The concentration of strontium hydroxide [tex]Sr(OH)2[/tex] is zero at this point in the titration, so it does not contribute to the pH calculation.
To determine the pH of the solution at a particular point in the titration [tex]HC4H7O2[/tex], we need to construct a BCA (before, change, after) table and an ICE (initial, change, equilibrium) table.
The balanced chemical equation for the reaction is
[tex]2 HC4H7O2 + Sr(OH)2 → Sr(C4H7O2)2 + 2 H2O[/tex]
[tex]BCA Table:Reactant | HC4H7O2 | Sr(OH)2Initial | x | yChange | -2x | -yAfter | x-2x | y-y[/tex]
In the BCA table, we assume that x moles of Butyric acid [tex]HC4H7O2[/tex] and y moles of [tex]Sr(OH)2[/tex] are present in the reaction mixture. Since the stoichiometric coefficient [tex]HC4H7O2[/tex] is 2 in the balanced equation, the change in its concentration is -2x moles, while for strontium hydroxide [tex]Sr(OH)2[/tex], it is -y moles. The final concentration of Butyric acid [tex]HC4H7O2[/tex] is (x-2x) moles and that of strontium hydroxide [tex]Sr(OH)2[/tex] is (y-y) moles.
From the ICE table, we can see that the initial concentration of Butyric acid [tex]HC4H7O2[/tex] is x moles and the concentration of[tex]H3O+[/tex] produced is 2x moles. Therefore, the pH at this point in the titration can be calculated as follows:
[tex]pH = -log[H3O+][H3O+] = 2x / V[/tex]
where V is the volume of the solution.
To learn more about pH please visit-
https://brainly.com/question/15289741
#SPJ1
QuestionThe colours of red litmus paper in acidic, neutral, and basic solutions are:Ared, orange and blue respectivelyBblue, violet and red respectivelyCred, colourless and blue respectivelyDred, red and blue respectivelyHard
The colors of red litmus paper in acidic, neutral, and basic solutions are: C. red, colorless, and blue respectively.
Red litmus paper is used to test whether or not a solution is acidic in chemistry. It's utilized to detect the acidity or alkalinity of a substance. In acidic or neutral solutions, red litmus paper remains red. It will turn blue when it comes into contact with basic solutions. Red litmus paper is a pH indicator. It alters color based on the pH of the substance in which it is dissolved.
Litmus paper is a pH paper that is produced using lichen dyes. It's a paper that has been treated with litmus, which is a water-soluble mixture of different dyes obtained from lichens. Litmus paper's two colors, blue and red, are produced from litmus. The blue litmus paper turns red in acidic solutions and turns blue in basic solutions. Conversely, red litmus paper turns blue in basic solutions and remains red in acidic or neutral solutions. Therefore, Option C is Correct.
The Question was Incomplete, Find the full content below :
The colours of red litmus paper in acidic, neutral, and basic solutions are:
A. red, orange and blue respectively
B. blue, violet and red respectively
C. red, colourless and blue respectively
D. red, red and blue respectively
Know more about Red litmus paper here :
https://brainly.com/question/20163204
#SPJ11
Help me with this is a project
The type of soap affects its cleansing ability and dishwasher soap because of the specialized formulation of dishwasher soap, which is specifically designed to remove grease and dirt from dishes.
How does the type of soap affect cleansing ability?Here is an experiment that explores the effect of the type of soap on the cleanliness of dishes:
Title: The Effect of Soap Type on Dish Cleaning Performance
Introduction: Soap is a commonly used cleaning agent for removing dirt and grease from various surfaces, including dishes. There are different types of soap available in the market, each with its unique composition and cleaning properties. In this experiment, we will investigate the effect of soap type (shampoo, hand soap, dishwasher) on dish cleaning performance.
Hypothesis: We hypothesize that the type of soap used will have a significant effect on dish cleaning performance, with dishwasher soap being the most effective due to its specialized formulation.
Materials:
Three different types of soap (shampoo, hand soap, and dishwasher soap)
Measuring cup
Three identical dirty dishes
Sink with running water
Stopwatch
Paper towel
Digital scale
Procedure:
Measure out 30 mL of each soap type into separate containers.
Weigh each of the three dirty dishes using a digital scale and record the weights.
Wet one dish in the sink and apply 10 mL of the first soap type to the dish.
Rub the dish with a paper towel for 30 seconds.
Rinse the dish with running water for 10 seconds.
Dry the dish with a paper towel and weigh it. Record the weight and note the cleanliness of the dish.
