A woman of mass m stands at the edge of a solid cylindrical platform of mass M and radius R. At t = 0, the platform is rotating with negligible friction at angular velocity ω0 about a vertical axis through its center, and the woman begins walking with speed v (relative to the platform) toward the center of the platform.

Determine the angular velocity of the system as a function of time.

What will be the angular velocity when the woman reaches the center?

Expert Answer

Answers

Answer 1

The angular velocity of the system as a function of time and the angular velocity when the woman reaches the center is given by [tex]\omega_{center} = [I_p \omega_0 + I_w(\omega_0 - v/R)] / (I_p)[/tex].

To answer your question, we will use the conservation of angular momentum. The initial angular momentum of the system is the product of the platform's moment of inertia and its initial angular velocity, plus the woman's moment of inertia and angular velocity relative to the platform.

The moment of inertia of the platform is [tex]I_p = (1/2)MR^2[/tex].

Since the woman is initially at the edge, her moment of inertia is [tex]I_w = mR^2[/tex].

The initial angular momentum of the system is [tex]L_{initial} = I_p \omega_0 + I_w (\omega_0 - v/R)[/tex].

As the woman moves toward the center, her moment of inertia decreases, and so does the total moment of inertia of the system. Let r(t) be the distance of the woman from the center at time t.

Then, her moment of inertia at time t is [tex]I_w(t) = mr(t)^2[/tex].

The angular momentum is conserved, so

[tex]L_{initial} = I_p \omega(t) + I_w(t)(\omega(t) - v/r(t))[/tex].

Solving for ω(t), we get:

[tex]\omega(t) = [I_p \omega_0 + I_w(\omega_0 - v/R)] / (I_p + I_w(t))[/tex]

When the woman reaches the center (r = 0), the angular velocity is:

[tex]\omega_{center} = [I_p \omega_0 + I_w(\omega_0 - v/R)] / (I_p)[/tex]

This is the required expression.

Learn more about angular velocity:

https://brainly.com/question/29342095

#SPJ11


Related Questions

an observer on a space station measures the length of a meterstick that is inside a passing spaceship. if she measures 0.7 m , what would an observer on the spaceship measure for a meterstick on the space station?

Answers

According to the theory of relativity, length measurements depend on the relative motion of the observer and the object being measured. In this case, the observer on the space station measures the length of a meterstick inside a passing spaceship, which means that the meterstick is moving relative to the observer.

Let us assume that the observer on the space station measures the meterstick to be 0.7 m long. This measurement corresponds to the proper length of the meterstick, which is the length of the meterstick as measured by an observer who is at rest relative to the meterstick.

Now, let us consider an observer on the spaceship. According to the theory of relativity, the length of the meterstick as measured by the observer on the spaceship will be shorter than the proper length of the meterstick, due to the relative motion between the observer and the meterstick.

The relationship between the length of the meterstick as measured by the observer on the spaceship (L') and the length of the meterstick as measured by the observer on the space station (L) is given by the Lorentz contraction formula:

L' = L / γ

where γ is the Lorentz factor, which is given by:

γ = 1 / sqrt(1 - v^2/c^2)

where v is the relative velocity between the observer on the spaceship and the meterstick, and c is the speed of light.

Since the meterstick is moving relative to the observer on the space station, we can assume that the relative velocity between the observer on the spaceship and the meterstick is equal to the velocity of the spaceship relative to the space station. Let us assume that the velocity of the spaceship relative to the space station is v = 0.8c, where c is the speed of light.

Plugging in the values for L and v, we get:

γ = 1 / sqrt(1 - 0.8^2) = 1.67

L' = L / γ = 0.7 / 1.67 = 0.42 m

Therefore, an observer on the spaceship would measure the meterstick on the space station to be 0.42 m long.

Learn more about theory of relativity, here:

brainly.com/question/364776

#SPJ11

Consider a wave traveling down a cord and the transverse motion of a small
piece of the cord. Which of the following is true? Give reasons.
(i The speed of the wave must be the same as the speed of a small piece
of the cord.
(ii) The frequency of the wave must be the same as the frequency of a
small piece of the cord.
(iii) The amplitude of the wave must be the same as the amplitude of a
small piece of the cord.
(iv)
Both (ii) and (iii) are true.

Answers

(iv) Both (ii) and (iii) are true. The frequency of the wave must be the same as the frequency of a small piece of the cord because the wave is made up of the vibrations of the individual particles of the cord.

The amplitude of the wave must also be the same as the amplitude of a small piece of the cord because the amplitude is the maximum displacement of the particle from its rest position, and this is the same for both the wave and the individual particle.

However, the speed of the wave is not necessarily the same as the speed of a small piece of the cord because the wave is a result of the interaction between the particles and may have a different speed depending on the properties of the medium.
Let's consider each statement one by one:

(i) The speed of the wave must be the same as the speed of a small piece of the cord.
- This statement is false. The speed of the wave refers to the speed at which the wave itself travels down the cord. The speed of a small piece of the cord refers to the transverse motion of that piece as it oscillates up and down. These two speeds are not the same.

(ii) The frequency of the wave must be the same as the frequency of a small piece of the cord.
- This statement is true. The frequency of the wave refers to the number of oscillations per unit time. Since the small piece of the cord is part of the wave, it oscillates with the same frequency as the wave itself.

(iii) The amplitude of the wave must be the same as the amplitude of a small piece of the cord.
- This statement is true. The amplitude of the wave is the maximum displacement of any point on the cord from its equilibrium position. Since the small piece of the cord is part of the wave, its maximum displacement (amplitude) will be the same as the amplitude of the wave.

(iv) Both (ii) and (iii) are true.
- This statement is true because, as explained earlier, both (ii) and (iii) are true statements.

So, the correct answer is: Both (ii) and (iii) are true. The frequency and amplitude of the wave must be the same as the frequency and amplitude of a small piece of the cord, respectively.

Learn more about amplitude here:-  brainly.com/question/8662436

#SPJ11

When is the energy of the interaction big according to Coulomb's Law?

Answers

According to Coulomb's Law, the energy of the interaction between two charged particles is big when the magnitudes of the charges are large and the distance between them is small. This is because the force of interaction is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

According to Coulomb's Law, the energy of the interaction between two charged particles is directly proportional to the product of their charges and inversely proportional to the distance between them squared. Therefore, the energy of the interaction will be big when the charges of the particles are large and/or the distance between them is small. Conversely, the energy of the interaction will be small when the charges of the particles are small and/or the distance between them is large.

