a tuning fork vibrating at 512 hz falls from rest and accelerates at 9.80 m/s2. how far below the point of release is the tuning fork when waves with a frequency of 480 hz reach the release point? take the speed of sound in air to be 340 m/s

Answers

Answer 1

Tuning fork is 0.223 m below the point of release when waves with frequency of 480 Hz reaches the release point.

What is a frequency?

Number of waves that pass a fixed point in the unit time is known as frequency.

y = 1/2 * a * t²

y is distance traveled, a is acceleration, and t is time.

t = √(2y/a)

v = f *  λ

v is speed of sound, f is the frequency, and  λ is wavelength.

λ = v/f = 340 m/s / 480 Hz = 0.708 m

y = n *  λ/2

where n is the number of half-wavelengths traveled.

y = λ/2 = 0.354 m

t = √(2y/a) --> y = 1/2 * a * t² = 1/2 * 9.80 m/s² * (2y/9.80 m/s²) = y

t = √(2y/a) --> t = √(2y/a) = √(2 * 0.354 m / 9.80 m/s²) = 0.212 s

Therefore, tuning fork falls for 0.212 seconds before the sound wave reaches the release point. During that time, the tuning fork travels a distance of:

y = 1/2 * a * t² = 1/2 * 9.80 m/s² * (0.212 s)² = 0.223 m

Therefore, tuning fork is 0.223 m below the point of release when waves with a frequency of 480 Hz reach the release point.

To know more about frequency, refer

https://brainly.com/question/254161

#SPJ1


Related Questions

a woman changes a flat tire with a tire iron 50.0 cm long. she exerts a force of 53.0 N. How much torque does she produce?

Answers

The woman produces a torque of 26.5 Nm while changing the flat tire with a 50.0 cm long tire iron and exerting a force of 53.0 N. To find the torque produced, we can use the following formula:


Torque (τ) = Force (F) × Lever arm length (r) × sin(θ), where:
τ = Torque
F = Force (53.0 N in this case)
r = Lever arm length (50.0 cm or 0.5 m in this case)
θ = Angle between force and lever arm (assumed to be 90 degrees for maximum torque)



Since the woman is using the tire iron perpendicular to the tire, we can assume that the angle between the force and the lever arm is 90 degrees. In this case, the sine of 90 degrees is 1, so the formula simplifies to:
Torque (τ) = Force (F) × Lever arm length (r)
Now, we can plug in the values given in the question:
τ = 53.0 N × 0.5 m
τ = 26.5 Nm.So, the woman produces a torque of 26.5 Nm

To know more about torque click here

brainly.com/question/30719994

#SPJ11

Which of the curves in the figure represents an isobaric process? (a) horizontal (b) a steep curve (c) a less steeper curve (d) a very steep curve.

Answers

The curve that represents an isobaric process is the horizontal curve in the figure.

An isobaric process is a thermodynamic process that occurs at constant pressure. This means that the pressure of the system does not change during the process, and the horizontal curve in the figure represents a constant pressure.In contrast, a steep curve represents a rapid change in pressure, which indicates that the process is not isobaric. A less steep curve also indicates a change in pressure, albeit at a slower rate than a steep curve. Therefore, neither of these curves represents an isobaric process. Similarly, a very steep curve also represents a change in pressure that is not constant, and therefore, it does not represent an isobaric process.

More on isobaric process: https://brainly.com/question/30666598

#SPJ11

if a meteor passing by the earth has more kinetic energy then potential energy, what type of orbit will it follow?

Answers

Answer: Because energy is conserved an object can’t be “captured” into orbiting a larger object unless there is a way to transfer energy to some third thing. It has to collide, either mechanically or gravitationally, with something and transfer energy to it: another body, a cloud of gas or dust, or something.

The kinetic energy of a body gravitationally interacting changes all the time, regardless of “capture”, as it get closer to another gravitating body it speeds up because energy is conserved and the loss of gravitational potential is compensated by increase in kinetic energy. The closer a comet comes to the Sun the faster it goes. The further away it gets, the slower it goes.

which one of the following light bulb produces lowest lumens per watt? group of answer choices fluorescent low pressure sodium compact fluorescent light incandescent

Answers

The light bulb that produces the lowest lumens per watt is incandescent bulb. So, the correct answer is incandescent bulb.

An incandescent bulb is a type of electric light bulb that emits light by using a filament that glows when an electric current flows through it. An incandescent bulb is a kind of lamp that generates light by heating a filament inside a bulb until it radiates light.

Incandescent bulbs are the least energy-efficient bulbs on the market. They waste a lot of energy by emitting heat in addition to light, making them unsuitable for use in homes and buildings in hot weather. Incandescent bulbs, on average, produce 10 to 17 lumens per watt.

