Answer:
interior angle (2)= 70
interior angle (3)= 60
Step-by-step explanation:
Given:
exterior angle=120°
interior angle (1)=50°
Required:
interior angle (2)=?
interior angle (3)=?
Formula:
exterior angle=interior angle (1) + interior angle (2)
Solution:
exterior angle=interior angle (1)+ interior angle (2)
120°=50°+interior angle (2)
120°+50°=interior angle (2)
70°=interior angle (2)
interior angle (3)= 180°-interior angle (1)- interior angle (2)
interior angle (3)=180°-50°+70°
interior angle (3)=180°-120°
interior angle (3)= 60°
Theorem:
Theorem 1.16
The measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles.
Hope this helps ;) ❤❤❤
A compressive uniform stress distributed on a rectangular areas of sides. located on the two opposite vertical/radial faces of step. If Force = 1.87kN and stress = 0.987MPa calculate the h * t in m^2
Answer:
Area = 0.019 m²
Step-by-step explanation:
stess = applied Force over Area
since stress = 0.987 MPa
and the force = 1.87 Kn
then Area = h * t
Q = F / (h * t)
0.987 mPa = 1.87 kN / (h* t)
since h * t = Area then 1.87 / 0.987
Area = 1.89 x 0.01 =
Area = 0.019 m²
Please help!! Need help with Geometry! Would really appreciate it!!
Answer:
The answer is the first one
Step-by-step explanation:
The rays are: XW, ZY
The lines are: XZ
Rays are with one endpoint and one side that goes forever (aka and arrow).
A line has no endpoint going on forever in both directions.
Answer:
The first one
Step-by-step explanation:
Since a line is an infinite object, with no starting or ending point we symbolize it by an arrow over two points that belong to this line:
[tex]\line{XY}[/tex]
A ray, on the other hand has a starting point and no ending point.
So, in the picture we have a pair of rays, with common points to the line XY
Namely:
XW e ZY
At noon a passenger train leaves the Dupont Railway station and travels due east for 2 hours. At 12:45 pm the same day a second passenger train leaves the same railway station and travels due west for 1 hour and 15 minutes at a speed 10 kilometers per hour slower than the first passenger train. At 2pm the two trains were 215 kilometers apart. How fast had each train been traveling
Answer:
The speed of the first train is 70 km/hr
The speed of the second train is 60 km/hr
Step-by-step explanation:
For the first train:
Travel time = 2 hours
The speed = ?
we designate the speed as V
For the second train:
The travel time = 1 hr 15 min = 1.25 hrs (15 minutes = 15/60 hrs)
speed = 10 km/hr slower than that of the first train, we can then say
the speed = V - 10
The total distance traveled by both trains in the opposite direction of one another is 215 km
we can put this problem into an equation involving the distance covered by the trains.
we know that distance = speed x time
the distance traveled by the first train will be
==> 2 hrs x V = 2V
the distance traveled by the second train will be
==> 1.25 hrs x (V - 10) = 1.25(V - 10)
Equating the above distances to the total distance between the trains, we'll have
2V + 1.25(V - 10) = 215
2V + 1.25V - 12.5 = 215
3.25V = 215 + 12.5
3.25V = 227.5
V = 227.5/3.25 = 70 km/hr this is the speed of the first train
Recall that the speed of the second train is 10 km/hr slower, therefore
speed of the second train = 70 - 10 = 60 km/hr
The speed of the trains are 70km/hr and 60km/hr respectively.
The distance of the first train will be represented by: = 2 × D = 2D
The distance of the second train will be represented by: = 1.25 × (D - 10) = 1.25(D - 10).
Based on the information given in the question, the equation to solve the question will be:
2D + 1.25(D - 10) = 215
Collect like terms
2D + 1.25D - 12.5 = 215
3.25D = 215 + 12.5
3.25D = 227.5
D = 227.5/3.25
D = 70km/hour
The speed of the second train will be:
= 70 - 10 = 60km per hour.
Read related link on:
https://brainly.com/question/24720712
Suppose that the local sales tax rate is 6% and you purchase a computer for $1260.
a. How much tax is paid?
b. What is the computer’s total cost?
Answer:
a. $75.60
b. $1335.60
Step-by-step explanation:
A. First convert the percentage to a decimal.
6% = 0.06
Multiply the cost of the computer by the decimal to find the tax paid.