To know more about Coulomb's Law click here:

https://brainly.com/question/506926

#SPJ11

1. (20 points) Three devices are connected in parallel in a European household circuit at 230 V. These devices are rated at 15 W, 150 W, and 240 W. (a) Calculate the resistance for each of the devices (b) What is the equivalent resistance? (c) Calculate the current through each of the devices

Answers

(a) Resistance for each devices are: 3546.67 Ω, 3533.33 Ω and 2224.17 Ω.

(b) The equivalent resistance of the parallel combination of the three devices is approximately 3556.91 Ω.

(c) The current through each of the devices are: 65 mA, 65 mA and 103 mA.

To calculate the resistance for each of the devices, we can use Ohm's Law, which states that resistance (R) is equal to the voltage (V) divided by the power (P):

(a) Resistance for each device:

Device 1 (15 W): R₁ = V² / P = (230 V)² / 15 W ≈ 3546.67 Ω

Device 2 (150 W): R₂ = V² / P = (230 V)² / 150 W ≈ 3533.33 Ω

Device 3 (240 W): R₃ = V² / P = (230 V)² / 240 W ≈ 2224.17 Ω

(b) To find the equivalent resistance (Req) of devices connected in parallel, we can use the formula:

1/Req = 1/R₁ + 1/R₂ + 1/R₃

Substituting the values, we have:

1/Req = 1/3546.67 Ω + 1/3533.33 Ω + 1/2224.17 Ω

Calculating this expression, we find:

1/Req ≈ 0.000281 Ω⁻¹

Taking the reciprocal of both sides, we get:

Req ≈ 3556.91 Ω

Therefore, the equivalent resistance of the parallel combination of the three devices is approximately 3556.91 Ω.

(c) To calculate the current through each device, we can use Ohm's Law again:

Current (I) = Voltage (V) / Resistance (R)

For each device:

Device 1 (15 W): I₁ = 230 V / 3546.67 Ω ≈ 0.065 A (or 65 mA)

Device 2 (150 W): I₂ = 230 V / 3533.33 Ω ≈ 0.065 A (or 65 mA)

Device 3 (240 W): I₃ = 230 V / 2224.17 Ω ≈ 0.103 A (or 103 mA)

Therefore, the current through each of the devices is approximately:

Device 1: 0.065 A (or 65 mA)

Device 2: 0.065 A (or 65 mA)

Device 3: 0.103 A (or 103 mA)

To know more about Resistance , refer here:

brainly.com/question/21441738#

#SPJ11

how long could this (20% efficient) generator supply power to a 1500 w electrical heater with the 5 gal of gas?

Answers

The generator can supply power to the 1500W electrical heater for approximately 22.4 hours with 5 gallons of gas.



1. Gasoline contains approximately 33.6 kWh of energy per gallon. So, for 5 gallons, the total energy content is:
5 gallons * 33.6 kWh/gallon = 168 kWh
2. Considering the generator is 20% efficient, the usable energy will be:
168 kWh * 0.20 = 33.6 kWh
3. Now, we can calculate how long the 1500W heater can be powered using the 33.6 kWh of usable energy:
33,600 Wh (since 1 kWh = 1,000 Wh) / 1500 W = 22.4 hours



Hence, the generator can supply power to the 1500W electrical heater for approximately 22.4 hours with 5 gallons of gas.

learn more about generator click here:

https://brainly.com/question/12950635

#SPJ11

how much pressure does a 7000-kg elephant exert on the ground? the circular cross-section of each foot has a diameter of 50 c

Answers

The  pressure exerted by a 7000-kg elephant on the ground depends on the total area of its feet in contact with the ground.

We first need to calculate the area of one foot.

Given that the circular cross-section of each foot has a diameter of 50 cm, we can find the radius by dividing the diameter by 2, which is 25 cm (or 0.25 m).

The area of a circle is calculated using the formula A = πr². So, the area of one foot is A = π(0.25)² ≈ 0.196 m².
Assuming the elephant has 4 feet, the total area in contact with the ground would be 4 × 0.196 m² ≈ 0.784 m².

To find the pressure exerted, we use the formula P = F/A, where P is pressure, F is force (which is the elephant's weight), and A is the area. The weight of the elephant can be calculated as mass × gravitational acceleration (F = m × g), where m = 7000 kg and g = 9.81 m/s². Therefore, F = 7000 × 9.81 ≈ 68670 N.
Now we can calculate the pressure exerted: P = 68670 N / 0.784 m² ≈ 87589.54 Pa (Pascals).


Hence , a 7000-kg elephant with a circular cross-section of each foot having a diameter of 50 cm exerts a pressure of approximately 87589.54 Pa on the ground.

learn more about force click here:

https://brainly.com/question/12785175

#SPJ11

a research vessel at sea uses 590 khz ultrasound waves to image a shipwreck on the ocean floor. if the shipwreck is 340 m below the surface of the ocean, how long should the researchers expect to wait for the first echoes to arrive? the speed of sound in seawater is 1560 m/s. 1

Answers

The researchers should expect to wait approximately 4.36 seconds for the first echoes to arrive.

To calculate the time it takes for the echoes to arrive, we need to use the formula:

Time = Distance / Speed

The distance in this case is the twice the depth of the ocean, since the sound waves need to travel from the research vessel to the ocean floor and then back to the vessel. Therefore, the distance is:

2 x 340 m = 680 m

The speed of sound in seawater is given as 1560 m/s. Plugging in these values into the formula, we get:

Time = 680 m / 1560 m/s = 0.436 seconds

Therefore, the researchers should expect to wait approximately 4.36 seconds for the first echoes to arrive.

learn more about ultrasound waves

https://brainly.com/question/22844181

#SPJ11

if the rms value of the electric field in an electromagnetic wave is doubled, by what factor does the rms value of the magnetic field change?

Answers

The RMS value of the magnetic field (B) will also be doubled when the RMS value of the electric field (E) is doubled. The factor by which the magnetic field changes is 2.