Repeat steps 3-6 with the remaining two types of soap on the other two dishes.
Repeat steps 3-7 for each soap type two more times with new dirty dishes, for a total of three trials per soap type.
Data Analysis:
Calculate the difference in weight between the dirty and cleaned dishes for each trial.
Calculate the average weight difference for each soap type.
Plot the average weight difference for each soap type on a bar graph.
Analyze the graph to determine the effect of soap type on dish cleaning performance.
Conclusion:
Based on the results of this experiment, we can conclude that the type of soap used has a significant effect on dish cleaning performance. The dishwasher soap was found to be the most effective in cleaning dishes, followed by hand soap and then shampoo.
Learn more about independent variables at: https://brainly.com/question/82796
#SPJ1
radioactive decay is a first order kinetic process. radioactive decay is a first order kinetic process. true false g
The given statement "radioactive decay is a first-order kinetic process" is true because the number of radioactive nuclei that decay per unit time is proportional to the number of radioactive nuclei present.
Radioactive decayRadioactive decay is a natural process by which the unstable atomic nucleus loses energy by emitting radiation. This results in a change in the composition of the atomic nucleus, which is accompanied by a release of energy. The three types of radiation that can be emitted during radioactive decay are alpha particles, beta particles, and gamma rays.
Alpha particles are positively charged particles consisting of two protons and two neutrons, beta particles are negatively charged particles emitted by certain radioactive isotopes, and gamma rays are high-energy photons emitted by atomic nuclei during radioactive decay.
First-order kinetics is a type of chemical reaction in which the rate of reaction depends only on the concentration of one reactant. In other words, a first-order reaction is one in which the rate of reaction is proportional to the concentration of the reactant raised to the power of one. This means that the rate of reaction increases linearly with the concentration of the reactant. First-order kinetics is commonly observed in chemical and biochemical systems, as well as in radioactive decay.
In radioactive decay, the number of radioactive nuclei that decay per unit time is proportional to the number of radioactive nuclei present. This property of radioactive decay is called first-order kinetics.
Therefore, the given statement is true.
To learn more about "radioactive decay", visit: https://brainly.com/question/9932896
#SPJ11
100.0 ml of a 0.565 m solution of kbr is diluted to 500.0 ml. what is the new concentration of the solution?
The solution now has a concentration of 0.113 M.
When a solution is diluted, the amount of solute remains the same, but the volume of the solution increases. Therefore, the concentration of the solution decreases.
In this case, 100.0 mL of a 0.565 M solution of KBr is diluted to a total volume of 500.0 mL. The amount of KBr in the original solution can be calculated as follows:
amount of KBr = concentration x volume = 0.565 mol/L x 0.1000 L = 0.0565 moles
When this solution is diluted to a volume of 500.0 mL, the amount of KBr remains the same:
amount of KBr = 0.0565 moles
The new concentration of the solution can be calculated using the following equation:
new concentration = amount of solute / new volume
new volume = 500.0 mL = 0.5000 L
new concentration = 0.0565 moles / 0.5000 L = 0.113 M
Therefore, the new concentration of the solution is 0.113 M.
To learn more about concentration refer to:
brainly.com/question/10725862
#SPJ4
a substance that donates one proton when dissolved in water is called ?
how many grams are there in a sample of calcium containing 2.71 x 10^20 particles?
The calcium sample, which contains 2.71 x 1020 particles, thus, has a mass of 0.0181 grammes.
What weight of g is contained in a sample containing 4.52 moles of CaCO3?4.52 moles of caco3 are present. For c, a c o 3, the molar mass is 100 grammes per mole. As a result, the mass of c c 3 is equal to moles times molar mass, or 4.52 moles times 100 grammes per mole, which is 452 grammes.
We may use the techniques below to determine the mass of a sample of calcium that contains 2.71 x 1020 particles:
Calculate the number of moles of calcium:
Number of moles = Number of particles / Avogadro's number
= 2.71 x 10²⁰ / 6.022 x 10²³
= 0.000450 mol
Calculate the mass of calcium in grams:
Mass (g) = Number of moles x Atomic mass (g/mol)
= 0.000450 mol x 40.08 g/mol (atomic mass of calcium)
= 0.0181 g
To know more about calcium visit:-
https://brainly.com/question/8768657
#SPJ1
the passage data regarding the thermal stability and enzyme activity of mkr681h is most consistent with what conclusion regarding the role of arg681 in cct?