$1260 × 0.06 = $75.60
B. To find the total cost, add the cost of the computer with the tax.
$1260 + $75.60 = $1335.60
What is x in this Math problem 2/3x=27
Answer: x = 40.5
Step-by-step explanation:
Simply divide 27/(2/3) to get 40.5
Hope it helps <3
Answer:
x= 40.5
Step-by-step explanation:
We want to find out what x is. Therefore, we must get x by itself on one side of the equation.
2/3x= 27
2/3 and x are being multiplied. The inverse of multiplication is division. Divide both sides of the equation by 2/3.
2/3x / 2/3 = 27/ 2/3
When dividing by a fraction, you can also multiply by the reciprocal of the fraction.
To find the reciprocal, flip the numerator (top number) and denominator( bottom number)
2/3 —> 3/2
Multiply both sides of the equation by 3/2
2/3x *3/2 = 27*3/2
x= 27*3/2
x= 27/1*3/2
x= (27*3)/(1*2)
x= 81/2
x= 40.5
Please solve this problem in a statement reason setup.
Step-by-step explanation:
Statement: ∠O ≅ ∠O
Reason: Reflexive property
Statement: m∠OKW = 90° − m∠O
Reason: Complementary angles
Statement: m∠OJP = 90° − m∠O
Reason: Complementary angles
Statement: m∠OKW = m∠OJP
Reason: Substitution
Statement: ∠OKW ≅ ∠OJP
Reason: Definition of congruent angles
Statement: ΔOKW ~ ΔOJP
Reason: AA similarity
Show that between any two terminating decimals ,there is another terminating decimal
Answer:
1.5+1.7/2=1.6
Step-by-step explanation:
select the fraction equivalent of 0.06. reduce to the lowest terms
Answer: 3/50
Step-by-step explanation:
0.06 = 6/100 , 100 would be the denominator because we have two figures after the decimal point. Each figures can also be represented by 10,
Again,
0.06 = 6 × 10-²
Now 0.06 = 6/100
= 3/50.
Therefore, the fractional form = 3/50 in its lowest term.
John needs to produce a scale diagram of a bedroom using a scale of 1:40. The length of the room is 3.4 metres. What is the length on the diagram? _____ cm
Answer:
8.5cm
Step-by-step explanation:
convert 3.4metres to cm that is by multiplying by 100
3.4×100=340cm
1rep 40
?rep 340
that is 340/40
=8.5cm
Answer:
8.5 cm
Step-by-step explanation:
Scale = 1:40
Length of the room = 3.4 meters
3.4 meters =3.4 X 100 =340 cm
Since 1 unit on the diagram represents 40 units
The length of the diagram
[tex]=\dfrac{340}{40}\\\\=8.5$ cm[/tex]
The length of the room on the diagram is 8.5 cm.
Find the area of the region enclosed by f(x) and the x-axis for the given function over the specified interval.
Answer:
Step-by-step explanation:
Complete Question
The complete question is shown on the first uploaded image
Answer:
The area is [tex]A =8 sq\cdot unit[/tex]
Step-by-step explanation:
From the question we are told that
The first equation is [tex]f(x) = x^2 + x \ \ \ x< 1[/tex]
[tex]on[ -2 , 3 ][/tex]
The second equation is [tex]f(x) = 2 x \ \ \ x \ge 1[/tex]
This means that the limit of the area under the enclosed region is limited between -2 to 1 on the x- axis for first equation and 1 to 3 for second equation
Now the area under the region is evaluated as
[tex]A = \int\limits^1_{-2}{x^2 + x } \, dx + \int\limits^3_{1}{2x } \, dx[/tex]
[tex]A ={ \frac{x^3}{3} + \frac{x^2}{2} + c } | \left \ 1 } \atop {-2}} \right. + {\frac{2x^2}{2} }| \left \ 3} \atop {1}} \right.[/tex]
[tex]A =9 + c - 1 -c[/tex]
[tex]A =8 sq\cdot unit[/tex]
Joey borrows 2000 from his grandfather and pays the money back in monthly payments of 200.
