An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.285 T. If the kinetic energy of the electron is 2.10 10-19 J, find the speed of the electron and the radius of the circular path. (a) the speed of the electron

Answers

Answer 1

Answer:

The speed of the electron is 6.79 x 10⁵ m/s

The radius of the circular path is 1.357 x 10⁻⁵ m

Explanation:

Given;

magnetic field, B = 0.285 T

energy of electron, E = 2.10 x 10⁻¹⁹ J

The kinetic energy of the electron is calculated as;

[tex]K.E = \frac{1}{2} m_eV^2[/tex]

Where;

[tex]m_e[/tex] is the mass of electron = 9.11 x 10⁻³¹ kg

V is the speed of the electron

[tex]K.E = \frac{1}{2} m_eV^2\\\\V^2 = \frac{2.K.E}{m_e} \\\\V = \sqrt{\frac{2K.E}{m_e} } \\\\V = \sqrt{\frac{2*(2.1*10^{-19})}{9.11*10^{-31}} }\\\\V = 6.79 *10^{5} \ m/s[/tex]

The radius of the circular path is given by;

[tex]R = \frac{M_eV}{qB}[/tex]

where;

q is the charge of the electron = 1.6 x 10⁻¹⁹ C

[tex]R = \frac{M_eV}{qB} \\\\R = \frac{9.11 *10^{-31}*6.79 *10^{5}}{1.6*10^{-19}*0.285} \\\\R = 1.357 *10^{-5} \ m[/tex]


Related Questions

15. The blank
of a sine wave is the time it takes to complete one cycle of the wave.
O A. maximum amplitude
O B. minimum amplitude
O C. average value
O D. wavelength

Answers

That time is the "period" of the wave.

(It's not one of the choices.)

The blank of a sine wave is the time it takes to complete one cycle of the wavelength, the correct answer is D.

What is Wavelength?

It can be understood in terms of the distance between any two similar successive points across any wave for example wavelength can be calculated by measuring the distance between any two successive crests.

It is the total length of the wave for which it completes one cycle.

The wavelength is inversely proportional to the frequency of the wave as from the following relation.

C = νλ

where c is the speed of light

ν is the frequency of the wave

λ is the wavelength of the wave

The time taken by the sine wave to complete one cycle of the wavelength is called blank the correct answer is D.

Learn more about wavelength from here

brainly.com/question/7143261

#SPJ2

"A parcel moving in a horizontal direction with speed v0 = 13 m/s breaks into two fragments of weights 1.4 N and 1.9 N, respectively. The speed of the larger piece remains horizontal immediately after the separation and increases to v1.9 = 29 m/s. Find the necessary speed and direction of the smaller piece immediately after the separation. (Assume the initial direction of the parcel is positive. Indicate the direction with the sign of your answer.)"

Answers

Answer:

the smaller particle moves with speed of 8.706 m/s in the opposite direction to the bigger particle.

Explanation:

Speed of the original particle = 13 m/s

We designate particles as A and B

The final weights of the component particles are

Particle A = 1.4 N

particle B = 1.9 N

The speed of the larger piece (particle B) = 29 m/s

We know that weight is the product of a body's mass and acceleration due to gravity g which is equal to 9.81 m/s^2, therefore, masses of the particles are

particle A = 1.4/9.81 = 0.143 kg

Particle B = 1.9/9.81 = 0.194 kg

The momentum of a body is the product of its mass and its velocity i.e

P = mv

This means that the mass of the particle before splitting is  

0.143 kg + 0.194 kg = 0.337 kg

Momentum of the initial whole particle = mv

==> 0.337 x 13 = 4.381 kg-m/s

The bigger particle B remains horizontal, and has a momentum of

mv = 0.194 x 29 = 5.626 kg-m/s

According to the conservation of momentum, the total initial momentum of a system must be equal tot the total final momentum of the system.

Initial total momentum of the system = 4.381 kg-m/s (momentum of original particle before splitting)

Final total momentum of the system = Total momentum of the particles after splitting = 5.626 kg-m/s + ( 0.143 kg x [tex]V_{B}[/tex])

where  [tex]V_{B}[/tex]  is the velocity of smaller particle A

final total momentum of the system = 5.626 + 0.143[tex]V_{B}[/tex]

Equating the two momenta of the system, we'll have

4.381 = 5.626 + 0.143[tex]V_{B}[/tex]

4.381 - 5.626 = 0.143[tex]V_{B}[/tex]

-1.245 = 0.143[tex]V_{B}[/tex]

[tex]V_{B}[/tex]  = -1.245/0.143 = -8.706 m/s

The negative sign indicates that the smaller particle moves in the opposite direction to the bigger particle

Two gliders with different masses move toward each other on a frictionless air track. After they colllide, glider B has a final v of 2 m/s. What is the final velocity of glider A

Answers

Answer:

2m/s

Explanation:

According to conservation of momentums, it states that the sum of collision of bodies before collision is equal to the sum of their momentum after collision. Both objects will move with the same velocity after collision.