The passage data regarding the thermal stability and the enzyme activity of the mkr681h is the most consistent with the conclusion regarding the role of Arg681 in the cct is the Arg681 is the engaged in catalytic function of enzyme.
The R681H is denotes that the amino acid 681 that is the arginine, R is the changed to the histidine (H). The Enzyme activity will depends on the principally on the enzyme’s intrinsic catalytic efficiency, and its concentration, and the initial substrate concentration, in the presence of the inhibitors or the allosteric activators, the temperature, and the pH.
This will most strongly suggests that the Arg681 will be involved in the catalytic function of normal enzyme.
To learn more about enzyme here
https://brainly.com/question/29819864
#SPJ4
what is the solubility of strontium sulfate, srso4, in 0.36 m sodium sulfate, na2so4 solution?
The solubility of strontium sulfate, SrSO₄ in 0.36 M sodium sulfate, Na₂SO₄ solution is approximately 1.06 x 10⁻⁶ M.
What is solubility?Solubility is the maximum amount of solute that can dissolve in a solvent at a given temperature and pressure to form a saturated solution.
The solubility of strontium sulfate (SrSO₄) in a 0.36 M sodium sulfate (Na₂SO₄) solution can be calculated using the solubility product constant (Ksp) and the common ion effect. The Ksp of SrSO₄ is 3.80 x 10⁻⁷. To find the solubility of SrSO₄, we can set up an expression using the Ksp value and the concentration of Na₂SO₄:
Ksp = [Sr²⁺][SO₄²⁻]
Since Na₂SO₄ dissociates into 2 Na⁺ ions and 1 SO₄²⁻ ion, the initial concentration of SO₄²⁻ ions from Na₂SO₄ is 0.36 M. Let x be the solubility of SrSO₄, then:
3.80 x 10⁻⁷ = [x][(0.36 + x)]
As x is significantly smaller than 0.36, we can assume x is negligible in the equation:
3.80 x 10⁻⁷ ≈ [x][0.36]
Solving for x:
x ≈ 1.06 x 10⁻⁶ M
Thus, the solubility of SrSO₄ in a 0.36 M Na₂SO₄ solution is approximately 1.06 x 10⁻⁶ M.
Learn more about Solubility here: https://brainly.com/question/23946616
#SPJ11
Don't mind the highlighted answer
The mass of [tex]SO_3[/tex] produced by reacting 6.3g of [tex]SO_2[/tex] with oxygen in the synthesis reaction is 7.875g.
Given the mass of [tex]SO_2[/tex] reacted = 6.3g
[tex]2SO_2(g) + O_2(g) -- > 2SO_3(g)[/tex]
We can see that 2 moles of [tex]SO_2[/tex] produce 2 moles of [tex]SO_3[/tex].
The mole ratio of [tex]SO_2[/tex] : [tex]SO_3[/tex] = 1 : 1
The molar mass of Sulfur dioxide = 64g/mol.
The number of moles of Sulfur dioxide reacted = 6.3/64 = 0.098mol
Since the mole ratio is 1 the moles of [tex]SO_3[/tex] produced = 0.098
The molar mass of Sulfur trioxide = 80g/mol
The mass of [tex]SO_3[/tex] produced = 0.098 * 80 = 7.875g
To learn more about moles click here https://brainly.com/question/26416088
#SPJ1
The correct reaction showing how FeCO3 has increased solubility when forming the complex ion Fe(CN)64- is ____ A) FeCO3 (aq) + 6 CN- (aq) <-> Fe(CN).- (aq) + CO32- (aq) B) FeCO3 (s) + 6 CN- (aq) <-> Fe(CN)64- (aq) + CO32- (aq) C) Fe2+ (aq) + 6 CN- (aq) <-> Fe(CN)64- (aq) D) FeCO3 (s) = Fe2+ (aq) + CO32- (aq)
In this case, the correct reaction showing how FeCO3 has increased solubility when forming the complex ion Fe(CN)64- is B) FeCO3 (s) + 6 CN- (aq) <-> Fe(CN)64- (aq) + CO32- (aq). So, the correct option is B.
This reaction shows that when FeCO3 is combined with six CN- ions, it forms the complex ion Fe(CN)64-, which is soluble in water. This increases the solubility of FeCO3. The reaction also produces CO32-, which is also soluble in water. There is no increased solubility in FeCO3 when forming the complex ion Fe(CN)64- in all other options. Therefore, the correct answer is option B.