To provide a detailed explanation, when the RMS value of the electric field in an electromagnetic wave is doubled, the RMS value of the magnetic field also changes. The relationship between the electric and magnetic fields in an electromagnetic wave is governed by Maxwell's equations. These equations state that the electric and magnetic fields are perpendicular to each other and vary in intensity in a synchronized way.

In an electromagnetic wave, the intensity of the electric field and the magnetic field are related by a constant known as the impedance of free space. This constant determines the strength of the magnetic field for a given strength of the electric field. Therefore, if the RMS value of the electric field is doubled, the RMS value of the magnetic field will also double. This means that the strength of both fields increases proportionally.

To solve this mathematically, we first need to understand the relationship between the electric field (E) and the magnetic field (B) in an electromagnetic wave. This relationship is given by the formula:

E = c * B

where E is the RMS value of the electric field, B is the RMS value of the magnetic field, and c is the speed of light in a vacuum.

Now, if the RMS value of the electric field (E) is doubled, we have:
2E = c * B'

where B' is the new RMS value of the magnetic field. We can now express B' in terms of the original magnetic field B:
2E = c * B'
2(c * B) = c * B'
2B = B'

Hence, the RMS value of the magnetic field (B) will also be doubled when the RMS value of the electric field (E) is doubled. The factor by which the magnetic field changes is 2.

Learn more about electromagnetic waves here:

https://brainly.com/question/3101711

#SPJ11

Match the following.

1 .
chlorophyll
green pigment
2 .
stomata
pores in leaf
3 .
guard cell
chain of glucose units
4 .
carbon dioxide
no leaves
5 .
starch
source of carbon for plant
6 .
hybrid
nutrients added to soil
7 .
fertilizer
pea plants
8 .
Mendel
regulates opening
9 .
cacti
cross between two varieties

Answers

Answer: chlorophyll - green pigment

stomata - pores in leaf

guard cell - regulates opening

carbon dioxide - source of carbon for plant

starch - chain of glucose units

hybrid - cross between two varieties

fertilizer - nutrients added to soil

Mendel - pea plants

cacti - no leaves

Explanation:

Native people throughout North and South America used a bola to hunt for birds and animals. A bola can consist of three stones, each with mass m, at the ends of three light cords, each with length l. The other ends of the cords are tied together to form a Y. The hunter holds one stone and swings the other two stones above her head. Both stones move together in a horizontal circle of radius 2l with speed
v0. At a moment when the horizontal component of their velocity is directed toward the quarry, the hunter releases the stone in her hand. As the bola flies through the air, the cords quickly take a stable arrangement with constant 120-degree angles between them. In the vertical direction, the bola is in free fall. Gravitational forces exerted by the Earth make the junction of the cords move with the downward acceleration. You may ignore the vertical motion as you proceed to describe the horizontal motion of the bola

Answers

The bola consists of three stones, each with mass m, attached to the ends of three light cords, each with length l, that are tied together to form a Y shape.

When the hunter releases one of the stones while swinging the other two stones above their head, the cords quickly take a stable arrangement with a constant angle of 120 degrees between them. The bola then undergoes horizontal circular motion with a radius of 2l and speed v₀, while ignoring the vertical motion due to gravitational forces.

The bola is a hunting tool used by native people in North and South America, consisting of three stones with mass m, attached to the ends of three light cords with length l, which are tied together to form a Y shape. When the hunter releases one of the stones while swinging the other two stones above their head, the cords quickly take a stable arrangement with a constant angle of 120 degrees between them.

In the horizontal direction, the bola undergoes circular motion with a radius of 2l and a speed of v₀. This means that the stones move in a horizontal circle with the hunter holding one stone as the center of rotation. The horizontal component of the velocity of the stones is directed toward the quarry at a particular moment when the hunter releases the stone in their hand.

The vertical motion of the bola is ignored in this scenario, as the gravitational forces exerted by the Earth do not significantly affect the horizontal motion. The junction of the cords, where the stones are tied together, moves with downward acceleration due to gravity. However, the horizontal motion of the stones remains unchanged during this process.

Understanding the physics of the bola's motion, including the circular motion in the horizontal plane and the free fall in the vertical plane, is essential for accurately describing its behavior during hunting or other uses. Properly accounting for the effects of gravity, mass, cord length, and initial velocity is crucial in analyzing the bola's trajectory and predicting its behavior during use.

To know more about vertical motion refer here:

https://brainly.com/question/11049671#

#SPJ11

how much heat, in joules, is transferred into a system when its internal energy decreases by 145 j while it was performing 32.5 j of work?

Answers

112.5 joules is transferred into a system when its internal energy decreases by 145 j while it was performing 32.5 j of work.

The first law of thermodynamics states that the change in internal energy of a system is equal to the heat transferred into the system minus the work done by the system. In this case, the internal energy decreased by 145 J, and the work done was 32.5 J.

Therefore, the heat transferred into the system can be calculated as:

Heat transferred = Change in internal energy + Work done

Heat transferred = (-145 J) + (32.5 J)

Heat transferred = -112.5 J

The heat transferred is negative, indicating that the system lost heat. Therefore, 112.5 joules of heat were transferred out of the system.

Learn more about internal energy at

https://brainly.com/question/14668303

#SPJ4

at what, if any, temperature are the numerical readings on the fahrenheit and celsius scales the same?

Answers

Answer:

-40 c and -40 F

Explanation:

They are both the same as eachother on the scale of fahrenheit and Celsius the simple method to find when two temperatures scales are equal to each other is to set the conversion factors for the two scales equal to each other and solve for temperature

which of the following statements are true? check all that apply. view available hint(s)for part a which of the following statements are true?check all that apply. the average kinetic energy of gas molecules decreases with decreasing temperature. there are gas molecules that move slower than the average. the temperature of a gas sample is related to the average kinetic energy. the average speed of gas molecules is independent of temperature. the average speed of gas molecules increases with increasing temperature.

Answers

The true statements are: the average kinetic energy decreases with decreasing temperature, some gas molecules move slower than average, and temperature relates to average kinetic energy.


1. The average kinetic energy of gas molecules decreases with decreasing temperature. As temperature decreases, gas molecules move slower, resulting in lower kinetic energy.

2. There are gas molecules that move slower than the average. In any gas sample, there's a distribution of molecular speeds, with some molecules moving slower and others faster than the average.