According to the question, we were told that after they collide, glider B has a final velocity of 2 m/s. Since both bodies (Glider A and B) will move with the same velocity after collision according to the conservation of momentum, this means glider A will also have a final velocity of 2m/s like. Glider B.

Find the distance to a Sun-like star (L=3.8x1026 watts) whose apparent brightness at Earth is 1.0 x10-10 watt/m2.

Answers

Answer:

5.49 x 10^17 m  is the distance between the sun-like star to the earth

Explanation:

Radiation intensity on Earth = 1.0 x 10^-10 W/m^2

Power of radiation of the star = 3.8 x 10^26 W

Recall that the intensity of radiation is given as

[tex]I[/tex] = [tex]\frac{P}{A}[/tex]

where

[tex]I[/tex] = intensity of radiation

P = power of radiation

A is the area through which the radiation spreads out in all three dimensional direction.

A = [tex]\frac{P}{I}[/tex] = [tex]\frac{3.8*10^{26} }{1.0*10^{-10} }[/tex] = 3.8 x 10^36 m^2

This area is spread out in the form of a sphere of area

A = [tex]4\pi r^{2}[/tex] = 4 x 3.142 x [tex]r^{2}[/tex]

3.8 x 10^36 = 12.568[tex]r^{2}[/tex]

[tex]r^{2}[/tex] =  (3.8 x 10^36)/12.568 = 3.02 x 10^35

r = [tex]\sqrt{3.02*10^{35} }[/tex] = 5.49 x 10^17 m   this is the distance of the star to the Earth

A plane is flying horizontally with a constant speed of 55 .0 m/s when it drops a
rescue capsule. The capsule lands on the ground 12.0 s later.

c) How would your answer to part b) iii change if the constant speed of the plane is
increased? Explain.​

Answers

Answer:

therefore horizontal displacement changes increasing with linear velocity

Explanation:

Since the plane flies horizontally, the only speed that exists is

              v₀ₓ = 55.0 m / s

the time is the time it takes to reach the floor, which we can find because the speed on the vertical axis is zero

               y =y₀ + v₀ t - ½ g t2

               0 = I₀ + 0 - ½ g t2

               t = √ 2y₀o / g

time is that we use to calculate the x-axis displacement

 The distance it travels to reach the floor is

              x = v t

              x = 55 12

              x = 660 m

When the speed horizontally the time remains the same and 120

             x ’= v’ 12

therefore horizontal displacement changes increasing with linear velocity

The dimension of a room has 5.31m by 7.6m. Find the limits of accuracy for the area of the room​

Answers

Explanation:

Se supone que si es 5.31 x 7.6 los límites son 38.98 ahora si fuera en suma mueves los puntos dos veces a la izquierda la sumatoria seria la siguiente .00531 + .0076 la respuesta seria

.00607

A vertically polarized light wave of intensity 1000 mW/m2 is coming toward you, out of the screen. After passing through this polarizing filter, the wave's intensity is

Answers

Answer:

The intensity is [tex]I = 500 mW/m^2[/tex]

Explanation:

From the question we are told that

    The  intensity of the unpolarized light is [tex]I_o = 1000 \ m W /m^2 = 1000 *10^{-3} \ W/m^2[/tex]

Generally the intensity of the light emerging from the polarizer is  mathematically represented as

          [tex]I = \frac{I_o}{2}[/tex]

substituting values

         [tex]I = \frac{1000 *10^{-3}}{2}[/tex]

         [tex]I = 500 *10^{-3} W/m^2[/tex]

         [tex]I = 500 mW/m^2[/tex]

change in entropy of universe during 900g of ice at 0 degree celcus to water at 10 degree celcius at room temp=30 degree celcius

Answers

Answer:

4519.60 J/K

Explanation:

Change in entropy is expressed as ΔS = ΔQ/T where;

ΔQ is the total heat change during conversion of ice to water.

T is the room temperature

First we need to calculate the total change in heat using the conversion formulae;

ΔQ = mL + mcΔθ (total heat energy absorbed during phase change)

m is the mass of ice/water = 900g = 0.9kg

L is the latent heat of fusion of ice = 3.33 x 10⁵J/kg

c is the specific heat capacity of water = 4200J/kgK

Δθ is the change in temperature of water = 10°C - 0C = 10°C = 283K

Substituting the given values into ΔQ;

ΔQ = 0.9(333000)+0.9(4200)(283)

ΔQ = 299700 + 1069740

ΔQ = 1,369,440 Joules

Since Change in entropy ΔS = ΔQ/T

ΔS =  1,369,440/30+273

ΔS = 1,369,440/303

ΔS = 4519.60 J/K

Hence, the change in entropy of the universe is 4519.60 J/K

if a speed sound in air at o°c is 331m/s. what will be its value at 35 °c​

Answers

Answer:

please brainliest!!!