You can learn more about complex ions at: brainly.com/question/31059600
#SPJ11
PLEASE HELP
what is civic engagement in 150 words and what are your tips on water scarcity
The term "civic engagement" describes people actively participating in their communities and society as a whole. The lack of water scarcity in many areas of the world is a serious problem brought on by causes including population increase, climate change, and pollution.
What do you mean by a lack of water?In response to changing supply and demand throughout time, water availability varies. As demand rises and/or the amount or quality of the water supply declines, there is an increase in water scarcity.
Why should we manage the water shortage?When there is a water shortage, the primary issue is that people cannot get fresh, clean drinking water. The human body can only exist for a very short time without water, and not drinking other issues with water are covered in the section below.
To know more about climate change visit:-
https://brainly.com/question/28257810
#SPJ1
Question:
What is civic engagement in 150 words?
What are your tips on water scarcity?
A scientist performs a set of experiments. One experiment involves two compounds at a normal concentration. Another experiment requires the scientist to lower the concentration of both compounds in the experiment. How will the second experiment be different from the first?
The reaction will stop completely.
The reaction rate will not change.
The reaction rate will increase.
The reaction rate will decrease.
The reaction rate will decrease in the second experiment when the concentration of both compounds is lowered. This is because the rate of a chemical reaction is directly proportional to the concentration of the reactants.
How does the concentration of reactants affect the rate of a chemical reaction?The rate of a chemical reaction is directly proportional to the concentration of the reactants.
This is because increasing the concentration of the reactants increases the number of reactant molecules available to collide with each other, which results in a faster reaction rate.
What other factors can affect the rate of a chemical reaction, besides reactant concentration?Other factors that can affect the rate of a chemical reaction include temperature, pressure, the presence of a catalyst, and the surface area of solid reactants. Increasing temperature, pressure, or the surface area of solid reactants generally leads to a faster reaction rate, while the presence of a catalyst can increase the rate of a reaction without being consumed in the process.
To know more about compound,visit:
https://brainly.com/question/13516179
#SPJ1
what volume in ml of concentrated sulfuric acid (18.0)m h2so4) is needed to prepare 9.0l of a 1.00m solution?
You need 163.8 mL of concentrated sulfuric acid (18M) to prepare 9.0 L of a 1.00M solution.
The given problem can be solved using the molarity equation which is:
Molarity (M) = moles of solute (n) / liters of solution (L)
The balanced chemical equation for sulfuric acid (H2SO4) is:H2SO4 → 2H+ + SO42
The molecular weight of H2SO4 is 98g/mol.
Hence, 18M H2SO4 solution contains 98g/Liter.98g / 18M = 5.44 g/mL5.44 g/mL x 1000 mL/L = 5440 g/L5440 g / 98 g/mol = 55.102M
Concentrated sulfuric acid is 18M.
So, the volume of concentrated sulfuric acid (18M H2SO4) that is needed to prepare 9.0 L of 1.00M solution can be determined as follows:
Number of moles of H2SO4 in 9.0 L of 1.00M H2SO4 solution = 1.0 mol/L × 9.0 L = 9.0 mol
Total number of moles of H2SO4 in the final solution (1.00M) can be calculated as:9.0 mol / 55.102 mol/L = 0.1638 L = 163.8 mL (rounded to 2 decimal places)Therefore,
To know more about "Sulfuric acid" refer here:
https://brainly.com/question/1107054#
#SPJ11
What happens over time as sediments settle on land or water?
rank the following alkyl halides in order of increasing reactivity in an E2 reaction. Be sure to answer all parts
(CH3)2C(Br)CH2CH2CH3 (CH3)2CHCH2CH(Br)CH3 (CH3)2CHCH2CH2CH2Br
lowest reactivity: ?
Intermediate reactivity: ?
Highest reactivity: ?
The order of increasing reactivity of the following alkyl halides in an E2 reaction is (CH3)2C(Br)CH2CH2CH3 < Intermediate reactivity, (CH3)2CHCH2CH(Br)CH3 < Highest reactivity, (CH3)2CHCH2CH2CH2Br < Lowest reactivity.
In an E2 reaction, the rate of reaction is affected by the size and the polarizability of the leaving group, the bulkiness of the alkyl groups, and the steric hindrance. In this case, the size and polarizability of the leaving group increases from (CH3)2C(Br)CH2CH2CH3 < (CH3)2CHCH2CH(Br)CH3 < (CH3)2CHCH2CH2CH2Br, making the reactivity increase in the same order.