3. The temperature of a gas sample is related to the average kinetic energy. Higher temperature corresponds to higher average kinetic energy, as gas molecules move faster with increased thermal energy.

The average speed of gas molecules depends on temperature and increases with it.

For more such questions on kinetic energy, click on:

https://brainly.com/question/8101588

#SPJ11

if two coils placed next to one another have a mutual inductance of 5.50 mh, what voltage (in v) is induced in one when the 4.00 a current in the other is switched off in 40.0 ms?

Answers

If two coils placed next to one another have a mutual inductance of 5.50 mH, what voltage (in V) is induced in one when the 4.00 A current in the other is switched off in 40.0 ms?
The voltage induced in one coil is 550 V.


The mutual inductance (M) is given as 5.50 mH (or 0.0055 H). The change in current (∆I) is 4.00 A, and the time taken to switch off the current (∆t) is 40.0 ms (or 0.040 s). To find the induced voltage, we can use the formula:
V = M * (∆I/∆t)
Plugging in the given values:
V = 0.0055 H * (4.00 A / 0.040 s)
V = 550 V


Summary: When a 4.00 A current in one of the two coils with a mutual inductance of 5.50 mH is switched off in 40.0 ms, a voltage of 550 V is induced in the other coil.

Learn more about voltage click here:

https://brainly.com/question/1176850

#SPJ11

the figure below and to the right shows the light intensity on a viewing screen behind a circular aperture. what happens to the width of the central maximum if a. the wavelength is increased? b. the diameter of the aperture is increased? c. how will the screen appear if the aperture diameter is less that the light wavelength?

Answers

The width of the central maximum in the figure is directly related to the wavelength and diameter of the circular aperture. If the wavelength is increased, the width of the central maximum will also increase.

This is because the diffraction pattern is directly related to the size of the aperture in relation to the wavelength. If the wavelength increases, the diffracted waves will spread out more, resulting in a wider central maximum.

Similarly, if the diameter of the aperture is increased, the width of the central maximum will decrease. This is because a larger aperture will result in less diffraction and a sharper central maximum.

If the aperture diameter is less than the light wavelength, the screen will appear uniform in brightness with no discernible diffraction pattern. This is because the size of the aperture is too small to cause significant diffraction of the light waves. In this case, the light will simply pass through the aperture and continue on in a straight line.

Learn more about wavelength here:

brainly.com/question/12924624

#SPJ11

when a single-lens camera is focused on a distant object, the lens-to-film distance is found to be 40.0 mm. to focus on an object 0.540 m in front of the lens, the lens-to-film distance should be

Answers

Therefore, to focus on an object 0.540 m in front of the lens, the lens-to-film distance should be 37.6 mm. This means that we need to move the lens closer to the film by 2.4 mm (40.0 mm - 37.6 mm) in order to bring the image of the closer object into sharp focus.

When a camera lens is focused on a distant object, the distance between the lens and the film (or digital sensor) is equal to the focal length of the lens. This is because the lens is designed to bring parallel rays of light to a focus at a specific distance from the lens, which is called the focal length.

In this case, we are given that the lens-to-film distance for the distant object is 40.0 mm. This means that the focal length of the lens is also 40.0 mm, assuming that the lens is a thin lens with negligible thickness.

To focus on an object 0.540 m in front of the lens, we need to adjust the lens-to-film distance to bring the image of the object into sharp focus on the film. The formula that relates the lens-to-film distance, the object distance, and the focal length of the lens is:

1/f = 1/d_o + 1/d_i

where f is the focal length, d_o is the object distance, and d_i is the image distance (which is equal to the lens-to-film distance for a thin lens).

We can rearrange this equation to solve for d_i:

1/d_i = 1/f - 1/d_o

d_i = 1 / (1/f - 1/d_o)

Plugging in the values we know, we get:

d_i = 1 / (1/40.0 mm - 1/0.540 m)

d_i = 37.6 mm

To know more about single-lens camera,

https://brainly.com/question/14097025

#SPJ11

what happens to the core and envelope of a star at the end of its main-sequence stage

Answers

At the end of the main-sequence stage, the core of a star begins to fuse heavier elements while the envelope expands and cools, eventually leading to the star's death and transformation into a remnant object.

During the main-sequence stage of a star's life, the core of the star is undergoing nuclear fusion, producing energy that radiates outwards to the envelope of the star. As the star nears the end of its main-sequence stage, the core begins to run out of hydrogen fuel, causing it to contract and heat up. This contraction and heating causes the envelope of the star to expand and cool, resulting in the star becoming larger and redder. Eventually, the core of the star will become hot and dense enough to begin fusing helium into heavier elements. This fusion process causes the core to once again expand and heat up, leading to a series of instabilities that can cause the outer layers of the star to be expelled into space. The end result is a star that has exhausted its fuel and is now a white dwarf, neutron star, or black hole, depending on its mass.
At the end of a star's main-sequence stage, the core and envelope undergo significant changes. The main-sequence stage is when a star is fusing hydrogen into helium in its core, which generates energy and supports the star against gravitational collapse.
1. Core: As hydrogen fuel in the core is depleted, the core contracts and heats up. Eventually, the temperature and pressure become high enough for helium to fuse into heavier elements, such as carbon and oxygen, in a process called helium burning. This marks the end of the main-sequence stage and the beginning of the next evolutionary stage for the star.
2. Envelope: As the core contracts and heats up, the outer layers of the star (the envelope) expand and cool down. This expansion causes the star to increase in size and become a red giant or supergiant, depending on its mass. The envelope's outer layers are eventually shed into space, sometimes forming a planetary nebula.
The ultimate fate of the star, whether it becomes a white dwarf, neutron star, or black hole, depends on its mass and the processes that occur after the main-sequence stage.

learn more about hydrogen fuel here: brainly.com/question/29765115

#SPJ11

A 30.0 μF capacitor initially charged to 30.0 μC is discharged through a 1.70 kΩ resistor. How long does it take to reduce the capacitor's charge to 30.0 μC ?

Answers

It takes about 1.28 ms for the capacitor's charge to reduce to 30.0 μC.

The voltage across a capacitor discharged through a resistor can be described by the equation:

V(t) = [tex]V_{0} * e^{(-t/RC)}[/tex]

where V(t) is the voltage at time t, [tex]V_{0}[/tex]is the initial voltage (in this case, [tex]V_{0}[/tex] = Q/C, where Q is the initial charge ,C is the capacitance, R is the resistance and t is time.