Explanation:

V1/√T1 =V2/√T2

V1 = 331m/s

T1 = 0°C = 273k

V2 = ?

T2 = 35°c = 308k

331/√273 = V2/√308331/16.5 = V2/17.520.06 = V2/17.5V2 = 20.06 x 17.5 V2 = 351.05m/s

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. Calculate the magnitude of the electrostatic force, when each of the spheres has lost half of its initial charge. (Your answer will be a function of F, since no values are giving)

Answers

Answer:

1/4F

Explanation:

We already know thatThe electrostatic force is directly proportional to the product of the charge, from Coulomb's law.

So F α Qq

But if it is now half the initial charges, then

F α (1/2)Q *(1/2)q

F α (1/4)Qq

Thus the resultant charges are each halved is (1/4) and the first initial force experienced at full charge.

Thus the answer will be 1/4F

A commercial aircraft is flying westbound east of the Sierra Nevada Mountains in California. The pilot observes billow clouds near the same altitude as the aircraft to the south, and immediately turns on the "fasten seat belt" sign. Explain why the aircraft experiences an abrupt loss of 500 meters of altitude a short time later.

Answers

Answer:

Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.

Explanation:

Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.

An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct?
a) The capacitor charges to its maximum value in one time constant and the current is zero at that time.
b) The potential difference across the resistor and the potential difference across the capacitor are always equal.
c) The potential difference across the resistor is always greater than the potential difference across the capacitor.
d) The potential difference across the capacitor is always greater than the potential difference across the resistor
e) Once the capacitor is essentially fully charged, There is no appreciable current in the circuit.

Answers

Answer:

e)

Explanation:

In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.

At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.

What is the major cause of the muffled noise from a radio station?

Answers

Answer:

The major cause is "lack of high frequencies in a sound wave".

Explanation:

Muffling derives from either the absence of such a radio signal of a higher or specific frequency. This very same phenomenon has been observed whenever you overhear conversations through some kind of wall and perhaps door. The approach is equalization. This method helps them to raise those frequencies although these overprotective wavelengths decrease.

So that the above would be the correct solution.

A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the switch is open and the capacitor is uncharged. What is the voltage across the resistor and the capacitor at the moment the switch is closed

Answers

Answer:

The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.

Explanation:

This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery

Three m^3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kPa. The air receives 1546 kJ of work from the paddle wheel. Assuming the ideal gas model, determine for the air the mass, in kg, final temperature, in K, and the amount of entropy produced, in KJ/K

Answers

Answer:

1. 7.08Kg

2. 311K

3. 0.268KJ/K

Explanation:

See attached file

g The current in a series circuit is 15.0 A. When an additional 8.00-% resistor is inserted in series, the current drops to 12.0 A. What is the resistance in the original circuit

Answers

Answer:

Explanation:

Let the original resistance be R and voltage be V

Applying ohm's law

V / R = 15

V = 15 R

In second case

V / (R+8 ) = 12

V = 12 R + 96

15 R = 12 R + 96

3R = 96

R = 32 ohm .

The Goliath six flags Magic Mountain roller coaster ride starts at 71.6 m (235 feet) above the ground. Assuming the coaster starts from rest and ignoring any friction, what is the speed of the coaster when it reaches the ground level

Answers

Answer:

The  velocity is [tex]v = 37 .46 \ m/s[/tex]

Explanation:

From the question we are told that

    The start distance above the ground is  [tex]h = 71.6 \ m[/tex]

Generally according to the  law of energy conservation we have that

     [tex]PE_{top} = KE_{bottom }[/tex]

Where [tex]PE_{top}[/tex] is potential energy at the top which is mathematically represented as

      [tex]PE_{top} = m * g * h[/tex]

And  [tex]KE_{bottom }[/tex] is the kinetic energy at the bottom which is mathematically represented as

     [tex]KE_{bottom } = \frac{1}{2} * m * v^2[/tex]

Therefore  

       [tex]m * g * h = \frac{1}{2} * m * v^ 2[/tex]

=>    [tex]v = \sqrt{2 * g * h }[/tex]

substituting value

     [tex]v = \sqrt{2 * 9.8 * 71.6 }[/tex]

     [tex]v = 37 .46 \ m/s[/tex]

11. A tight guitar string has a frequency of 540 Hz as its third harmonic. What will be its fundamental frequency if it is fingered at a length of only 70% of its original length

Answers

Answer:

The frequency is  [tex]f_n = 257.1 \ Hz[/tex]

 

Explanation:

From the question we are told that

    The third harmonic frequency of the tight guitar string is  [tex]f_3 = 540 \ Hz[/tex]