The bulkiness of the alkyl groups has the opposite effect; the bulkier the alkyl groups, the lower the reactivity of the alkyl halide. The alkyl groups in the compounds are in the order (CH3)2C(Br)CH2CH2CH3 < (CH3)2CHCH2CH2CH2Br < (CH3)2CHCH2CH(Br)CH3, making the reactivity increase in the reverse order.
Lastly, steric hindrance affects the rate of reaction as well. The steric hindrance decreases from (CH3)2C(Br)CH2CH2CH3 < (CH3)2CHCH2CH(Br)CH3 < (CH3)2CHCH2CH2CH2Br, leading to the highest reactivity of (CH3)2CHCH2CH(Br)CH3.
Overall, this leads to the order of reactivity (CH3)2C(Br)CH2CH2CH3 < Intermediate reactivity, (CH3)2CHCH2CH(Br)CH3 < Highest reactivity, (CH3)2CHCH2CH2CH2Br < Lowest reactivity.
To know more about alkyl halides refer here:
https://brainly.com/question/28384269#
#SPJ11
Complete Question:
rank the following alkyl halides in order of increasing reactivity in an E2 reaction. Be sure to answer all parts
1. (CH3)2C(Br)CH2CH2CH3
2. (CH3)2CHCH2CH(Br)CH3
3. (CH3)2CHCH2CH2CH2Br
lowest reactivity: ?
Intermediate reactivity: ?
Highest reactivity: ?
PLEASE HELP ME ITS DUE IN A COUPLE OF HOURS
how will the volume of a gas change if the number of moles of gas is quadrupled at constant pressure and temperature?
The volume of a gas will increase if the number of moles of gas is quadrupled at constant pressure and temperature: the volume of the gas will also increase four times its original volume.
This can be explained using the Ideal Gas Law, which states that the volume of a gas is proportional to the number of moles of gas when pressure and temperature remain constant. Therefore, if the number of moles of gas is increased by a factor of four, the volume of the gas will also increase by a factor of four.
To understand this concept better, let us consider the following example. Let us assume that there is a certain amount of gas, A, which contains one mole of gas at a constant pressure and temperature. This gas will occupy a certain volume, V1.
If the number of moles of gas is quadrupled to four moles, the volume of the gas will become four times the original volume, V2. Therefore, the volume of the gas, V2, is four times the original volume, V1.
This example demonstrates that if the number of moles of gas is increased at constant pressure and temperature, the volume of the gas will also increase proportionately. Therefore, if the number of moles of gas is quadrupled at constant pressure and temperature, the volume of the gas will also increase four times its original volume.
To know more about pressure refer here:
https://brainly.com/question/28907914#
#SPJ11
According to Avogadro's Law, at constant temperature and pressure, the volume of a gas is directly proportional to the number of moles of gas. Therefore, if the number of moles of gas is quadrupled while keeping the temperature and pressure constant, the volume of the gas will also quadruple.
Mathematically, we can express this relationship as:
V ∝ n
where V is the volume of the gas, n is the number of moles of the gas, and the symbol ∝ means "is proportional to".
If we quadruple the number of moles of gas, then we have:
n' = 4n
where n' is the new number of moles of gas, and n is the original number of moles of gas.
Using the relationship between volume and number of moles, we can write:
V' ∝ n'
Substituting n' = 4n, we get:
V' ∝ 4n
Simplifying, we get:
V' = 4V
Therefore, if the number of moles of gas is quadrupled at constant pressure and temperature, the volume of the gas will also quadruple.
For more details about Avogadro's click here:
https://brainly.com/question/11907018#
#SPJ11
Metallic behavior correlates with large atomic size and low ionization energy. Thus, metallic behavior increases down a group and decreases from left to right across a period.true or false
The statement "Metallic behavior correlates with large atomic size and low ionization energy. Thus, metallic behavior increases down a group and decreases from left to right across a period" is true.
The statement is true because metallic behavior correlates with large atomic size and low ionization energy. So, as you go down a group, the atomic size and ionization energy decrease, resulting in increased metallic behavior. As a result, when going from left to right across a period, the atomic size decreases, and the ionization energy increases, resulting in a decrease in metallic behavior.
As a result, the metallic behavior increases down a group and decreases from left to right across a period.
For more question on ionization energy click on
https://brainly.com/question/30831422
#SPJ11
enough of a monoprotic weak acid is dissolved in water to produce a 0.0102 m solution. the ph of the resulting solution is 2.68 . calculate the ka for the acid.
