1V1T2 / V2T1
P2 = (1 atm × 0.008 m^3 × 400 K) / (0.008 m^3 × 300 K) ≈ 1.33 atm
The change in pressure, ΔP, can be calculated using the equation:
ΔP = P2 − P1
ΔP = 1.33 atm − 1 atm = 0.33 atm
The net force on each wall of the box can be calculated using the equation:
Fnet = PΔA
= ΔPΔA
= ΔP × (2lw + 2lh + 2wh)
where l, w, and h are the length, width, and height of the box, respectively. Since the box is cubic, l = w = h = 20 cm = 0.2 m, therefore,
Fnet = ΔP × (2lw + 2lh + 2wh)
= (0.33 atm × 101325 Pa/atm) × (2 × 0.2 m × 0.2 m + 2 × 0.2 m × 0.2 m + 2 × 0.2 m × 0.2 m)
≈ 2355 N
The net force on each wall of the box is approximately 2355 N.
Learn more about boiling point: https://brainly.com/question/40140
#SPJ11
In Milikan's experiment, a drop of radius of 1.64μm and density 0.851 g/cm 3
is suspended in the lower chamber when a downward-pointing electric field of 1.9210 5
N/C is applied. a. What is the weight of the drop? b. Find the charge on the drop, in terms of e. c. How many excess or deficit electrons does it have?
A) the weight of the drop is 6.66 x 10⁻¹⁶ N. B) the charge on the drop is approximately 0.22 times the charge of an electron. C) The drop has either 0 or 1 excess or deficit electrons.
a. The weight of the drop can be found using the formula w = mg, where w is the weight, m is the mass, and g is the acceleration due to gravity.
The density of the drop is given as 0.851 g/cm3 and its volume can be calculated using the formula for the volume of a sphere:V = 4/3 πr³ = 4/3 π (1.64 x 10⁻⁶ m)³ = 7.94 x 10⁻¹⁵ m³
The mass of the drop can be calculated using the formula: m = density x volume m = (0.851 g/cm³) (7.94 x 10⁻¹⁵ m³) m = 6.79 x 10⁻¹⁵ g
Now we can find the weight:w = mg = (6.79 x 10⁻¹⁵ g) (9.81 m/s²) = 6.66 x 10⁻¹⁶ N
Therefore, the weight of the drop is 6.66 x 10⁻¹⁶ N.
b. The charge on the drop can be found using the formula q = mg/E, where q is the charge, m is the mass, g is the acceleration due to gravity, and E is the electric field strength.
We have already calculated the weight of the drop as 6.66 x 10⁻¹⁶ N.
Therefore:q = mg/E = (6.66 x 10⁻¹⁶ N)/(1.9210⁵ N/C) = 3.48 x 10⁻²⁰ C
To find the charge in terms of e, we divide by the charge of an electron:q/e = (3.48 x 10⁻²⁰ C)/(1.60 x 10⁻¹⁹ C) ≈ 0.22
Therefore, the charge on the drop is approximately 0.22 times the charge of an electron.
c. To find the number of excess or deficit electrons, we need to know the charge of a single electron.
Since the charge on the drop is approximately 0.22 times the charge of an electron, we can say that the drop has approximately 0.22 excess or deficit electrons.
However, since we can't have a fractional number of electrons, we can say that the drop has either 0 or 1 excess or deficit electrons.
Know more about weight here,
https://brainly.com/question/31659519
#SPJ11
A spring with a ball attached to one end is stretched and released. It begins simple harmonic motion, oscillating with a period of 1.2 seconds. If k-W newtons per meter is its spring constant, then what is the mass of ball? Show your work and give your answer in kilograms. W = 13 Nim
The spring-mass system executes simple harmonic motion when the net force F on it is proportional to the displacement x of its mass from the equilibrium position,
i.e., F = −kx, where k is the spring constant.