     

Let the original length be  L  

   Then the length at which it is fingered is  0.7 L

Generally the fundamental  is mathematically represented as

         [tex]f = \frac{v_s}{ 2L}[/tex]

Now when it finger at 70% it original length is

      [tex]f_n = \frac{v}{2 * (0.7 L)}[/tex]

      [tex]f_n = \frac{v}{1.4 L}[/tex]

Here v  the velocity of sound

  So  

         [tex]\frac{f_n}{f} = \frac{\frac{v}{1.4L} }{\frac{v}{2L} }[/tex]

Also the fundamental frequency for the original length can also be represented as

       [tex]f = \frac{f_3}{3}[/tex]

substituting values

          [tex]f = \frac{540}{3}[/tex]

          [tex]f = 180 \ Hz[/tex]

So

       [tex]\frac{f_n}{180} = \frac{\frac{v}{1.4L} }{\frac{v}{2L} }[/tex]

=>  [tex]f_n =\frac{180}{0.7}[/tex]

=>   [tex]f_n = 257.1 \ Hz[/tex]

 

     

The fundamental frequency, if it is fingered at a length of only 70% of its original length, will be 257.1  Hz.

What is the frequency?

Frequency is defined as the number of repetitions of a wave occurring waves in 1 second.

f is the frequency of tight guitar string = 540 Hz

Let's call the original length L.

The amount of time it is fingered is then 0.7 L.

In general, the fundamental frequency is expressed mathematically as;

[tex]\rm f = \frac{v_0}{2L} \\\\[/tex]

For the given conditions;

[tex]\rm f_n=\frac{v}{2 \times 0.7L} \\\\ \rm f_n=\frac{v}{1.4L}[/tex]

The ratio of the frequency is;

[tex]\rm \frac{f_n}{f} =\frac{\frac{v}{1.4L} }{\frac{V}{2L} }[/tex]

Also, the fundamental frequency for the original length can also be represented as;

[tex]\rm f= \frac{f'}{3} \\\\ f=\frac{540}{3} \\\\ \rm f=180\ Hz[/tex]

On putting the given data;

[tex]\rm \frac{f_n}{180} =\frac{\frac{v}{1.4L} }{\frac{V}{2L} }\\\\ \rm f_n=\frac{180}{0.7}\\\\\ \rm f_n=257.1\ Hz[/tex]

Hence the fundamental frequency, if it is fingered at a length of only 70% of its original length, will be 257.1  Hz.

To learn more about the frequency reference the link;

https://brainly.com/question/14926605

The copper wire to the motor is 6.0 mm in diameter and 1.1 m long. How far doesan individual electron travel along the wire while the starter motor is on for asingle start of the internal combustion engine

Answers

Answer:

0.306mm

Explanation:

The radius of the conductor is 3mm, or 0.003m

The area of the conductor is:

A = π*r^2 = π*(.003)^2 = 2.8*10^-5 m^2

The current density is:

J = 130/2.8*10^-5 = 4.64*10^6 A/m

According to the listed reference:

Vd = J/(n*e) = 4.64*10^6 / ( 8.46*10^28 * 1.6*10^-19 ) = 0.34*10^-6 m/s = 0.34mm/s

The distance traveled is:

x = v*t = 0.34 * .90 = 0.306 mm

Receiver maxima problem. When the receiver moves through one cycle, how many maxima of the standing wave pattern does the receiver pass through

Answers

The number of maxima of the standing wave pattern is two.

Maxima problem:

At the time when the receiver moves via one cycle so here two maximas should be considered. At the time when the two waves interfere by traveling in the opposite direction through the same medium so the standing wave pattern is formed.

learn more about the waves here: https://brainly.com/question/3004869?referrer=searchResults

A cube has one corner at the origin and the opposite corner at the point (L,L,L)(L,L,L). The sides of the cube are parallel to the coordinate planes. The electric field in and around the cube is given by

Answers

Answer:

Net charge = E• b • L^3.

Explanation:

NB: here, the symbol representation of the flux is "p" = electric Field • Area(dot Product).

So, we will take a look at the flux through -x face, through x face and through -y face, through y face and through - z face and through z face.

(1). Starting from -z and z faces which are the back and front faces of the cube:

Thus, We have that the flux,p = 0 for -z and z.

(2). Recall that we are given that E = =(a+bx)i^+cj^.

Thus, p_-y = (a + bx)i + cj (-j) (L^2)

Where y = 0

p_-y = -cL^2.

Obviously for p_j, we will have cL^2 and y = L

(3). For p_-x = =(a + bx)i + cj (-i) (L^2).

p_-x = -aL^2

Where x = 0.

When x = L and p_x = (a + bL)L^2.

This, adding all together gives Net charge = E • b • L^3.

An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1950 K. (kb is Boltzmann's constant, 1.38x10-23 J/K).