Therefore, it is the incandescent bulb that produces the lowest lumens per watt.

Know more about incandescent bulb here:

https://brainly.com/question/230401

#SPJ11

During reading:
1. Name two types of situations in which stars create elements and fling them out into space.

Answers

Answer: Reasons are below <3

Explanation:

Reason 1. Some of the heavier elements in the periodic table are created when pairs of neutron stars collide cataclysmically and explode, researchers have shown for the first time.

Reason 2. Light elements like hydrogen and helium formed during the big bang, and those up to iron are made by fusion in the cores of stars.

Brainliest? <33

when the mass of water that an iceberg displaces is equal to the mass of the iceberg, it floats. this is an example of group of answer choices upwelling. isostacy. tomography. gravity.

Answers

This is an example of isostacy. Isostacy is the principle that an object, such as an iceberg, will float when its mass is equal to the mass of the water it displaces.
When the mass of water that an iceberg displaces is equal to the mass of the iceberg, it floats. This is an example of isostacy. Isostasy is the equilibrium between the weight of the Earth's crust and the force exerted by the mantle underneath it. The Earth's crust can exert a pressure on the mantle, resulting in the underlying mantle flowing away from areas of high pressure and towards areas of low pressure.

Isostasy has significant implications for the Earth's surface, including the elevation of mountains and the settling of the ocean floor. Tomography refers to the technique of creating 3D images of an object or area using X-rays, ultrasound, or other types of energy. The technique can be used in many fields, including medicine, geology, and engineering. Upwelling has significant effects on marine ecosystems as it provides nutrients for phytoplankton to grow and for other organisms to feed on.

Learn more about isostacy:

https://brainly.com/question/4347729

#SPJ11

A fisherman rows a boat North directly across a river at 2m/s. The current of the river flows to East at 1.3m/s.
Represent the vectors for given situation graphically.​

Answers

Here is a graphical representation of the vector pointing upwards represents the fisherman's velocity attached.

What are vectors?

Vectors are mathematical objects used to represent quantities that have both magnitude and direction. They can be visualized as arrows, where the length of the arrow represents the magnitude of the vector and the direction of the arrow represents the direction of the vector.

Examples of quantities that can be represented as vectors include force, velocity, acceleration, and displacement. The vector pointing upwards represents the fisherman's velocity of 2 m/s towards the North, while the vector pointing towards the right represents the river's current of 1.3 m/s towards the East.

Learn more on vectors here: https://brainly.com/question/25811261

#SPJ1

are the net force on an object and the acceleration of the object directly proportional?explain, using experimental data to support your answer.

Answers

Yes, the net force on an object and the acceleration of the object are directly proportional, as shown by experimental data and supported by Newton's second law of motion.

According to Newton's Second Law of Motion, the net force on an object and its acceleration are exactly related. According to this rule, an object's acceleration is inversely related to its mass and directly proportionate to the net force acting on it. The validity of the law has been shown by data from several tests that have repeatedly proven this link. One illustration of such an experiment is measuring the force necessary to accelerate an item using a spring scale. The link between force and acceleration may be determined by applying various forces and observing the resulting acceleration.

learn more about acceleration here:

https://brainly.com/question/30499732

#SPJ4

an athlete hurts their wrist. they put an ice directly on the wrist. in which direction is the thermal energy moving?

Answers

The thermal energy is moving from the athlete's wrist to the ice.

Explanation:

Heat always flows from hotter objects to colder objects. When the athlete puts ice on their injured wrist, the thermal energy (heat) flows from the wrist, which is warmer, to the ice, which is colder. This transfer of thermal energy causes the injured wrist to cool down, reducing inflammation and pain. The ice absorbs the thermal energy from the wrist, causing it to melt and become warmer. Therefore, the thermal energy is moving from the wrist to the ice.

To know more about thermal energy, here

brainly.com/question/678606

#SPJ4

the attraction or repulsion between electric charges

Answers

The attraction or repulsion between electric charges or the force between two charge bodies is called the coulomb force.

Coulomb's law or coulombs force (or Coulomb's inverse-square law) defines the force wielded by an electric field on an electric charge. This is the force acting between electrically charged objects and is determined by the value of the commerce between two stationary point electric charges in a vacuum. Coulomb's law states" The electrical force of magnet or aversion between two charges is equally commensurable to the forecourt of the distance that separates them." Coulomb's force is a consequence of Newton's third law that states that when two bodies interact, equal and contrary forces appear in each of them.