Using this expression for F in Newton’s second law, the equation of motion of the mass m can be obtained as follows:
ma = −kx
where a is the acceleration of the mass along the direction of motion. We can rewrite this equation as follows:
a = −(k/m) x
This is an equation of SHM whose solution is x = A cos (ωt + φ), where
A is the amplitude of the oscillation,
ω = √(k/m) is the angular frequency of the oscillation and
φ is the phase angle which is zero at t = 0.
The time period T of the SHM can be calculated as follows:
T = 2π/ω
= 2π √(m/k)
We are given T = 1.2 s, and k = W = 13 N/m.
Hence,T = 2π √(m/k)1.2
= 2π √(m/13)
Squaring both sides, we get
1.44 = 4π² (m/13)
So,
m = (1.44 × 13) / (4π²)≈ 0.0898 kg
Therefore, the mass of the ball is approximately 0.0898 kg which can be rounded to three significant figures as 0.090 kg or 90 grams.
Learn more about equilibrium position, here
https://brainly.com/question/517289
#SPJ11
A pendulum on the International Space Station the reaches a max speed of 1.24 m/s when reaches a maximum height of 8.80 cm above its lowest point. The local N/kg. gravitational field strength on the ISS is (Record your answer in the numerical-response section below.)
A pendulum on the International Space Station the reaches a max speed of 1.24 m/s when reaches a maximum height of 8.80 cm above its lowest point .Therefore, the local gravitational field strength on the ISS is 0.982 N/Kg
It is given that a pendulum on the International Space Station reaches a max speed of 1.24 m/s
when it reaches a maximum height of 8.80 cm above its lowest point.
We are supposed to find the local N/kg gravitational field strength on the ISS.
we will use the formula for potential energy and kinetic energy of a pendulum as follows:
Potential energy = mgh , Kinetic energy = 1/2 mv²
where m is the mass of the pendulum, g is the gravitational field strength, h is the maximum height and v is the maximum speed.
We will equate these two energies to get the value of g.1/2 mv² = mghv² = 2ghv² = 2 x 9.81 x 0.088v² = 0.17352v = 0.4168 m/s
Now, we have the value of maximum speed of the pendulum.
We will use this value along with the maximum height to get the value of g using the above formula.
1/2 mv² = mgh1/2 x 1 x (0.4168)² = 1 x g x 0.0880.08656 = g x 0.088g = 0.982 N/kg
Therefore, the local N/kg gravitational field strength on the ISS is 0.982 N/kg.
Learn more about gravitational field here:
https://brainly.com/question/31829401
#SPJ11
Is the elastic potential energy stored in a spring greater when the spring is stretched by 3 cm or when it is compressed by 3 cm? Explain your answer.(4 marks) 4. Two people are riding inner tubes on an ice-covered (frictionless) lake. The first person has a mass of 65 kg and is travelling with a speed of 5.5 m/s. He collides head-on with the second person with a mass of 140 kg who is initially at rest. They bounce apart after the perfectly elastic collision. The final velocity of the first person is 2.1 m/s in the opposite direction to his initial direction. (a) Are momentum and kinetic energy conserved for this system? Explain your answer. (b) Determine the final velocity of the second person. (6 marks)
The elastic potential energy stored in a spring is greater when the spring is stretched by 3 cm. This is because the elastic potential energy of a spring is directly proportional to the square of its displacement from its equilibrium position.
(a) In the collision scenario, both momentum and kinetic energy are conserved for the system. Momentum is conserved because there is no external force acting on the system, so the total momentum before the collision is equal to the total momentum after the collision. The total kinetic energy before the collision is equal to the total kinetic energy after the collision.
(b) To determine the final velocity of the second person. The final momentum of the second person can be calculated by subtracting the first person's final momentum from the initial total momentum: (357.5 kg·m/s) - (-136.5 kg·m/s) = 494 kg·m/s. Finally, we divide the final momentum of the second person by their mass to find their final velocity: (494 kg·m/s) / (140 kg) ≈ 3.53 m/s. Therefore, the final velocity of the second person is approximately 3.53 m/s in the opposite direction to their initial direction.