Answers

Answer:

The de Broglie wavelength of electron βe = 2.443422 × 10⁻⁹ m

The de Broglie wavelength of proton βp = 5.70 × 10⁻¹¹ m

Explanation:

Thermal kinetic energy of electron or proton = KE

∴ KE = 3kbT/2

given that; kb = 1.38 x 10⁻²³ J/K , T = 1950 K

so we substitute

KE = ( 3 × 1.38 x 10⁻²³ × 1950 ) / 2

kE = 4.0365 × 10⁻²⁰ (  is the kinetic energy for both electron and proton at temperature T )

Now we know that

mass of electron M'e = 9.109 ×  10⁻³¹

mass of proton M'p = 1.6726 ×  10⁻²⁷

We also know that

KE = p₂ / 2m

from the equation, p = √ (2mKE)

{ p is momentum, m is mass }

de Broglie wavelength = β

so β = h / p = h / √ (2mKE)

h = Planck's constant = 6.626 ×  10⁻³⁴

βe =  h / √ (2m'e × KE)

βe = 6.626 ×  10⁻³⁴ / √ (2 × 9.109 ×  10⁻³¹ × 4.0365 × 10⁻²⁰ )

βe = 6.626 ×  10⁻³⁴ / √  7.3536957 × 10⁻⁵⁰

βe = 6.626 × 10⁻³⁴  / 2.71176984642871 × 10⁻²⁵

βe = 2.443422 × 10⁻⁹ m

βp =  h / √ (2m'p ×KE)

βp = 6.626 ×  10⁻³⁴ / √ (2 × 1.6726 ×  10⁻²⁷ × 4.0365 × 10⁻²⁰ )

βp = 6.626 ×  10⁻³⁴ / √ 1.35028998 × 10⁻⁴⁶

βp =  6.626 ×  10⁻³⁴ / 1.16201978468527 ×  10⁻²³

βp = 5.702140 × 10⁻¹¹ m

An electron is released from rest at a distance of 9.00 cm from a proton. If the proton is 11) held in place, how fast will the electron be moving when it is 3.00 cm from the proton?

Answers

Answer:

Vf = 1.43 m/s

Explanation:

From Coulomb's Law, the electrostatic force between electron and proton is given as:

F = kq₁q₂/r²

F = Electrostatic force = ?

k = Coulomb's Constant = 9 x 10⁹ N.m²/C²

q₁ = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C

q₂ = magnitude of charge on proton = 1.6 x 10⁻¹⁹ C

r = distance between electron and proton = 9 cm = 0.09 m

Therefore,

F = (9 x 10⁹ N.m²/C²)(1.6 x 10⁻¹⁹ C)(1.6 x 10⁻¹⁹ C)/(0.09 m)²

F = 2.84 x 10⁻²⁶ N

but, from Newton's second law:

F = 2.84 x 10⁻²⁶ N = ma

where,

m = mass of electron = 9.1 x 10⁻³¹ kg

a = acceleration of electron = ?

Therefore,

2.84 x 10⁻²⁶ N = (1.67 x 10⁻²⁷ kg)(a)

a = 2.84 x 10⁻²⁶ N/1.67 x 10⁻²⁷ kg

a = 17.03 m/s²

Now, we apply 3rd equation of motion to the motion of electron from a distance of 9 cm to 3 cm near to the proton:

2as = Vf² - Vi²

where,

s = distance traveled = 9 cm - 3 cm = 6 cm = 0.06 m

Vf = speed of electron when it is 3 cm from proton = ?

Vi = Initial speed of electron = 0 m/s

Therefore,

2(17.03 m/s²)(0.06 m) = Vf² - (0 m/s)²

Vf = √2.04 m²/s²

Vf = 1.43 m/s

A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V. What speed does the proton gain? (e = 1.60 × 10-19 C , mproton = 1.67 × 10-27 kg)

Answers

Answer:

[tex]3.1\times 10^{5}m/s[/tex]

Explanation:

The computation of the speed does the proton gain is shown below:

The potential difference is the difference that reflects the work done as per the unit charged

So, the work done should be

= Potential difference × Charge

Given that

Charge on a proton is

= 1.6 × 10^-19 C

Potential difference = 500 V

[tex]v= \sqrt{\frac{2.q.\Delta V}{m_{p}}} \\\\\\= \sqrt{\frac{2\times 1.6\times 10^{-19}\times 5\times 10^{2}}{1.67\times 10^{-27}}}[/tex]

[tex]v= \sqrt{9.58\times 10^{10}}m/s \\\\= 3.095\times 10^{5}m/s\\\\\approx 3.1\times 10^{5}m/s[/tex]

Simply we applied the above formulas

An artificial satellite circles the Earth in a circular orbit at a location where the acceleration due to gravity is 6.25 m/s2. Determine the orbital period of the satellite.