In this problem, we are given[tex]V_{0}[/tex](30.0 μC/30.0 μF = 1.0 V), R (1.70 kΩ), and C (30.0 μF), and we are asked to find the time it takes for the charge to reduce to 30.0 μC.

To do this, we can rearrange the equation above to solve for t:

t = -RC * ln(V/[tex]V_{0}[/tex])

where ln is the natural logarithm.

Plugging in the given values, we get:

t = -(1.70 kΩ * 30.0 μF) * ln(30.0 μC/(30.0 μF * 1.0 V))

t ≈ 1.28 ms

Therefore, it takes about 1.28 ms for the capacitor's charge to reduce to 30.0 μC.

To know more about capacitor's charge refer here:

https://brainly.com/question/29100869

#SPJ11

a 5.1 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m -long seesaw. how far to the left of the pivot must a 4.0 kg cat stand to keep the seesaw balanced?

Answers

The 4.0 kg cat must stand 1.9 meters to the left of the pivot to balance the seesaw. To keep the seesaw balanced, the torques on both sides of the pivot must be equal.

Torque is defined as force multiplied by distance from the pivot.  The weight of the 5.1 kg cat and 2.5 kg bowl of tuna fish will exert a torque on the right side of the pivot, while the weight of the 4.0 kg cat on the left side will exert a torque on the left side of the pivot.

Let x be the distance the 4.0 kg cat stands from the pivot. Then, the torque on the right side is (5.1+2.5)kg * 4.0m = 30.4 Nm. To balance this, the torque on the left side must also be 30.4 Nm.

Therefore,

(4.0kg * x)m = 30.4Nm, and

x = 7.6m/4.0kg = 1.9m.

To know more about Torque visit:

https://brainly.com/question/31248352

#SPJ11

akeem is walking on the beach on a hot summer day. the sand is very hot, so he runs and puts his feet in the water, which is much cooler. explain why

Answers

Akeem is walking on the beach on a hot summer day and the sand is very hot. This is because sand has a low specific heat capacity, which means that it does not retain heat well and can easily get hot when exposed to the sun. As Akeem walks on the sand, his feet absorb this heat and start to feel uncomfortable and even painful.

In order to cool down his feet, Akeem runs towards the water and puts his feet in it. This is because water has a high specific heat capacity, which means that it can retain a lot of heat without getting hot quickly. As a result, the water is much cooler than the sand.

When Akeem puts his feet in the water, the heat from his feet is transferred to the water, which has a lot of capacity to absorb it. This causes the water to warm up slightly, but not enough to make it uncomfortable for Akeem. At the same time, the water cools down Akeem's feet, making him feel much more comfortable.

In summary, Akeem runs towards the water and puts his feet in it because the water has a higher specific heat capacity than the sand, which means that it can absorb the heat from his feet without getting hot quickly. This cools down his feet and makes him feel much more comfortable on the hot summer day.

To know more about specific heat of capacity, refer

https://brainly.com/question/27991746

#SPJ11

Answer:Sample Response: The water is cooler than the sand because it has a higher specific heat value. This means that it takes longer for the water to increase in temperature, making it feel cooler than the sand, which warms up more quickly.

A solid of mass 1.3kg, suspended by a string is completely in water. If the tension in the string is 6.0N, calculate;
i) the upthrust on the solid
ii) volume of the solid
iii) its density
(g=10m/s^2 , density of water=1000kg/m^3)​

Answers

Answer:

1:- The upthrust on the solid:- 0.013N

2:- Volume of the solid:- 1.3 Kg/density

3) Density:- 46.15 Kg/m^3

Explanation:

1) The upthrust on the solid is equal to the weight of the water displaced by the solid, which is given by Archimedes' principle. Therefore, we can calculate the upthrust using the formula:

Upthrust = Weight of water displaced = Volume of water displaced x Density of water x Gravity

Since the solid is completely submerged in water, the volume of water displaced is equal to the volume of the solid.

Thus:

Upthrust = Volume of solid x Density of water x Gravity

Upthrust = (1.3 kg / 1000 kg/m^3) x 10 m/s^2

Upthrust = 0.013 N

2) We can use the formula for density to calculate the volume of the solid, which is given by:

Density = Mass / Volume

Rearranging the formula:

Volume = Mass / Density

Volume = 1.3 kg / Density

We know from part (i)

that the upthrust on the solid is equal to the weight of the water displaced, which means that the solid is in equilibrium (i.e., the forces acting on it are balanced).

Therefore:

Weight of the solid = Tension in the string

Weight of the solid = Mass x Gravity

Mass = Weight of the solid / Gravity

Mass = 6.0 N / 10 m/s^2

Mass = 0.6 kg

Substituting the values for mass and density, we get:

Volume = 0.6 kg / Density

0.013 m^3 = 0.6 kg / Density

Density = 0.6 kg / 0.013 m^3

Density = 46.15 kg/m^3.

how can astronomers determine the size of an emission region in a very distant and unresolvable source?

Answers

astronomers determine the size of an emission region in a very distant and unresolvable source by using a technique called interferometry

Astronomers can determine the size of an emission region in a very distant and unresolvable source by using a technique called interferometry. This technique involves combining data from multiple telescopes, which act as virtual lenses, to create a larger "virtual" telescope with a higher resolution. By analyzing the interference patterns in the combined data, astronomers can estimate the size of the emission region. Another method is to analyze the shape and intensity of the emission, which can provide clues about the size and shape of the source. However, both of these methods have limitations, and estimating the size of emission regions in very distant sources remains a challenging task for astronomers.

Learn more about emission region at

brainly.com/question/13662275

#SPJ11

what must be the moment of inertia of the turntable about the rotation axis? express your answer in kilogram meters squared.

Answers

The moment of inertia of a turntable about its rotation axis can be determined using the formula I = (1/2) * M * R² where M is the mass of the turntable and R is its radius. The answer is expressed in kilogram meters squared (kg m²).

To determine the moment of inertia of a turntable about its rotation axis, we first need to understand some key concepts. Moment of inertia (I) is a measure of an object's resistance to rotational motion, and it depends on both the mass of the object and its distribution around the axis of rotation. In simple terms, it tells us how difficult it is to change the rotational speed of an object.