The Ka for the weak acid is 2.45 x 10^-6 of concentration 0.0102m .
To calculate Ka, first, we need to calculate the concentration of H+ and the initial concentration of acid. The weak acid is monoprotic, meaning it can donate only one hydrogen ion (H+) to water.Therefore, it will dissociate as follows: HA + H2O ⇔ A- + H3O+where HA is the acid molecule, and A- is its corresponding conjugate base.
The H3O+ is also known as a hydronium ion. The first step is to calculate the concentration of H3O+.The pH of the solution is 2.68.Hence, pH = -log[H3O+]2.68 = -log[H3O+][H3O+] = 1.58 x 10^-3The concentration of H3O+ is 1.58 x 10^-3 M. Since the weak acid is monoprotic, the initial concentration of acid is equal to the concentration of the conjugate base of the weak acid, which we get from the dissociation equilibrium.
The equilibrium expression for the dissociation of a weak acid is given as follows: Ka = [A-][H3O+]/[HA]We need to find the value of Ka. We have already calculated the value of [H3O+].So, Ka = [A-][1.58 x 10^-3 M]/0.0102 MWe need to calculate the value of [A-].
From the equilibrium equation for weak acid: HA + H2O ⇔ A- + H3O+0.0102 M x1.58 x 10^-3 M Here, x is the concentration of A-.So, 1.58 x 10^-3 M = x, which is also the concentration of the conjugate base of the weak acid. So, Ka = [A-][H3O+]/[HA] = (1.58 x 10^-3 M)^2/0.0102 M= 2.45 x 10^-6Therefore, Ka for the weak acid is 2.45 x 10^-6.
for more such questions on concentration .
https://brainly.com/question/14544663
#SPJ11
a 0.160 mole quantity of nicl2 is added to a liter of 1.20 m nh3 solution. what is the concentration of ni2 ions at equilibrium? assume the formation constant of ni(nh3)2 6 is 5.5×108 .
The concentration of Ni2+ ions at equilibrium is approximately 4.4×10⁻⁹ M.
A more detailed explanation of the answer.
To find the concentration of Ni2+ ions at equilibrium, we need to use the formation constant (Kf) of Ni(NH3)6 2+ and perform an ICE table (Initial, Change, Equilibrium) calculation. The given Kf value is 5.5×10⁸.
Student question: What is the concentration of Ni2+ ions at equilibrium when 0.160 moles of NiCl2 are added to a liter of 1.20 M NH3 solution?
1. Balanced equation for the reaction:
Ni2+ + 6 NH3 <=> Ni(NH3)6 2+
2. Create the ICE table:
| | Ni2+ | NH3 | Ni(NH3)6 2+ |
|-----|------|-------|------------|
| I | 0.16 | 1.20 | 0 |
| C | -x | -6x | +x |
| E | 0.16-x | 1.20-6x | x |
3. Write the expression for Kf:
Kf = [Ni(NH3)6 2+]/([Ni2+][NH3]⁶) = 5.5×10⁸
4. Substitute the equilibrium values from the ICE table:
5.5×10^8 = (x)/((0.16-x)(1.20-6x)⁶)
5. Since Kf is very large, we can assume that x (change in concentration) is very small compared to the initial concentrations. Thus, we can approximate 0.16-x ≈ 0.16 and 1.20-6x ≈ 1.20.
6. Simplify and solve for x:
5.5×10⁸ = (x)/((0.16)(1.20)⁶)
x ≈ 4.4×10⁻⁹ M
The concentration of Ni2+ ions at equilibrium is approximately 4.4×10⁻⁹ M.
Learn more about constant (Kf).
brainly.com/question/30092497
#SPJ11
in your experiment, sodium bisulfite (nahso3) in water is used to destroy any unreacted bromine (br2) or to trap the br2 and not allow it to escape from the reaction setup. the reaction is shown below but can't be described using conventional organic curved-arrow pushing. after adding sodium bisulfite in your procedure, why is the resulting mixture put into acid waste?
In the experiment, sodium bisulfite (NaHSO3) in water is used to destroy any unreacted bromine (Br2) or to trap the Br2 and not allow it to escape from the reaction setup. The reaction is shown below but cannot be described using conventional organic curved-arrow pushing.
The resulting mixture is placed in acid waste for the following reasons:
Sodium bisulfite's addition to the reaction mix in the procedure is done to destroy any unreacted bromine (Br2) or to trap the Br2 and prevent it from escaping the reaction setup. Following the reaction, it is necessary to neutralize the mixture with sodium carbonate or another base. After that, the neutralized mixture should be properly disposed of in an acid waste container. Thus, the resulting mixture is placed in acid waste.