To learn more about Coulomb's law, click here:

brainly.com/question/506926

#SPJ4

Complete question: What is the attraction or repulsion between electric charges or the force between two charge bodies is called?

a 1500 kg car traveling at 30 m/s has the same kinetic energy as a 4500 kg truck what is the speed of this truck

Answers

The speed of the truck is approximately 17.32 m/s when a 1500kg ha sthe same Kinetic energy as a 4500kg truck.

The kinetic energy (KE) of an object is given by the formula:

[tex]KE = (1/2) * m * v^2[/tex]

where m is the mass of the object and v is its velocity.

In this problem, we are given that the kinetic energy of a 1500 kg car traveling at 30 m/s is the same as the kinetic energy of a 4500 kg truck. Therefore, we can write:

[tex](1/2) * 1500 * 30^2 = (1/2) * 4500 * v^2[/tex]

Simplifying this equation, we get:

[tex]675000 = 2250 * v^2[/tex]

Dividing both sides by 2250, we get:

[tex]v^2 = 300[/tex]

Taking the square root of both sides, we get:

[tex]v = \sqrt (300) = 17.32 m/s[/tex]

Kinetic energy (KE) is the energy that an object possesses due to its motion. Any object that is in motion has kinetic energy, and the amount of kinetic energy it has depends on its mass and velocity.

learn more about kinetic energy here:

https://brainly.com/question/26472013

#SPJ1

a car is traveling with a speed of 15.0 m/s along a straight horizontal road. the wheels have a radius of 0.300 m. if the car speeds up with a linear acceleration of 1.10 m/s2 for 6.00 s, find the angular displacement of each wheel during this period.

Answers

The angular displacement of each wheel during this period will be 19.8 rad.

Angular displacement can be defined as the change in the position of an object as it moves along the circumference of a circle. Angular displacement can be calculated using the formula:

angular displacement = angular velocity x time

Thus, Angular displacement = Δθ = ω2 - ω1 = (αt2) / 2 - (αt1) / 2

Where ω1 and ω2 are the initial and final angular velocity, α is the angular acceleration, t1 and t2 are the initial and final time, and Δθ is the angular displacement.

In this question, the radius of the wheel is given as 0.300 m, the initial speed of the car is 15.0 m/s, the linear acceleration is 1.10 m/s², and the time is given as 6.00 s.

Linear acceleration a = 1.10 m/s²

Time taken, t = 6.00 s

Initial velocity, u = 15.0 m/s

Final velocity, v = u + at= 15 + 1.10 × 6= 21.6 m/s

Now, angular speed,ω = v / r= 21.6 / 0.300= 72 rad/s

Angular displacement during this period= Δθ = ω2 - ω1= (αt2) / 2 - (αt1) / 2= (1.10 × 6.00²) / 2 - (1.10 × 0²) / 2= 19.8 rad

The angular displacement of each wheel during this period is 19.8 rad.

Learn more about Angular displacement at: brainly.com/question/29679072

#SPJ11

in what direction are the magnetic field lines surrounding a straight wire carrying a current that is moving directly away from you

Answers

The magnetic field lines surrounding a straight wire carrying a current that is moving directly away from you would form concentric circles around the wire, following the right-hand rule.

When a straight wire carrying a current is moving directly away from you, the magnetic field lines surrounding the wire will form concentric circles around it. The direction of these magnetic field lines can be determined by applying the right-hand rule. If you point your right thumb in the direction of the current flow, the direction of the magnetic field lines would be in the direction that your fingers curl around the wire. Specifically, the magnetic field lines will be perpendicular to the plane of the circles formed by the wire, and the direction of the field lines will be clockwise if the current is flowing towards you and counterclockwise if the current is flowing away from you. This is due to the way that the magnetic field lines wrap around the wire as a result of the current flow.

learn more about magnetic field lines here;

https://brainly.com/question/17011493

#SPJ4

snow is falling vertically at a constant speed of 7.0 m/s. at what angle from the vertical do the snowflakes appear to be falling as viewed by the driver of a car traveling on a straight, level road with a speed of 32 km/h?

Answers

The angle from the vertical at which the snowflakes appear to be falling as viewed by the driver of the car is 53.3 degrees.

When the car is moving, the snowflakes appear to be falling at an angle due to the relative motion between the observer and the snowflakes. To calculate this angle, we first convert the speed of the car from km/h to m/s. Then, we use the tangent function to find the angle between the vertical direction and the apparent direction of snowfall. The tangent of the angle θ is the ratio of the horizontal and vertical components of the velocity of the snowflakes. Since the snow is falling vertically, the velocity in the vertical direction is 7.0 m/s. The horizontal component is equal to the velocity of the car, which is 8.89 m/s after conversion.