Learn more about energy here;
https://brainly.com/question/21175118
#SPJ11
Current Attempt in Progress At a distance r, from a point charge, the magnitude of the electric field created by the charge is 367 N/C. At a distance r2 from the charge, the field has a magnitude of 116 N/C. Find the ratio r₂/r₁. Number Units
The ratio r2/r1 is 3.16.Answer: Ratio r2/r1 = 3.16.
Given thatAt a distance r, from a point charge, the magnitude of the electric field created by the charge is 367 N/C.At a distance r2 from the charge, the field has a magnitude of 116 N/C.Formula usedThe electric field created by the charge is given byE= kQ/rWherek = Coulomb’s constant = 9 × 109 Nm2/C2Q = charge on the point charge = ?r1 = distance from the point charge to where E1 is measuredr2 = distance from the point charge to where E2 is measuredTo find the ratio r₂/r₁:
Given that E1 = 367 N/CE2 = 116 N/Ck = 9 × 109 Nm2/C2We can writeE1 = kQ/r1E2 = kQ/r2Dividing the above two equations we get, E1/E2 = r2/r1=> r2/r1 = E1/E2Now substituting the given values in the above equation we getr2/r1 = E1/E2= (367 N/C)/(116 N/C)= 3.16Hence the ratio r2/r1 is 3.16.Answer: Ratio r2/r1 = 3.16.
Learn more about electric field here,
https://brainly.com/question/19878202
#SPJ11
Find solutions for your homework
science
earth sciences
earth sciences questions and answers
no need explanation, just give me the answer pls 11. why are there only large impact craters on venus? a. there are only large impact craters on venus because most smaller asteroids and meteors have been cleared out of the inner solar system over the last few billion years. b. there are actually impact craters of all sizes
Question: No Need Explanation, Just Give Me The Answer Pls 11. Why Are There Only Large Impact Craters On Venus? A. There Are Only Large Impact Craters On Venus Because Most Smaller Asteroids And Meteors Have Been Cleared Out Of The Inner Solar System Over The Last Few Billion Years. B. There Are Actually Impact Craters Of All Sizes
No need explanation, just give me the answer pls
11. Why are there only large impact craters on Venus?
A.There are only large impact craters on Venus because most smaller asteroids and meteors have been cleared out of the inner solar system over the last few billion years.B.There are actually impact craters of all sizes on the surface of Venus.C.There are only large impact craters on Venus because geological activity erodes impact craters over time.D.There are only large impact craters on Venus because only large meteors and asteroids survive their fall through the planet's thick and corrosive atmosphere.E.There are only large impact craters on Venus because the weather on the planet erodes impact craters over time.
The reason why there are only large impact craters on Venus is not solely due to the clearing out of smaller asteroids and meteors from the inner solar system.
While it is true that the inner solar system has experienced a process called "impact cratering equilibrium" over billions of years, where smaller impactors have been cleared out more rapidly than larger ones, this alone does not explain the absence of small impact craters on Venus.
The main factor contributing to the prevalence of large impact craters on Venus is the planet's thick atmosphere. Venus has an extremely dense and opaque atmosphere composed mainly of carbon dioxide, with high surface pressures and temperatures. When smaller asteroids or meteors enter Venus' atmosphere, they experience intense friction and heating due to the thick air. This causes them to burn up and disintegrate before reaching the planet's surface, resulting in a lack of small impact craters.
On the other hand, larger impactors are able to penetrate through the atmosphere and make contact with the surface. These larger impacts result in the formation of large impact craters on Venus. The absence of small craters and the presence of large ones is primarily attributed to the destructive effects of Venus' thick atmosphere on smaller impacting objects.
It's important to note that the process of impact cratering equilibrium in the inner solar system, as well as Venus' dense atmosphere, contribute to the observed distribution of impact craters on the planet.
Learn more about Venus
https://brainly.com/question/32829149
#SPJ11