Answers

Answer:

118 minutes( 2 hours approximately )

Explanation:

Here, we are interested in calculating the orbital period of the satellite

Please check attachment for complete solution

Answer:

T = 7101 s = 118.35 mins = 1.9725 hrs

Explanation:

To solve the question, we apply the formula for gravitational acceleration

a = GM/r², where

a = acceleration due to gravity

G = gravitational constant

M = mass of the earth

r = distance between the satellite and center of the earth

Now, if we make r, subject of formula, we have

r = √(GM/a)

Recall also, that

a = v²/r, making v subject of formula

v = √ar

If we substitute the equation of r into it, we have

v =√a * √r

v =√a * √[√(GM/a)]

v = (GM/a)^¼

Again, remember that period,

T = 2πr/v, we already have v and r, allow have to do is substitute them in

T = 2π * √(GM/a) * [1 / (GM/a)^¼]

T = 2π * (GM/a³)^¼

T = 2 * 3.142 * [(6.67*10^-11 * 5.97*10^24) / (6.25³)]^¼

T = 6.284 * [(3.982*10^14) / 244.140]^¼

T = 6.284 * (1.63*10^12)^¼

T = 6.284 * 1130

T = 7101 s

T = 118.35 mins

T = 1.9725 hrs

differences between
hor
rse
and horse​

Answers

The proper difference between hor Rse and horse is both shows the same thing that is the horse
the difference is that they are spelled differently

1. Two charges Q1( + 2.00 μC) and Q2( + 2.00 μC) are placed along the x-axis at x = 3.00 cm and x=-3 cm. Consider a charge Q3 of charge +4.00 μC and mass 10.0 mg moving along the y-axis. If Q3 starts from rest at y = 2.00 cm, what is its speed when it reaches y = 4.00 cm?

Answers

Answer:

speed when it reaches y = 4.00cm is

v = 14.9 g.m/s

Explanation:

given

q₁=q₂ =2.00 ×10⁻⁶

distance along x = 3.00cm= 3×10⁻²

q₃= 4×10⁻⁶C

mass= 10×10 ⁻³g

distance along y = 4×10⁻²m

r₁ = [tex]\sqrt{3^{2} +2^{2} }[/tex] = [tex]\sqrt{13}[/tex] = 3.61cm = 0.036m

r₂ = [tex]\sqrt{4^{2} + 3^{2} }[/tex] = [tex]\sqrt{25}[/tex] = 5cm = 0.05m

electric potential V = [tex]\frac{kq}{r}[/tex]

change in potential ΔV = [tex]V_{1} - V_{2}[/tex]

ΔV = [tex]\frac{2kq_{1} }{r_{1}} - \frac{2kq_{2} }{r_{2} }[/tex] , where [tex]q_{1} = q_{2}=[/tex]2.00μC

ΔV = [tex]2kq(\frac{1}{r_{1}} - \frac{1}{r_{2} })[/tex]

ΔV = 2 × 9×10⁹ × 2×10⁻⁶ × [tex](\frac{1}{0.036} - \frac{1}{0.05} )[/tex]

ΔV= 2.789×10⁵

[tex]\frac{1}{2}mv^{2}[/tex] = ΔV × q₃

[tex]\frac{1}{2}[/tex] ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶

v² = 223.12 g.m/s

v = 14.9 g.m/s

The speed of the charge q₃ when it starts from rest at y = 2 cm and reaches y = 4 cm is; v = 14.89 m/s

We are given;

Charge 1; q₁ = 2.00 μC = 2 × 10⁻⁶ C

Charge 2; q₂ = 2.00 μC = 2 × 10⁻⁶ C

Distance of charge 1 along x = 3 cm = 3 × 10⁻² m

Distance of charge 2 along x = -3 cm = -3 × 10⁻² m

Charge 3; q₃ = +4.00 μC  = 4 × 10⁻⁶ C

mass; m = 0.01 g

distance of charge 3 along y = 4 cm = 4 × 10⁻² m

q₃ starts from rest at y = 2 × 10⁻² m and reaches y = 4 × 10⁻² m.