Using the tangent function, we find:

tan θ = 8.89 / 7.0

θ = 53.3 degrees

Therefore, the snowflakes appear to be falling at an angle of 53.3 degrees from the vertical as viewed by the driver of the car.

learn more about relative motion here:

https://brainly.com/question/30428774

#SPJ4

g assuming the pressure remains constant, if the radius of a bronchial tube through which gas flows at a rate of 40 l/min is reduced by 16%, find the new flow rate through the bronchial tube.

Answers

Given that the rate of gas flow through a bronchial tube is 40 L/min and the radius of the tube is reduced by 16%, we have to find the new flow rate through the bronchial tube is: 16.4 L/min.

As per Poiseuille’s formula, the rate of gas flow through a tube is directly proportional to the fourth power of the radius, i.e., Q = k*r⁴ where Q is the rate of gas flow, r is the radius, and k is a constant.

The new flow rate of the bronchial tube after the reduction of radius can be found as follows:
Let the new radius be r’. Then, r’ = r − 0.16r = 0.84r
Therefore, Q’ = k * r’⁴= k * (0.84r)⁴= k * 0.41r⁴ (rounded to two decimal places)

Now, the rate of gas flow through the bronchial tube is 40 L/min.
Therefore, k*r⁴ = 40=> k = 40/r⁴ Substituting this value of k in the above equation, we get Q’ = 40/r⁴ * 0.41r⁴= 16.4 L/min (rounded to one decimal place)

To know more about "Bronchial tube" refer here:

https://brainly.com/question/13962287#

#SPJ11

you wake up in a spaceship feeling being pushed down to the floor. what could be the possible cause?

Answers

There could be a few possible causes for feeling pushed down to the floor while waking up in a spaceship. One possibility is: that the spaceship is experiencing a sudden acceleration or change in velocity, causing the sensation of increased gravity or g-forces.

Another possibility is that the artificial gravity system on the spaceship is malfunctioning, resulting in an increase in the force of gravity felt by the occupants.

Alternatively, the sensation could be a result of waking up in a low-gravity environment after being used to Earth's higher gravity, which can cause a feeling of heaviness or difficulty moving at first.

It is probable that the spaceship is encountering a sudden acceleration or velocity change, resulting in an increased sensation of gravity or g-forces. The artificial gravity system on the spaceship might also be malfunctioning, resulting in an increase in the gravitational force felt by the occupants.

Lastly, waking up in a low-gravity environment after being used to Earth's higher gravity can cause a sensation of heaviness or difficulty moving at first.

To learn more about "low-gravity environment" here:

https://brainly.com/question/26906545#

#SPJ11

the magnetic field inside a 27-cm -diameter solenoid is increasing at 2.4 t/s . how many turns should a coil wrapped around the outside of the solenoid have so that the emf induced in the coil is 15 v ?

Answers

The coil wrapped around the outside of the solenoid should have 6 turns so that the emf induced in the coil is 15 v.

Given,

Diameter of solenoid, d = 27 cm;  Radius, r = 13.5 cm = 0.135 m;  Magnetic field, B = 2.4 T;  Number of turns of coil outside the solenoid, N;  Emf induced, V = 15 V.

The formula for calculating emf is given by;

e = −N dB/dt

Where, e = induced emf, N = number of turns,  dB/dt = rate of change of magnetic field

Rearranging the equation;

N = − e / ( dB/dt )

Solving for N;

N = − e / ( dB/dt )

N = − ( 15 V ) / ( 2.4 T/s )

N = - 6.25 turns

The number of turns of the coil outside the solenoid should be 6.25. Since this is not possible, we round off to the nearest integer, which is 6.

Therefore, the coil wrapped around the outside of the solenoid should have 6 turns so that the emf induced in the coil is 15 V.

Know more about emf of coil here:

https://brainly.com/question/17329842

#SPJ11

radiation
Electromag
8. Calculate the momentum and velocity of:
a) An electron having a de Broglie wavelength of 2.0 × 10-⁹ m.
b) A proton of mass 1.67 x 10-27 kg and a de Broglie wavelength of 5.0 nm.
19. Calculate the associated de Broglie wavelength of the electrons in an electron beam which has
been accelerated through a pd of 4000V.
20. An alpha particle emitted from a radon-220 nucleus is found to have a de Broglie wavelength of
5.7 x 10-15 m. Calculate the energy of the alpha particle in MeV.
Electron diffraction

Answers

a) The momentum of an electron having a de Broglie wavelength of 2.0 × 10⁻⁹ m is 3.31 × 10⁻²⁴ kg m/s and its velocity is 1.09 × 10⁶ m/s1.

b) The momentum of a proton of mass 1.67 x 10-27 kg and a de Broglie wavelength of 5.0 nm is 1.32 × 10⁻²² kg m/s and its velocity is 2.21 × 10⁶ m/s1.