1. Write a lineat function that represents the remaining money owed L(x) after x months.
2. Evaluate L(10) and interpret the meaning in the context of this problem.
A. L(x) - 200x + 2,400; L(10) = 4,400, This represents the amount Joey has paid his grandfather after 10 months.
B. L(x) = 200x + 2,400; L(10) - 4,400, This represents the amount Joey still owes his grandfather after 10 months.
C. L(x) = -200x + 2,400; L(10) = 400, This represents the amount Joey has paid his grandfather after 10 months.
D. L(x) = -200x + 2,400; L(10) = 400, This represents the amount Joey still owes his grandfather after 10 months.
The correct question is;
Joey borrows $2400 from his grandfather and pays the money back in monthly payments of $200.
a. Write a linear function that represents the remaining money owed L(x) after x months.
b. Evaluate L(10) and interpret the meaning in the context of this problem.
A) L(x) = 200x + 2400; L(10) = 4400, This represents the amount Joey still owes his
grandfather after 10 months.
B) L(x) = -200x + 2400; L(10) = 400, This represents the amount Joey has paid his
grandfather after 10 months.
C) L(x) = 200x + 2400; L(10) = 4400, This represents the amount Joey has paid his
grandfather after 10 months.
D) L(x) = -200x + 2400; L(10) = 400, This represents the amount Joey still owes his
grandfather after 10 months.
Answer:
A) L(x) = 2400 - 200x
B) Option D is correct
Step-by-step explanation:
A) We are told that Joey borrowed 2400.
Now he pays back in installments of 200 every month.
Thus for x number of months he would have paid 200x.
Thus,the linear function that represents the remaining money owed is;
L(x) = 2400 - 200x
B) L(10) = 2400 - (200 * 10)
L(10) = 2400 - 2000
L(10) = 400
Thus, after 10 months, Joey is owing 400.
So, looking at the given options, the correct one is option D.
The number of times a player has golfed in one's
lifetime is compared to the number of strokes it takes
the player to complete 18 holes. The correlation
coefficient relating the two variables is 0.26.
Which best describes the strength of the correlation,
and what is true about the causation between the
variables?
It is a weak negative correlation, and it is not likely
causal.
O It is a weak negative correlation, and it is likely
causal.
O It is a strong negative correlation, and it is not likely
causal.
O It is a strong negative correlation, and it is likely
causal.
Answer:
It is a weak negative correlation, and it is likely causal.
Step-by-step explanation:
Correlation coefficient can be said to be a statistical value that shows the relationship between two variables.
Here, the correlation coefficient is 0.26 which means that the magnitude of correlation is low and it causes a weak correlation.
Here, since one variable increases as the other variable decreases, the correlation is said to be negative and weak. We can see that the more a player golf's, the lower the number to required strokes. This would result in a negative slope.
Therefore, It is a weak negative correlation, and it is likely
causal.
Answer:
The correct answer is B on edge 2020.
Step-by-step explanation:
Which statement is true about figures ABC D & ABCD
Answer:
it's option b that is the right answer
The towers of a suspension bridge are 450 feet apart and 150 feet high from the roadway. Cables are at a height of 25 feet above the roadway, midway between the towers, but gradually get taller toward each end. Assume the x-axis is the roadway and the y-axis is the center of the bridge, write an equation for the parabola. What is the height of the cable at a point 50 feet from one of the towers? Round to the nearest whole number.
Answer:
y = 1/405 x² + 25
101 feet
Step-by-step explanation:
The vertex of the parabola is (0, 25).
The equation of the parabola is:
y − 25 = a (x − 0)²
y = ax² + 25
Two points on the parabola are (-225, 150) and (225, 150).
Plugging in one of those points:
150 = a (225)² + 25
125 = 50625 a
a = 1/405
The equation is therefore:
y = 1/405 x² + 25
50 feet from a tower is 175 feet from the center.
y = 1/405 (175)² + 25
y ≈ 101
Joylin’s work to solve a math problem is shown below. Problem: Manny walked StartFraction 5 Over 16 EndFraction of the distance to the library in One-third of an hour. If he walks at a constant rate, what is the total amount of time he will spend walking to the library? Step 1: StartFraction 5 Over 16 EndFraction divided by one-third = h Step 2: StartFraction 16 Over 5 EndFraction times StartFraction 3 Over 1 EndFraction = h Step 3: StartFraction 48 Over 5 EndFraction = h Answer: 9 and three-fifths = h What was Joylin’s first error? She switched the divisor and the dividend when creating an equation to model the problem in step 1. She replaced both the divisor and the dividend with their reciprocals when changing division to multiplication in step 2. She multiplied the two numerators and the two denominators to generate her product in step 3. She reduced the improper fraction incorrectly when getting her final answer.