Thus;

Distance of charge 1 from the initial position of q₃;

r₁ = √((3 × 10⁻²)² + ((2 × 10⁻²)²)

r₁ = 0.0361 m

Distance of charge 2 from the final position of q₃;

r₂ = √((3 × 10⁻²)² + ((4 × 10⁻²)²)

r₂ = 0.05 m

Now, formula for electric potential is;

V = kq/r

Where k = 9 × 10⁹ N.m²/s²

Thus,change in potential is;

ΔV = V₁ - V₂

Now, Net V₁ = 2kq₁/r₁

Net V₂ = 2kq₂/r₂

Thus;

ΔV = 2kq₁/r₁ - 2kq₂/r₂

ΔV = (2 × 9 × 10⁹)[(2 × 10⁻⁶/0.0361) - (2 × 10⁻⁶/0.05)]

ΔV = 277229.92 V

Now, from conservation of energy;

½mv² = q₃ΔV

Thus;

½ × 0.01 × v² = 4 × 10⁻⁶ × 277229.92

v² = 2 × 4 × 10⁻⁶ × 277229.92/0.01

v = √(221.783936)

v = 14.89 m/s

Read more about point charges at;https://brainly.com/question/13914561

Sergio has made the hypothesis that "the more time that passes, the farther away a person riding a bike will be." Do the data in the table below support his hypothesis? A. Yes, the data support the hypothesis. B. No, the data support the opposite of the hypothesis. C. The data show no relationship between the time passed and the distance.

Answers

Answer:

Option A

Explanation:

Given that

Distance = Speed / Time

So, they are in inverse relation.

Such that when the time passes, the distance from the reacing point will become less and vice versa.

So, Yes! The more time that passes, the farther away a person riding a bike will be.

A capacitor is charged to a potential of 12.0 V and is then connected to a voltmeter having an internal resistance of 3.40 MΩ. After a time of 4.00 s, the voltmeter reads 3.0 V.
A) What are the capacitance?
B) What is the time constant of the circuit?

Answers

Answer:

a. 0.849 micro farad

b. 2.89 s

Explanation:

a) V=V0 e^-t/RC

3=12*e^-4/3.4*10^6*C

3/12=e^-4/3.4*10^6*C

-1.3863 =-4/3.4*10^6*C

C=8.49*10^-7 F

=0.849 micro farad

B) time constant= R*C

=3.4*10^6*8.49*10^-7

=2.89 S

a. The capacitance is 0.849 micro farad

b. The  time constant of the circuit is 2.89 s

Calculation of capacitance & time constant:

a)

We know that

V=V0 e^-t/RC

3=12*e^-4/3.4*10^6*C

3/12=e^-4/3.4*10^6*C

-1.3863 =-4/3.4*10^6*C

C=8.49*10^-7 F

=0.849 micro farad

B)

Now

time constant= R*C

=3.4*10^6*8.49*10^-7

=2.89 S

Learn more about capacitor here: https://brainly.com/question/24708010

A sinusoidal electromagnetic wave emitted by a mobile phone has a wavelength of 34.8 cm and an electric-field amplitude of 5.70×10−2 V/m at a distance of 210 m from the phone.
Calculate
(a) the frequency of the wave;
(b) the magnetic-field amplitude;
(c) the intensity of the wave.

Answers

Answer:

a) [tex] f = 8.62 \cdot 10^{8} Hz [/tex]

b) [tex] B = 1.9 \cdot 10^{-10} T [/tex]  

c) [tex] I = 4.30 \cdot 10^{-6} W/m^{2} [/tex]

Explanation:

a) The frequency (f) of the wave can be found as follows:

[tex] f = \frac{c}{\lambda} [/tex]

Where:

c: is the speed of light = 3x10⁸ m/s

λ: is the wavelength = 34.8 cm

[tex] f = \frac{3 \cdot 10^{8} m/s}{0.348 m} = 8.62 \cdot 10^{8} Hz [/tex]

b) The magnetic-flied amplitude (B) is:

[tex] B = \frac{E}{c} [/tex]      

Where:

E: is the electric field amplitude = 5.70x10⁻² V/m

[tex] B = \frac{E}{c} = \frac{5.70 \cdot 10^{-2} V/m}{3 \cdot 10^{8} m/s} = 1.9 \cdot 10^{-10} T [/tex]  

c) The intensity of the wave (I) is the following:

[tex] I = \frac{E*B}{2\mu_{0}} [/tex]

Where:

μ₀: is the permeability of free space =  1.26x10⁻⁶ m*kg/(s²A²)  

[tex] I = \frac{E*B}{2\mu_{0}} = \frac{5.70 \cdot 10^{-2} V/m*1.9 \cdot 10^{-10} T}{2*1.26 \cdot 10^{-6} m*kg/((s^{2}A^{2})} = 4.30 \cdot 10^{-6} W/m^{2} [/tex]

I hope it helps you!

The frequency of the wave is [tex]8.62\times 10^8\rm\;Hz[/tex], the magnetic-field amplitude is [tex]1.9\times 10^{-10}\rm\;T[/tex], and the intensity of the wave is [tex]4.298\rm\;W/m^2[/tex].

Given information:

A mobile phone emits electromagnetic radiation.

The wavelength of the wave is [tex]\lambda=34.8[/tex] cm.

The electric-field amplitude is  [tex]5.70\times10^{-2}[/tex] V/m.

Phone is at a distance of 210 m.

The speed of the electromagnetic wave is [tex]c=3\times 10^8[/tex] m/s.