The associated de Broglie wavelength of the electrons in an electron beam which has been accelerated through a pd of 4000V is 0.012 nm2.

The energy of the alpha particle in MeV emitted from a radon-220 nucleus is 5.5 MeV3.

de Broglie wavelength

The de Broglie wavelength is the wavelength, λ, associated with an object and is related to its momentum and mass. According to wave-particle duality, the de Broglie wavelength is a wavelength manifested in all the objects in quantum mechanics which determines the probability density of finding the object at a given point of the configuration space1.

The de Broglie wavelength of a particle is inversely proportional to its momentum.

To know more about alpha particle ,visit :

https://brainly.com/question/2288334

#SPJ1

a person shouted at the surface of a well abd heard his echo clearly after 0.3seconds calculate the distance between the person and surface of water in the well​

Answers

Answer:

Assuming that the sound wave reflected only once off the surface of the water and traveled straight back up to the person, we can calculate the distance between the person and the surface of the water in the well as follows:

Distance = (Speed of sound in air x Time)/2

Where the speed of sound in air is approximately 343 meters per second at standard temperature and pressure, and the time is 0.3 seconds.

Distance = (343 m/s x 0.3 s)/2

Where the speed of sound in air is approximately 343 meters per second at standard temperature and pressure, and the time is 0.3 seconds.

Distance = (343 m/s x 0.3 s)/2

Distance = 51.45 meters

Therefore, the distance between the person and the surface of the water in the well is approximately 51.45 meters.

Learning Goal: To understand the magnetic force on a straight current- carrying wire in a uniform magnetic field. Magnetic fields exert forces on moving charged particles, whether those charges are moving independently or are confined to a current-carrying due north wire. The magnetic force F on an individual moving charged particle depends on its velocity v and charge q. In the case of a current-carrying wire, many charged particles are simultaneously in motion, so the magnetic force denends on the total current I and the lenath of What is the direction of the magnetic force acting on the wire in part b due to the applied magnetic field?
- due south - due east - due west - straight up - straight down

Answers

The direction of  magnetic force acting on a current-carrying wire in a uniform magnetic field depends on  direction of  magnetic field and the direction of the current. The correct answer is option: c .

The force is perpendicular to both the direction of the magnetic field and the direction of  current, and follows  right-hand rule. To use the right-hand rule, point  thumb of your right hand in the direction of the current, and then curl your fingers in  direction of the magnetic field. The direction in which your fingers point is the direction of  magnetic force acting on the wire. Therefore, the direction of magnetic force acting on the wire in part b will be due west . Option: c is correct.

To know more about magnetic force, here

brainly.com/question/3160109

#SPJ4

-- The complete question is, To understand the magnetic force on a straight current- carrying wire in a uniform magnetic field.

Magnetic fields exert forces on moving charged particles, whether those charges are moving independently or are confined to a current-carrying due north wire.

The magnetic force F on an individual moving charged particle depends on its velocity v and charge q. In the case of a current-carrying wire, many charged particles are simultaneously in motion,

So the magnetic force depends on the total current I and the Length of What is the direction of the magnetic force acting on the wire in part b due to the applied magnetic field?

a.- due south

b - due east

c- due west

d- straight up

e- straight down --

please answer this questioj i rly need it​

Answers

The distribution of charges in an electric field is determined by the properties of the electric field and the objects or charges involved.

How is charge distributed in an electric field?

In an electric field, charges are distributed in a way that depends on the nature and strength of the field, as well as the properties of the objects involved.

In a uniform electric field, charges are distributed uniformly across the surface of a conductor, such that the electric field inside the conductor is zero. This is known as electrostatic shielding.

In a non-uniform electric field, charges are distributed such that the electric field is perpendicular to the surface of the conductor at every point. This is known as the "normal field".

In a charged object placed in an electric field, the charges in the object may rearrange themselves to create a net electric field inside the object that opposes the external electric field. This can result in a reduction in the net electric field inside the object.

Learn more about charge distribution at: https://brainly.com/question/28027633

#SPJ1

a circular steel wire 2.00 m long must stretch no more than 0.25 cm when a tensile force of 700 n is applied to each end of the wire. what minimum diameter is required for the wire?

Answers

A circular steel wire 2.00 m long must stretch no more than 0.25 cm when a tensile force of 700 n is applied to each end of the wire. The minimum diameter that is required for the wire is 1.50 × 10⁴ m.