Sodium bisulfite is used in excess to the amount of bromine to ensure that all of the bromine is captured or reacted. The resulting mixture is extremely acidic as a result of the reaction. As a result, the mixture must be neutralized before being disposed of.
The most straightforward approach to neutralizing it is to add a basic substance like sodium carbonate, which reacts with the acidic mixture to create water and sodium sulfate (Na2SO4).
As a result, when sodium bisulfite is added in the procedure, the resulting mixture is put into acid waste.
To know more about "Sodium bisulfite" refer here:
https://brainly.com/question/14653628#
#SPJ11
0.84g of aluminium reacted completely with chlorine gas. Calculate the volume of chlorine gas used (Molar gas volume is 24dm³, Al=27)
First, we need to calculate the number of moles of aluminum that reacted:
Molar mass of aluminum = 27 g/mol
Number of moles of aluminum = 0.84 g / 27 g/mol = 0.031 mol
According to the balanced chemical equation, 2 moles of aluminum react with 3 moles of chlorine gas to produce 2 moles of aluminum chloride. So, 0.031 moles of aluminum will react with:
0.031 mol Al x (3 mol Cl2 / 2 mol Al) = 0.0465 mol Cl2
Now, we can use the molar gas volume to calculate the volume of chlorine gas used:
Volume of Cl2 = (0.0465 mol Cl2) x (24 dm³/mol) = 1.116 dm³ or 1116 mL (rounded to 3 significant figures)
Therefore, the volume of chlorine gas used in the reaction is 1.116 dm³ or 1116 mL.
what is the percent yield if this reaction produced 55.0 g of ethene from 100.0 g of ethanol?
The percent yield of a reaction is calculated by taking the amount of product produced and dividing it by the amount of reactant used, and then multiplying by 100 to get a percentage.
In this case, 55.0 g of ethene was produced from 100.0 g of ethanol, so the percent yield is 55.0 g divided by 100.0 g, multiplied by 100, which gives a percent yield of 55%.
This percent yield indicates the efficiency of the reaction, as the higher the percent yield, the more efficient the reaction is. A percent yield of 55% means that the reaction was relatively efficient, as the large majority of the reactant was converted into product. If the percent yield was much lower than this, it could indicate that there were some issues with the reaction and that it was not as efficient as it could be.
Know more about ethanol here
https://brainly.com/question/25002448#
#SPJ11
the cage size of the zeolites is in the centimeters scale
True False
The statement "the cage size of the zeolites is in the centimeters scale" is False.
What is Zeolite?Zeolite is a crystalline and porous alumino-silicate mineral consisting of hydrated alkaline metals and alkali earth metals. These minerals have microporous structures that make them useful in industrial and medical applications, among other things. They have a diverse array of applications, including as catalysts, adsorbents, and molecular sieves. Zeolites are minerals that have a unique framework that is capable of trapping and holding a variety of molecules within their microporous structure.
Zeolites are small in size, typically between 0.3 and 2 microns. The cavities or pores within these crystals, known as cages, are in the range of 4 to 12 Angstroms in size (1 Angstrom = 0.1 nm). These cavities are small, which allows the zeolite to selectively filter molecules based on their size, shape, and chemical properties.}
Learn more about Zeolite: https://brainly.com/question/27174988
#SPJ11
experiments show that if the chemical reaction takes place at 45 c, the rate of reaction of dinitrogen pentoxide is proportional to its concentration as follows: how long will the reaction take to reduce the concentration of to 50% of its original value? select the correct answer. question 4 options: t
The long will the reaction will take to reduce the concentration of to the 50% of its original value is 1386 sec. The option A is correct.
The expression is as :
d[N₂O₅] / dt = -0.0005 [N₂O₅]
[N₂O₅] (t) = [N₂O₅] (0) . e^-0.0005t
[N₂O₅](t) = Ce^-0.0005t
The reaction concentration of to the 50% of its original value is 0.5 C
0.5 C = Ce^-0.0005t
By dividing both side by C
0.5 = e^-0.0005t
Now taking the natural logarithm on the both side, we get
ln0.5 = lne^-0.0005t
ln 0.5 = - 0.0005t
t = - 0.693 / - 0.0005
t = 1386 sec
The time taken is 1386 sec. The correct option is A.