Answer: She replaced both the divisor and the dividend with their reciprocals when changing division to multiplication in step 2
Step-by-step explanation:
Answer:
She replaced both the divisor and the dividend with their reciprocals when changing division to multiplication in step 2.
Step-by-step explanation:
A customer gave her hair dresser a 20% tip, which amounted to $7. What was the price before the tip?
Answer:
The price before tip was 35
Step-by-step explanation:
Let x = original amount
x * 20% = 7
Change to decimal form
x * .20 = 7
Divide each side by .20
x*.20/.20 = 7/.20
x =35
Which of the following shows the graph of y = –(2)x – 1? On a coordinate plane, a curve is level at y = 0 in quadrant 2 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, negative 0.5). On a coordinate plane, a curve is level at y = negative 1 in quadrant 3 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, negative 2). On a coordinate plane, a curve is level at y = 1 in quadrant 3 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, 0).
Answer:
On a coordinate plane, a curve is level at y = -1 in quadrant 3 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, -2).
Step-by-step explanation:
y = -2 ^x -1
On a coordinate plane, a curve is level at y = – 1 in quadrant 3 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, -2). Option C is correct.
What is Cartesian coordinate plane?The Cartesian coordinate plane is a two-dimensional plane with infinite dimensions. On an endless 2d plane, any two-dimensional figure can be drawn. A location is assigned to each point on a Cartesian plane.
On a coordinate plane, a curve is level at y = – 1 in quadrant 3 and then decreases rapidly into quadrant 4. It crosses the y-axis at (0, -2).
Hence, option C is correct.
To learn more about the Cartesian plane, refer;
https://brainly.com/question/27538987
#SPJ2
In a Gallup poll of randomly selected adults, 66% said that they worry about identity theft. For a group of 1013 adults, the mean of those who do not worry about identify theft is closest to:
Answer:
[tex]Mean = 344[/tex]
Step-by-step explanation:
Given
[tex]Population = 1013[/tex]
Let p represents the proportion of those who worry about identity theft;
[tex]p = 66\%[/tex]
Required
Mean of those who do not worry about identity theft
First, the proportion of those who do not worry, has to be calculated;
Represent this with q
In probability;
[tex]p + q = 1[/tex]
Make q the subject of formula
[tex]q = 1 - p[/tex]
Substitute [tex]p = 66\%[/tex]
[tex]q = 1 - 66\%[/tex]
Convert percentage to fraction
[tex]q = 1 - 0.66[/tex]
[tex]q = 0.34[/tex]
Now, the mean can be calculated using:
[tex]Mean = nq[/tex]
Where n represents the population
[tex]Mean = 1013 * 0.34[/tex]
[tex]Mean = 344.42[/tex]
[tex]Mean = 344[/tex] (Approximated)
Degree Of Length Degree Of Width Degree Of Height Degree Of Volume
Answer: length = 1, width = 1, height = 3, volume = 5
Step-by-step explanation:
Degree is the biggest exponent for the variables in the expression
Length = 4x - 1. The exponent for x is 1 --> degree = 1
Width = x The exponent for x is 1 --> degree = 1
Height = x³ The exponent for x³ is 3 --> degree = 3
Volume = 4x⁵ - x⁴. The biggest exponent for x is 5 --> degree = 5
Answer:
- First answer: 1
- Second answer: 1
- Third answer: 3
- Last answer: 5
Step-by-step explanation:
Correct on E2020
n ant needs to travel along a 20cm × 20cm cube to get from point A to point B. What is the shortest path he can take, and how long will it be (in cm)?
Answer:
48.28 cmStep-by-step explanation:
Since the shape is a cube of side 20cm, then all the side of the cube will be 20cm since all the side of a cube are all equal.
The shortest path the ant can be take is to first travel along the diagonal of the square from point A to the other edge on the front face and then move to point B on its adjacent side on a straight line.
To get the total distance he will take, we will first calcuate the value of the diagonal distance of the square face using pythagoras theorem as shown.
hypotenuse² = opposite² + adjacent²
The opposite = adjacent = 20cm
The hypotenuse is the length of the diagonal that we need.
hyp² = 20²+20²
hyp² = 400+400
hyp² = 800
hyp = √800
hyp = 28.28 cm
The length of the diagonal is 28.28 cm.
Afterwards, the ant will move 20cm to point B from the stopping point.