The formula that would help solve the problem is:

ΔL = FL/ (πd²E × 4)

Where;ΔL = 0.25 cm=0.0025 m, F = 700N, l = 2.00 m, d = ?, E = 2.0 × 10¹¹Pa

For wire, E = Young’s modulus, and d = diameter.

Substituting values into the formula;

0.0025m = 700N × 2.00m/(πd² × 2.0 × 10¹¹Pa × 4)

0.0025m = 1400/(πd² × 8 × 10¹¹)

0.0025m = 0.00001745/d²

2.25 × 10⁸ = d²

d = √(2.25 × 10⁸) = 1.50 × 10⁴ m

The minimum diameter that is required for the wire is 1.50 × 10⁴ m.

Know more about Young’s modulus here :

https://brainly.com/question/13257353

#SPJ11

if the wire used to make the filament is 0.040 mm in diameter (a typical value), how long must the filament be?

Answers

If we have the volume, mass, or material, we can use the diameter of the wire to calculate the length.

To determine the length of the filament, we need more information, such as the volume or mass of the filament, or the specific material it is made from.

Here's a general explanation assuming we have the necessary information:    
1. Obtain the volume, mass, or material of the filament.
2. If you have the mass and material, find the density of the material.

Density can be found using reference sources or online databases.
3. If you have the mass and density, calculate the volume of the filament using the formula:

Volume = Mass / Density.
4. Calculate the cross-sectional area of the wire using the diameter.

The cross-sectional area (A) can be found using the formula: A = π[tex](D/2)^2[/tex],

where D is the diameter of the wire.
5. Determine the length (L) of the filament by dividing the volume (V) by the cross-sectional area (A): L = V / A.
Please provide more information about the filament, such as the volume, mass, or material, so we can help you calculate the length.

For similar question on filament.

https://brainly.com/question/24243186

#SPJ11

The decay constant of a radioactive nuclide is 3.1 x 10-3 s-1. At a given instant, the activity of a specimen of the nuclide is 70 Bq The time interval required for the activity to decline to 10 Bq is closest to:
A) 630 s B) 880 s C) 750 s D) 820 s E) 690 s

Answers

The time interval required for the activity to decline to 10 Bq is closest to 820 s. The correct answer is Option D.

The half-life of a radioactive isotope is the time required for half of the atoms in a given quantity of the isotope to decay. The decay constant, on the other hand, is a parameter used to describe how rapidly a radioactive material decays.

The time interval required for the activity to decline can be calculated using the formula:

Activity_final = Activity_initial * e^(-decay_constant * time)

Where Activity_initial is 70 Bq, Activity_final is 10 Bq, and the decay_constant is 3.1 x 10⁻³ s⁻¹.

Rearranging the formula to find the time:

time = (ln(Activity_final / Activity_initial)) / (-decay_constant)

Plugging in the values:

time = (ln(10 / 70)) / (-3.1 x 10⁻³)

time ≈ 820 s

So, the closest answer is D) 820 s.

Learn more about decay constant here: https://brainly.com/question/27723608

#SPJ11

in a sealed container with rigid walls, what happens to the pressure inside the container when the temperature is tripled?

Answers

According to the ideal gas law (PV = nRT), the pressure within the container will rise by a factor of three if the container's volume stays constant.

When the temperature is tripled, what happens to the pressure?

The pressure rises as the Kelvin temperature rises. The relationship between the two amounts is direct proportionality. The pressure of the gas will treble when the Kelvin temperature is tripled.

How does rising temperature affect pressure?

The average kinetic energy and the velocity of the gas particles striking the container walls both rise as the temperature rises. As the temperature rises, the pressure must as well since pressure is the force the particles per unit of area exert on the container.

To know more about ideal gas law visit:-

https://brainly.com/question/2758818

#SPJ1

A bucket of water of mass 14.3 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.260 m with mass 12.5 kg. The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.5 m to the water. You can ignore the weight of the rope. A. What is the tension in the rope while the bucket is falling? B. With what speed does the bucket strike the water? C. What is the time of fall? D. While the bucket is falling, what is the force exerted on the cylinder by the axle?