For a turntable, we can assume it is a flat, uniform circular disc with a known mass (M) and radius (R). The moment of inertia for a circular disc rotating about an axis passing through its center and perpendicular to the plane of the disc can be calculated using the formula:

I = (1/2) * M * R²

Here, M is the mass of the turntable in kilograms (kg) and R is the radius of the turntable in meters (m). To express the moment of inertia in kilogram meters squared (kg m²), simply plug in the given values of mass and radius into the formula and solve for I.

As an example, if the mass of the turntable is 5 kg and the radius is 0.5 m, the moment of inertia would be:

I = (1/2) * 5 kg * (0.5 m)² = 0.625 kg m²

Learn more about moment of inertia here:

https://brainly.com/question/15246709

#SPJ11

A particle with a charge of 5. 5 x 10^-8 c is 3. 5 cm from a particle with a charge of -2. 3 x10^-8 c. The potential energy of this two particle system relative to the potential energy at infinite separation is:

Answers

The potential energy of this two particle system relative to the potential energy at infinite separation will be (A) 3.25 x 10⁻⁴ J is the correct option.

The potential energy of a system of two point charges can be calculated using the formula:

U = (k × q₁ × q₂) / r

where U is the potential energy, k is Coulomb's constant (9 x 10⁹ N m²/C²), q₁ and q₂ are the charges of the particles, and r is the distance between the particles.

In this case, q₁ = 5.5 x 10⁻⁸ C, q₂ = -2.3 x 10⁻⁸ C, and r = 3.5 cm = 0.035 m. Substituting these values into the formula, we get:

U = (9 x 10⁹N m²/C²)  (5.5 x 10⁻⁸ C) * (-2.3 x 10⁻⁸C) / 0.035 m

U = -3.25 x 10⁻⁴ J

The negative sign indicates that the potential energy is negative, which means that the two particles are attracted to each other.

To calculate the potential energy relative to the potential energy at infinite separation, we need to subtract the potential energy at infinite separation from the actual potential energy. At infinite separation, the potential energy is zero, so:

Urelative = U₀

Urelative = -3.25 x 10⁻⁴ J

Therefore, the potential energy of this two particle system relative to the potential energy at infinite separation is -3.25 x 10⁻⁴ J.

Thus, the correct option (A).

The complete question is ,

A particle with a charge of 5.5 times 10-8 C is 3.5 cm from a particle with a charge of -2.3 times 10-8 C. The potential energy of this two-particle system, relative to the potential energy at infinite separation, is: 3.2 times 10-4 J -3.2 times 10-4 J 9.3 times 10-3 J -9.3 times 10-3 J zero B

To know more about potential energy

https://brainly.com/question/21106740

#SPJ4

Suppose there is a desert with two people, Anya and Bryce, and two goods, rocks and sand piles. Let Anya's allocation of rocks and sand piles be denoted by (rA, SA) and Bryce's by (rb, sb). Their respective utility functions are

1/2 uA(TA, SA) and ub(TB, 8B) = 1/2 =rA SA =TB + SB

In total, there are 10 rocks and 10 sand piles in the market. Anya's endowment is ea, a pair denoting her initial allocation of rocks and sand piles. Bryce's endowment es is the remaining rocks and sand piles. For Questions (3)-(5), the prices of rocks and sand piles are pr and Ps respectively. You can ignore any corner solutions in this problem. (1) Suppose Anya's endowment is ea = (6,6).

a. Find MRSA and MRSB. Suppose Anya's endowment is ea = (6,3).
b. Find MRSA and MRSB.

Answers

A. In the case where Anya's endowment is ea = (6,6), the marginal rate of substitution (MRS) of rocks for sand piles for Anya (MRSA) is 1/2. The marginal rate of substitution (MRS) of rocks for sand piles for Bryce (MRSB) is 1.

B. In the case where Anya's endowment is ea = (6,3), the marginal rate of substitution (MRS) of rocks for sand piles for Anya (MRSA) is 1/2. The marginal rate of substitution (MRS) of rocks for sand piles for Bryce (MRSB) is 2/3.

A. The marginal rate of substitution (MRS) represents the rate at which a person is willing to exchange one good for another while keeping their utility constant. It is the slope of the indifference curve.

For Anya, her utility function is given as 1/2 uA(TA, SA). Since the utility function is homogeneous of degree 1/2, the MRS of rocks for sand piles (MRSA) for Anya is equal to the ratio of the marginal utility of rocks (MUₐ) to the marginal utility of sand piles (MUₛ):

MRSA = MUₐ / MUₛ

Given that the utility function is 1/2 uA(TA, SA), the marginal utility of rocks (MUₐ) is 1/2 and the marginal utility of sand piles (MUₛ) is 1.

Therefore, MRSA = (1/2) / 1 = 1/2.

For Bryce, his utility function is ub(TB, SB) = 1/2 (TB + SB). Since the utility function is linear, the MRS of rocks for sand piles (MRSB) for Bryce is constant and equal to the ratio of the coefficients of the goods in the utility function:

MRSB = coefficient of rocks (TB) / coefficient of sand piles (SB)

Given that the utility function is 1/2 (TB + SB), the coefficient of rocks (TB) is 1 and the coefficient of sand piles (SB) is 1.

Therefore, MRSB = 1 / 1 = 1.

B. Following the same reasoning as in part A, the MRS of rocks for sand piles (MRSA) for Anya remains 1/2, as it depends on the utility function and not the endowment.

For Bryce, with Anya's endowment of ea = (6,3), Bryce's endowment is es = (4,7) (remaining rocks and sand piles in the market). The utility function for Bryce remains ub(TB, SB) = 1/2 (TB + SB).

The coefficient of rocks (TB) in the utility function is 1 and the coefficient of sand piles (SB) is 2.

Therefore, MRSB = 1 / 2 = 2/3.

By calculating the MRS for each individual, we can understand their preferences and willingness to trade one good for another while maintaining their utility level.

To know more about marginal rate of substitution (MRS) refer here:

https://brainly.com/question/30692880#

#SPJ11

at point a, the magnetic field points 12.3 degrees away from the vertical and has the magnitude of 5 nt (just outside of earth’s atmosphere).