Total distance will be 28.28 + 20 = 48.28 cm
Use Bayes' theorem to find the indicated probability 5.8% of a population is infected with a certain disease. There is a test for the disease, however the test is not completely accurate. 93.9% of those who have the disease test positive. However 4.1% of those who do not have the disease also test positive (false positives). A person is randomly selected and tested for the disease. What is the probability that the person has the disease given that the test result is positive?
a. 0.905
b. 0.585
c. 0.038
d. 0.475
Answer:
b. 0.585
Step-by-step explanation:
According to Bayes' theorem:
[tex]P(A|B)=\frac{P(B|A)*P(A)}{P(B)}[/tex]
Let A = Person is infected, and B = Person tested positive. Then:
P(B|A) = 93.9%
P(A) = 5.8%
P(B) = P(infected and positive) + P(not infected and positive)
[tex]P(B) = 0.058*0.939+(1-0.058)*0.041\\P(B)=0.09308[/tex]
Therefore, the probability that a person has the disease given that the test result is positive, P(A|B), is:
[tex]P(A|B)=\frac{0.939*0.058}{0.09308}\\P(A|B)=0.585[/tex]
The probability is 0.585.
What might be done to make the ratio from the coin flipping exercise become more similar to the ratio from question
Answer:
When a coin is tossed, we have possibilities of a head, a tail, a head-head, a tail-tail, a head-tail, a tail-head. Similarly, question ratio can be in 1/4, 1/2, 1
Step-by-step explanation:
Ratio of obtaining a head is 0.5 ≡ 50%
Ratio of obtaining a tail is 0.5 ≡ 50%
Ratio of obtaining a head or tail is 0.25 ≡ 25%
Ratio of obtaining a tail or head is 0.25 ≡ 25%
Ratio of obtaining a head is 0.5 ≡ 50%
Ratio of obtaining a tail is 0.5 ≡ 50%
Ratio of obtaining a head or tail is 0.25 ≡ 25%
Ratio of obtaining a tail and head is 0.0625=6.25%
Ratio of obtaining a head and tail is 0.0625=6.25%
Similarly, question ratio can be in 1/4, 1/2, 1
Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....
Answer:
Hey there!
The common ratio is 5, because you multiply by 5 to get from one term to the next.
Hope this helps :)
Answer:
5
Step-by-step explanation:
To find the common ratio take the second term and divide by the first term
55/11 = 5
The common ratio would be 5
In △ABC, GF=17 in. What is the length of CF¯¯¯¯¯? Enter your answer in the box.
Answer:
51 inches
Step-by-step explanation:
The centroid G divides each median into the ratio 2:1, so GF is 1/3 of CF. That is, ...
CF = 3(GF) = 3(17 in)
CF = 51 in
The answer choices below represent different hypothesis tests. Which of the choices are one-tailed tests? Select all correct answers. Select all that apply: H0:p=0.46, Ha:p<0.46 H0:p=0.34, Ha:p≠0.34 H0:p=0.63, Ha:p≠0.63 H0:p=0.35, Ha:p≠0.35 H0:p=0.39, Ha:p<0.39
Answer:
H0:p=0.46, Ha:p<0.46
H0:p=0.39, Ha:p<0.39
Step-by-step explanation:
A one tailed test occurs in such a way that the value/results gotten is one sided and can either be lesser or greater than the particular given value but cannot be both.
Thus, in this case a one sided test includes
H0:p=0.46, Ha:p<0.46
H0:p=0.39, Ha:p<0.39
The measure of one of the small angles of a right triangle is 15 less than twice the measure of the other small angle. Find the measure of both angles.
Answer:
A= 35°
b= 55°
Step-by-step explanation:
Let's take the small angles of the right angle triangle to be and b
a+b +90= 180....(sum of angles in a right angle triangle)
The measure of one of the small angles of a right triangle is 15 less than twice the measure of the other small angle
2a-15= b
a+2a -15 +90= 180
3a = 180-75
3a= 105
a= 105/3
a= 35°
a+b +90= 180.