Answers

Answer:A. To find the tension in the rope while the bucket is falling, we need to use the conservation of energy. At the top of the well, the bucket has potential energy mgh = (14.3 kg)(9.81 m/s^2)(10.5 m) = 1479 J. This potential energy is converted to kinetic energy as the bucket falls. At the bottom of the well, the bucket has only kinetic energy, given by KE = (1/2)mv^2, where v is the speed at which the bucket strikes the water. Since there is no work done by non-conservative forces like friction, the total mechanical energy is conserved. Therefore:

mgh = (1/2)mv^2 + (1/2)Iω^2,

where I is the moment of inertia of the cylinder and ω is its angular velocity. We know that the cylinder is a solid cylinder, so I = (1/2)MR^2, where M is the mass of the cylinder and R is its radius. We also know that the cylinder is rolling without slipping, so v = Rω. Substituting these expressions into the conservation of energy equation and solving for the tension T, we get:

T = mgh / (R(1 + m/M))

Plugging in the numbers, we get:

T = (14.3 kg)(9.81 m/s^2)(10.5 m) / (0.130 m(1 + 14.3 kg / 12.5 kg)) = 137 N

Therefore, the tension in the rope while the bucket is falling is 137 N.

B. To find the speed at which the bucket strikes the water, we can use the conservation of energy equation derived in part A. Solving for v, we get:

v = sqrt(2gh(M+m) / (mM + (1/2)m^2))

Plugging in the numbers, we get:

v = sqrt(2(9.81 m/s^2)(10.5 m)(12.5 kg + 14.3 kg) / ((14.3 kg)(12.5 kg) + (1/2)(14.3 kg)^2)) = 9.38 m/s

Therefore, the speed at which the bucket strikes the water is 9.38 m/s.

C. To find the time of fall, we can use the kinematic equation:

y = 1/2gt^2,

where y is the distance fallen, g is the acceleration due to gravity, and t is the time of fall. Solving for t, we get:

t = sqrt(2y/g)

Plugging in the numbers, we get:

t = sqrt(2(10.5 m)/(9.81 m/s^2)) = 1.47 s

Therefore, the time of fall is 1.47 s.

D. While the bucket is falling, the cylinder is rotating about its center of mass, which is also the axis of rotation. Since there is no net torque about this axis, the cylinder is not accelerating rotationally. Therefore, the force exerted on the cylinder by the axle is zero.

Explanation:

the stationary spectrum at the top in the above diagram shows the visible lines for hydrogen at rest. which spectrum displays the hydrogen lines for a star that is moving away from us?

Answers

The spectrum that shows the hydrogen lines for a star that is moving away from us is the redshifted spectrum.

What are hydrogen lines?

Hydrogen lines refer to the spectral lines of the hydrogen atom that are produced when the electron in the hydrogen atom jumps from a higher energy level to a lower energy level. The lines appear in the spectrum at wavelengths of 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm when hydrogen gas is illuminated by a light source. Spectra, in general, are divided into two categories: emission spectra and absorption spectra.

Hydrogen lines are commonly seen in the emission spectra of stars. The stationary spectrum at the top in the diagram shown below displays the visible lines for hydrogen at rest. However, when a star is moving away from us, its hydrogen lines will experience a shift towards longer wavelengths, which is known as redshift. This shift is caused by the Doppler effect. Therefore, the spectrum that displays the hydrogen lines for a star that is moving away from us is the redshifted spectrum.

Learn more about the stationary spectrum:

https://brainly.com/question/16865678

#SPJ11

according to the big bang theory, why do we live in a universe that is made of almost entirely of matter rather than antimatter?

Answers

According to the big bang theory, we live in a universe that is made of almost entirely of matter rather than antimatter because of a slight excess of matter over antimatter that occurred during the early universe.

This excess is thought to be due to a process called baryogenesis, which involves the production of baryons (such as protons and neutrons) from an initial state of pure energy during the first fractions of a second after the big bang.

The exact mechanism by which baryogenesis occurred is not well understood, but several possible theories have been proposed, including the idea that it is related to the violation of CP symmetry (which refers to the combination of charge conjugation and parity) in the early universe.

In any case, the slight excess of matter over antimatter meant that when matter and antimatter particles collided and annihilated each other during the early universe, there were more matter particles left over, which eventually led to the formation of the structures we see in the universe today.

For more question on big bang theory click on

https://brainly.com/question/29014839

#SPJ11

When a ray of light strikes a surface, it can be _, _ or _

Answers

Answer;

it can be incident ray.

Incident ray!!! This is correct

A phoneme is the largest unit of sound in a word.truefalse

Answers

False. A phoneme is actually the smallest unit of sound in a word that can change its meaning. For example, in English, the words "cat" and "bat" differ by only one phoneme which changes the meaning of the word.

Phonemes are distinct sounds that are used to distinguish one word from another in a language. They are not the same as letters, although they are often represented by letters in written language. The number of phonemes varies across languages, with some languages having more or fewer phonemes than others.

Phonemes are important for understanding how sounds are organized in language, and they are studied in fields such as linguistics and speech pathology. By understanding phonemes and their patterns, researchers can better understand how language is processed and produced, and how language disorders may affect communication.