(a) What would be the magnitude of the magnetic force on an electron be at Point A? The speed of the electron is 465 m/s. Tries 0/8

(b) What would be the magnitude of the acceleration of the at Point A?

Answers

The magnitude of the force is 4.69 x 10^-14 N and The magnitude of the acceleration is 5.14 x 10^16 m/s^2

(a) The magnetic force on an electron can be calculated using the equation:

F = qvB sinθ,

F = (-1.6 x 10^-19 C) x (465 m/s) x (5 T) x sin(12.3°)

F ≈ -4.69 x 10^-14 N

The magnitude of the force is simply the absolute value of this result:

|F| ≈ 4.69 x 10^-14 N

(b) The acceleration of the electron can be calculated with the equation:

F = ma,

a = (-4.69 x 10^-14 N) / (9.11 x 10^-31 kg)

a ≈ -5.14 x 10^16 m/s^2

Therefore , the magnitude of the acceleration and force  is simply the absolute value of this result:

|F| ≈ 4.69 x 10^-14 N

|a| ≈ 5.14 x 10^16 m/s^2

To know more about acceleration and force refer here:

https://brainly.com/question/25116504

#SPJ11

A particle of mass 2.0kg moves under the influence of the force f(x)=(−5x2 7x)n. if its speed at x=−4.0m is v=20.0m/s, what is its speed at x=4.0m?

Answers

Answer:We can use the work-energy theorem to solve this problem, which states that the net work done on a particle is equal to its change in kinetic energy. Mathematically:

W_net = ΔK

where W_net is the net work done and ΔK is the change in kinetic energy.

The net work done on the particle is equal to the work done by the force f(x) between the two positions. Mathematically:

W_net = ∫_x1^x2 f(x) dx

where x1 and x2 are the initial and final positions of the particle, respectively.

Substituting the given force, we get:

W_net = ∫_-4^4 (-5x^2 + 7x) dx

Integrating, we get:

W_net = [(5/3)x^3 - (7/2)x^2]_-4^4

W_net = [(5/3)*(4^3) - (7/2)*(4^2)] - [(5/3)*(-4^3) - (7/2)*(-4^2)]

W_net = -416 J

The negative sign indicates that the net work done by the force is negative, which means that the force does negative work and reduces the particle's kinetic energy.

We can now use the work-energy theorem to find the change in kinetic energy between the two positions. Mathematically:

ΔK = W_net

ΔK = -416 J

The change in kinetic energy is equal to the final kinetic energy minus the initial kinetic energy. Mathematically:

ΔK = K_f - K_i

where K_f and K_i are the final and initial kinetic energies, respectively.

Substituting the given initial speed and mass, we can find the initial kinetic energy:

K_i = (1/2) * m * v_i^2

K_i = (1/2) * 2.0 kg * (20.0 m/s)^2

K

Explanation:

The speed of the particle at x = 4.0 m is approximately 13.04 m/s (rounded to two decimal places). The total energy of a particle includes its kinetic energy and potential energy.

To solve this problem, we need to use the conservation of energy principle, which states that the total energy of a system remains constant, i.e., energy is conserved.  Therefore, we can write:

Initial energy (at x = -4.0 m) = Final energy (at x = 4.0 m)

The kinetic energy of the particle is given by:

[tex]K = (1/2)mv^2[/tex]

where

m is the mass of the particle and

v is its speed.

The potential energy of the particle is given by:

U(x) = ∫F(x)dx

where

F(x) is the force acting on the particle and

dx is an infinitesimal displacement.

Integrating the given force with respect to x, we get:

[tex]U(x) = (-5/3)x^3 + (7/2)x^2[/tex]

Therefore, the initial energy of the particle is:

Ei = K + U(-4.0)

   [tex]= (1/2)(2.0 kg)(20.0 m/s)^2 + [(-5/3)(-4.0)^3 + (7/2)(-4.0)^2][/tex]

    = 425.33 J

Similarly, the final energy of the particle is:

Ef = K + U(4.0)

 [tex]= (1/2)(2.0 kg)v^2 + [(-5/3)(4.0)^3 + (7/2)(4.0)^2][/tex]

[tex]= (1/2)(2.0 kg)v^2 + 85.33 J[/tex]

Since the total energy is conserved, we can equate Ei and Ef, and solve for v:

[tex]425.33 J = (1/2)(2.0 kg)v^2 + 85.33 J[/tex]

[tex]340 J = (1/2)(2.0 kg)v^2[/tex]

[tex]v^2 = 340 J / (2.0 kg)[/tex]

[tex]v = \sqrt{(170) m/s[/tex]

Therefore, the speed of the particle at x = 4.0 m is approximately 13.04 m/s (rounded to two decimal places).

To know more about kinetic energy refer here

brainly.com/question/999862#

#SPJ11

If the Sun passes almost in front of the center of our Milky Way Galaxy, it does so...
A. Once a year
B. Only in 2012, at the end of the Mayan Calendar
C. Once a month
D. Once a day

Answers

The Sun passes almost in front of the center of our Milky Way Galaxy once a year.

The Milky Way is a barred spiral galaxy, with a central bar-shaped structure surrounded by a disk of stars, gas, and dust.

The center of the Milky Way contains a supermassive black hole, which is surrounded by a region of intense radiation and high-energy particles.

The Sun's orbit around the center of the Milky Way is tilted at an angle of about 60 degrees relative to the plane of the galactic disk.

As a result, the Sun passes through the galactic plane twice each year, once when it is moving northward and once when it is moving southward.

However, the Sun only passes almost in front of the center of the Milky Way once a year, when it is aligned with the galactic center.

This alignment occurs around December 21st or 22nd of each year, which is coincidentally close to the winter solstice in the Northern Hemisphere.

During this time, the Sun is aligned with the center of the Milky Way, which is approximately 27,000 light-years away from Earth.

While this alignment is an interesting astronomical event, it has no significant effect on Earth or the Sun.

To know more about Milky Way Galaxy visit link :

https://brainly.com/question/2905713

#SPJ11

a 3.00 kg lump of clay is moving to the right at a speed of 10.0 m/s. a 1.00 kg rock, which is moving to the left with a speed of 6.00 m/s, collides with and sticks to the clay. after they collide they move off together. find the following: a. find the magnitude and direction of the velocity of the masses after the collision. b. find the total kinetic energy of the system of masses before the collision, c. find total kinetic energy of the system of masses after the collision, d. find the change in kinetic energy of the system of masses during the collision

Answers

Answer:

a.  6.0 m/s to the right

b.  168 J

c.   72 J

d.   96 J

Explanation:

a.