35+b+90= 180
b = 180-90-35
b = 55°
Answer:
x = 35°; y = 55°
Step-by-step explanation:
Let x = one of the angles
and y = the other angle. Then
2x = twice the measure of x and
2x - 15 = 15 less than twice the measure of x
You have two conditions
(1) y = 2x - 15
(2) x+ y = 90
Calculations:
[tex]\begin{array}{lrcll}(1) & y & = & 2x - 15\\(2)& x + y & =&90\\(3)& x + 2x - 15 & =&90&\text{Substituted (1) into (2)}\\& 3x- 15 & = & 90&\text{Simplified}\\&3x & = & 105&\text{Added 15 to each side}\\ (4)& x & = & \mathbf{35}&\text{Divided each side by 3}\\& y & = & 2(35) - 15&\text{Substituted (4) into (1)}\\& & = & 70 - 15&\text{Simplified}\\&&=&\mathbf{55}&\end{array}\\[/tex]
x = 35°; y = 55°
Check:
[tex]\begin{array}{ccc}55 = 2(35) - 15 & \qquad & 35 + 55 = 90\\55 = 70 - 15 & \qquad & 90 = 90\\55 = 55 && \\\end{array}[/tex]
It checks.
Connor has a collection of dimes and quarters with a total value of $6.30. The number of dimes is 14 more than the number of quarters. How many of each coin does he have?
Answer:
14 Quarters and 28 dimes
Step-by-step explanation: 14 quarters $3.50
28 dimes is $2.80 total is $6.30
5/12 +( 5/12 + 3/4 ) =
Answer:
Proper: 15/4
Improper: 3 3/4
Step-by-step explanation:
Well to solve the following question,
5/12 + (5/12 + 3/4)
We solve the part in the parenthesis first,
5/12 + 3/4 = 14/4
Simplified -> 7/2
5/12 + 7/2
= 45/12
Simplified -> 15/4
Thus,
the answer is 15/4 or 3 3/4.
Hope this helps :)
Answer:
19/12= [tex]1 \frac{7}{12}[/tex]Step-by-step explanation:
[tex]\frac{5}{12}+\left(\frac{5}{12}+\frac{3}{4}\right)\\\\=\frac{5}{12}+\frac{5}{12}+\frac{3}{4}\\\\\mathrm{Add\:similar\:elements:}\:\frac{5}{12}+\frac{5}{12}=2\times \frac{5}{12}\\=2\times \frac{5}{12}+\frac{3}{4}\\\\=\frac{5\times \:2}{12}\\\\=\frac{10}{12}\\\\=\frac{10}{12}\\\\=\frac{5}{6}+\frac{3}{4}\\L.C.M =12\\\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}\\\\\frac{5}{6}=\frac{5\cdot \:2}{6\times \:2}=\frac{10}{12}\\\\\frac{3}{4}=\frac{3\times \:3}{4\times \:3}=\frac{9}{12}\\[/tex]
[tex]\\=\frac{10}{12}+\frac{9}{12}\\\mathrm{Since\:the\:denominators\:are\:equal\\\:combine\:the\:fractions}:\\\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\\\=\frac{10+9}{12}\\\\=\frac{19}{12}[/tex]
2. The first and last term of an AP are 1 and 121 respectively. If the sum of the
series is 671, find a) the number of terms in) in the AP b) the common
difference between them.
Step-by-step explanation:
since you provided 1st and the last terms
the equation can be nth term
n/2 × ( a + l) = nth sum
n/2 × ( 1 + 121) = 671
n/2 × 122 = 671
61 n = 671
n = 11
a) so there are 11 terms
then,
so as 11th term is 121
let's find common diff
a + ( n-1) d = nth term
1 +( 11-1) d= 121
10d = 121 -1
10d = 120
common difference = 12
Find the Perimeter of the polygon if angle B= angle D Please Help Trying to graduate.
Answer:
P = 60 cm
Step-by-step explanation:
To solve this question we will use the property of the tangents drawn from a point to a circle.
"Length of tangents drawn from a point to a circle are equal in measure."
By this property,
Therefore, BG ≅ FB ≅ 7.5 cm
AG ≅ AH ≅ 6.5 cm
CF ≅ EC ≅ 8.5 cm
Since m∠B ≅ m∠D
Therefore, length of tangents FB ≅ GB ≅ DE ≅ DH ≅ 7.5 cm
Since, Perimeter of ABCD = AB + BC + CD + DA
AB = 7.5 + 6.5 = 14 cm
BC = 7.5 + 8.5 = 16 cm
CD = 8.5 + 7.5 = 16 cm
DA = 7.5 + 6.5 = 14 cm
Now Perimeter = 16 + 16 + 14 + 14 = 60 cm
Therefore, P = 60 cm will be the answer.