Learn more about phoneme here:

https://brainly.com/question/13397345

#SPJ4

Other Questions
Circumference=14.4Area =? what role might the indoctrination of young people play in the development of a tatalarian political system what revolutionary war battle, a british victory over an american garrison, occurred about 30 miles from montreal, canada? Which environmental change would most likely have long-term effects on both the environment and the species within the environment? What is the purpose of the American Academy of Pediatrics? artisan's oven is looking for opportunities for stable income by expanding sales to include not only consumers, but also other businesses like local restaurants who will provide consistent, large orders of their bread products. which growth strategy is artisan oven using? The cytosol makes proteins true or false what kind of force is most directly responsible for making current flow around the coil? a magnetic force an electric force both of the choices none of the choices what is the largest body of water off of the western coast of europe? it cost josiah 9.75 to send 65 text message. how many texts did he sent if he spent 28.20 the tendency to have contempt for foreigners or other strangers, which is particularly likely in times of economic hardship, when resources are scarce is known as . A plaque is made with a rhombus in the middle. If the diagonals of the rhombus measure 7 inches and 9 inches, and the plaque has dimensions 7.5 inches by 10 inches, how much space is available for engraving text onto the award? Help with math problems A parabola opening up or down has vertex (0, -3) and passes through (4, -7). Write itsequation in vertex form. when an insured homeowner is covered and reimbursed for the actual cost of replacing the damaged property, these costs are known as Help me with this pleasseeeeeee travis company allocates overhead cost using a single plantwide overhead rate of $60 per direct labor hour. each product unit uses three direct labor hours. overhead cost equals $20 per unit. What is the relationship between the average inventory and the in-stock probability? Choose the right option and explain!a. The more the inventory, the lower the in-stock probabilityb. There isn't a definitive relationship - more inventory could mean a lower or a higher in-stock probabilityc. The more the inventory, the higher the in-stock probability AYUDA RAPIDO TENGO 1 HORA PARA RESPONDER ESTO NESESITO DE AYUDA6. El equilibrio dinmico es importante para:(1 Punto)Aprender a correr muy rpidoAyudar a prevenir las cadasLanzar fuerte la pelotaPatear lejos la pelota7. Seala la alternativa que completa las palabras que faltan. La coordinacin culo manual es una habilidad, en la cual se requiere una combinacin precisa entre. . Y los movimientos de. (1 Punto)Pies y cabezaVista y manosPies y manosVista y pies8. Seala la opcin que contenga las actividades que se desarrollan con un uso continuo de la coordinacin culo manual:a. Flexin de brazos. b. Los deportes. c. La escritura. d. La caminata. e. La lectura. (1 Punto)a,b,c,b. C,ea,c,ea,c,d9. Para qu es necesario el desarrollo de la habilidad culo manual?(1 Punto)Para saltar muy lejosPara correr con mucha velocidadPara el aprendizaje de los niosPara saltar muy alto10. Parea los ejercicios para mejorar la coordinacin y luego escoge la opcin que contenga la resolucin correcta. 1. Movimientos cotidianos. A. ( ) saltos con un pie, con ambos pies, rtmicamente, alternando los pies. 2. Ejercicios de oposicin. B. ( ) ejercicios cargando pesos grandes. 3. Saltos de todo tipo. C. ( ) tareas rutinarias como empujar, levantar, transportar, tirar; etc. d. ( ) el juego de "tirar la cuerda" donde se necesita la coordinacin de fuerzas para lograr el objetivo. (1 Punto)1c, 2d, 3a1a,2b,3c1b,2a,3c1d,2c,3d11. Qu es la agilidad en Educacin Fsica?(1 Punto)Es la capacidad de correr durante un tiempo largo. Es la capacidad de realizar flexiones de brazos. Es la capacidad para cambiar de direccin en un movimiento. Es la capacidad de correr una distancia muy larga. 12. A qu tema corresponde el ejercicio descripto? "Golpeamos el globo con las manos evitando que caiga en el suelo"(1 Punto)Equilibrio dinmicoAgilidadCoordinacin culo manualEquilibrio esttico13. A qu tema corresponde el ejercicio descripto?"Saltamos lateralmente con el pie derecho, luego con el pie izquierdo, y as sucesivamente hasta completar una distancia de diez metros". (1 Punto)Equilibrio dinmicoAgilidadCoordinacin culo manualEquilibrio esttico which of the following strategies was followed by amazon's founder? group of answer choices he reduced warehousing capacity. he built e-commerce operations only for amazon's customers in the united states. he focused more on amazon's quarterly results. he consciously ignored cloud computing platforms. he postponed profit harvesting.