(3.0 kg)(10 m/s) + (1.0 kg)(-6.0 m/s) = (3.0 + 1.0 kg)v

24 kg·m/s = (4.0 kg)v

v = (24 kg·m/s)/(4.0 kg) = 6.0 m/s to the right

b.

KEbefore = 1/2(3.0 kg)(10.0 m/s)² + 1/2(1.0 kg)(-6 m/s)² = 150 J + 18 J = 168 J

c.

KEafter = 1/2(4 kg)(6.0 m/s)² = 72 J

d.

ΔKE = 168 J - 72 J = 96 J

96 J of KE converted to thermal energy as a result of the collision

a firehose must be able to shot water to the top of a building h tall when aimed straight up. water enters this hose at a steady rate of av and shoots out a of round nozzle. what is the maximum diameter the nozzle can have if the nozzle diamter is twice as great, what is the maximum height the water can reach

Answers

The maximum diameter the nozzle can have if the nozzle diameter is twice as great will be h = [tex]Av^2/2[/tex]mg

The maximum height the water can reach will be d = [tex]\sqrt{(4Av^2/(pi \times \sqrt(2gh) \times (2mg)))[/tex]

Assuming negligible air resistance and friction losses, the maximum height, h, that the water can reach can be calculated using the conservation of energy. The potential energy gained by the water is equal to the work done by the water pressure, which is given by:

mgh =[tex]Av^2/2[/tex]

where m is the mass of water that enters the hose per unit time, g is the acceleration due to gravity, and A is the cross-sectional area of the hose. Solving for h, we get:

h = [tex]Av^2/2[/tex]mg

To reach the top of the building, h, the maximum diameter of the nozzle, d, can be calculated by equating the maximum velocity of the water leaving the nozzle with the minimum velocity required at the top of the building, given by:

v = [tex]\sqrt(2gh)[/tex]

Thus, the maximum diameter of the nozzle can be calculated as:

d = [tex]\sqrt{(4Av^2/(\pi \times sqrt(2gh) \times (2mg)))[/tex]

If the nozzle diameter is doubled, the maximum height that the water can reach would also be doubled, as the velocity of the water leaving the nozzle remains the same.

For more such answers on potential energy

https://brainly.com/question/14427111

#SPJ11

Other Questions
let [-1 -2 6][-1 -3 8][0 0 0 ][2 5 -14]Find a basis for the kernel of A (or, equivalently, for the linear transformation T(x)=Ax)A basis for the image of A is [2][0][2][0]{ [1][0] }[0][1] Which of the following portions of a program can complicate the instruction-caching process? (Check all that apply) Decision Structures Repetition Structures Sequential Execution Branching electroencephalographs (eegs) of individuals in stage n1 sleep are characterized by _____ waves. the mechanism of chymotrypsin involves which of the following elements? a. stabilization of the positively charged his by a gln residue b. deprotonation of an active site asp residue by his to start the reaction c. formation of an acyl-enzyme intermediate that must be hydrolyzed to complete the reaction d. direct deprotonation of water by his to generate a hydroxide ion for initiation of the reaction e. both b and c occur Any more earths out there answers Which statements are true for this function and graph? Select three options.The initial value of the function is One-third.The base of the function is One-third.The function shows exponential decay.The function is a stretch of the function f(x) = (one-third) Superscript x.The function is a shrink of the function f(x) = 3x. 3. As sample size, n, increases: a. Do you expect the likelihood of selecting cases or members with extreme/outlying values to decrease, stay the same, or increase? 3. Draw the expected product for each of the following reactions (1 point): Hint: The last step (5) includes three transformations: phthalimide hydrolysis; bis-ester hydrolysis; decarboxylation 1) ) 2) Br : NH DMF Chemical Formula: C15H15N06 3) NaOEt 5) H30* heat 4) Br OCH3 OCH3 Chemical Formula: C 11H15N04 Chemical Formula: C24H25NO, use of antimicrobials can promote some disease states such as candida vaginitis and clostridium difficile pseudomembraneous colitis. an ideal antimicrobial against agent x would meet all of the following criteria except: narrow spectrum of activity (acts against x, but not normal microbiota). cidal rather than static. selective toxicity (high therapeutic index). lack of drug resistance. broad spectrum killing many microorganisms 10/(x-2)=7/(x+2) what is the solution? Which of the following is not an advantage of establishing an enterprise risk management system within an organization? a. Reduces operational surprises. b. Provides integrated responses to multiple risks. c. Eliminates all risks. d. Identifies opportunities. Statement: In the Integer division block, the width of the quotient register cannot be the same size as that of the divisor or the dividend, Select the best answer that correctly gives the reason if the above statement is true or false a. False: The quotient registers needs to be the same size as that of the dividend, as this number could be equal to the dividend b. False: The quotient width needs to be equal to the sum of the widths of the divisor and the dividend, else there will be an overflow c. True: The width of the quotient has to be 32 bits no matter the size of the divisor or dividend d. True: The width of the quotient register is always going to be smaller than the dividend or divisor, since we are dividing. So the quotient register always needs to be smaller in width a nurse is caring for a client diagnosed with sleep apnea. what guidance should the nurse provide the client to promote sleep? the scatter plot shows the average ticket price and the number of wins fora certain NFL teams.How much more is the average price of a ticket for a team with than a team with 3 wins? round to the nearest dollar if necessary.PLS HELP ME AHHH What roles do concepts, models and theories play in politicalanalysis? what are the main characteristics of romanticism and how those are reflected in painting and literature? give specific examples of each. the area of the retina that contains many cone cells, and is the area of sharpest vision, is known as learners retain _______ by teaching others or by another immediate use of the learning. 4) preganglionic neurons of the autonomic nervous system are located in a) the brain. b) the lateral gray horns of the spinal cord. c) the posterior gray horns of the spinal cord. d) both the brainstem It is the 1770s and you are visiting the colonies from a country other than Great Britain. How would you describe the conflict between the colonists and the British? Write a letter to a friend back in your country giving your impressions of the disagreement. Please, if you are not going to answer the question correctly do not :(