(a)

Now, the frequency of the wave will be calculated as,

[tex]f=\dfrac{c}{\lambda}\\f=\dfrac{3\times 10^8}{0.348}\\f=8.62\times 10^8\rm\;Hz[/tex]

(b)

The magnetic-field amplitude can be calculated as,

[tex]B=\dfrac{E}{c}\\B=\dfrac{5.70\times10^{-2}}{3\times 10^8}\\B=1.9\times 10^{-10}\rm\;T[/tex]

(c)

[tex]\mu_0[/tex] is the permeability of the vacuum. [tex]\mu_0=1.26\times10^{-6} \rm\;\frac{kg-m}{(A^2s^2)}[/tex]

The intensity of the wave can be calculated as,

[tex]I=\dfrac{BE}{2\mu_0}\\I=\dfrac{1.9\times10^{-10 }\times5.7\times10^{-2}}{2\times1.26\times10^{-6}}\\I=4.298\rm\;W/m^2[/tex]

Therefore, the frequency of the wave is [tex]8.62\times 10^8\rm\;Hz[/tex], the magnetic-field amplitude is [tex]1.9\times 10^{-10}\rm\;T[/tex], and the intensity of the wave is [tex]4.298\rm\;W/m^2[/tex].

For more details, refer to the link:

https://brainly.com/question/1393179

Other Questions
Why is the Song dynasty divided into two periods, the Northern Song and the Southern Song Rewrite the following expression using the properties of logarithms. log2z+2log2x+4log9y+12log9x2log2y You must show all of your work to receive credit. A newsgroup is interested in constructing a 95% confidence interval for the proportion of all Americans who are in favor of a new Green initiative. Of the 556 randomly selected Americans surveyed, 421 were in favor of the initiative. Round answers to 4 decimal places where possible.Required:a. With 99% confidence the proportion of all Americans who favor the new Green initiative is between ______ and______ .b. If many groups of 593 randomly selected Americans were surveyed, then a different confidence interval would be produced from each group. About ________percent of these confidence intervals will contain the true population proportion of Americans who favor the Green initiative and about _______? percent will not contain the true population proportion. 0: A certain type of combination lock has 3 dials. The first 2 dials each have settings for all the digits 0 through 9, and the third has settings for all the 26 capital letters of the alphabet. A combination consists of one setting from each of the dials. How many different combinations are possible Find the total area of the prism. A company is considering replacing an old machine, which has a market value of $95,000 and a tax basis of $145,000. The new machine would cost $210,000 and would cause a $25,000 reduction in working capital because of the need for fewer spare parts. If the companys tax rate is 39%, what would be the initial cash outlay for this replacement project? An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels for a time t0 along a half-circle of radius R before leaving the magnetic field traveling opposite the direction it initially entered the field. Which of the following quantities would change if the electron had entered the field with a speed 2v? (There may be more than one correct answer.) a. The radius of the circular path the electron travels b. The magnitude of the electron's acceleration inside the field c. The time the electron is in the magnetic fieldd. The magnitude of the net force acting on the electron inside the field Marie is 6 months old. When you, her mother, hear the cries of hunger, you come and feed her; and when Marie is uncomfortable, you come and move her around until she is comfortable. Through these actions, Marie is learning that the world is a good place. You are helping Marie with which stage of psychosocial development A firm has annual sales of $350,045, with a profit margin of 4.5 percent. There are 14,000 shares of stock outstanding with a current price of $45 per share. What is the price-sales ratio? The volume of a sample of oxygen is 300mL when the pressure is 1 atm and the temperature is 27 C . At what temperature is the volume 1.00 L and the pressure.500 atm? The first step for deriving the quadratic formula from the quadratic equation, 0 = ax2 + bx + c, is shown. Step 1: c = ax2 + bx Which best explains or justifies Step 1? what is 67b+69b+43 solve for b Explain advances in industry and traponsportation at the turn of the 19th century. Describe at least two technological advances. Assume that an opinion poll conducted in a 1998 congressional race found that on election eve, 54% of the voters supported Congressman Stevens and 44% supported challenger Jones. Also assume that the poll had a +/- 3% margin of error. What would the pollster be able to safely predict? A small airplane can fly 12 miles in 3 minutes. At this rate, how far can the airplane fly in 1 hour? Mason wants to modify his diet to lower his risk of developing chronic disease what can you do to reduce this risk check all that apply When does the separation of sister chromatids occur? A. Meiosis 1 B. Meiosis 2 C. Before Meiosis D. After Meiosis what made the new england colonies diffrent from the middle and souther colonies Grade 7 : Civics chapter : 3 - Understanding Media Write a short note on : The impact of Advertising The Right to Information Act 2005 Plz do answer and I'll mark as brainliest if I'm satisfied with the answer : ) Which table represents the inverse of the function defined above?