To learn more about reaction here
https://brainly.com/question/15709670
#SPJ4
Thus question is incomplete, the complete question is :
Experiments show that if the chemical reaction N2O5→2NO2+1/2O2, takes place at 45°C, the rate of reaction of dinitrogen pentoxide is proportional to its concentration as follows: -d[N2O5]/dt = 0.0005[N2O5] How long will the reaction take to reduce the concentration of N2O5 to 50% of its original value? select the correct answer. question 4 options:
A) t = 1386 sec
B) t = 211 sec
C) t = 2345 sec
D) t = 111 sec
a buffer with a ph of 4.56 contains 0.23 m of sodium benzoate and 0.10 m of benzoic acid. what is the concentration of [h3o ] in the solution after the addition of 0.060 mol hcl to a final volume of 1.7 l? assume that any contribution of hcl to the volume is negligible.
determine the solubility of kcl at 60 °c in 100g of h2o?
The solubility of KCl at 60 °C in 100 g of water (H2O) can be determined using experimental data or by using a solubility table. The solubility of a substance refers to the maximum amount of that substance that can dissolve in a given amount of solvent at a particular temperature and pressure.
One possible way to determine the solubility of KCl at 60 °C in 100 g of water is to consult a solubility table, which lists the solubility of various substances in water at different temperatures. According to one such table, the solubility of KCl in water at 60 °C is approximately 47 g per 100 g of water.
This means that 100 g of water at 60 °C can dissolve up to 47 g of KCl before becoming saturated, i.e., no more KCl will dissolve in the water at this temperature.
It is important to note that the solubility of KCl (or any substance) in water can be affected by various factors, such as temperature, pressure, and the presence of other solutes. Therefore, the solubility value obtained from a solubility table is only an approximation and may not be accurate for all conditions.
For more details about solubility click here:
https://brainly.com/question/29661360#
#SPJ11
Which of the following statements is true?
(a) An exothermic reaction will slow down when heated.
(b) The rates of all chemical reactions increase with temperature.
(c) Heating the reactants in an exothermic reaction causes the system to attain a state of equilibrium.
(d) Only exothermic reactions proceed spontaneously at room temperature.
Answer: A
Explanation: An exothermic reaction generates heat. Unless the reaction is cooled in some way, its temperature increases. If you increase the temperature with an external heater, it slows the reaction down or reverse its direction.
based on the molar mass of anhydrous salt given to you by the teacher, calculate the moles of anhydrous salt. determine the smallest whole number ratio of moles of water to moles of anydrous salt.
To calculate the moles of anhydrous salt, divide the molar mass by the molar mass of the anhydrous salt.
The molar mass of an anhydrous salt is the sum of the molar mass of each of its components.
For example, if the molar mass of an anhydrous salt is 78.0 g/mol, then 78.0 g/mol/58.44 g/mol = 1.33 moles of anhydrous salt.To determine the smallest whole number ratio of moles of water to moles of anhydrous salt, divide the number of moles of water by the number of moles of anhydrous salt.
For example, if there are 2 moles of water and 1.33 moles of anhydrous salt, then the ratio of moles of water to moles of anhydrous salt is 2:1.33, which can be simplified to 2:1.Learn more about moles - brainly.com/question/24748125
#SPJ11
an unknown gas effuses through an opening at a rate 3.16 time slower than nenon gas. estimate the mola mass of this unknown gas.
The molar mass of an unknown gas that effuses through an opening at a rate of 3.16 times slower than neon gas is 199.6 g/mol.
The unknown gas effuses through an opening at a rate 3.16 times slower than neon gas. We need to estimate the molar mass of this unknown gas.
According to Graham's Law, the rate of effusion is inversely proportional to the square root of the molecular mass of the gas. The effusion rate is given for both neon and the unknown gas, thus we can say that the ratio of the effusion rates is equal to the ratio of the square roots of their molecular masses.
Let M₁ and M₂ be molar masses of the unknown gas and Neon gas respectively. Then the ratio of the effusion rates would be,
R₂/R₁ = √M₁/√M₂
Where R₁ and R₂ are the rates of effusion of the unknown gas and Neon gas respectively.
It is given that the effusion rate of the unknown gas is 3.16 times slower than that of Neon gas.
So, R₁ = 1/3.16 * R₂ or R₂ = 3.16 R₁
Putting these values in the above equation and squaring both sides, we get:
M₁/M₂ = (3.16R1/R1)²
M₁/M₂ = 9.98
M₁ = 9.98 × M₂
Now, the molar mass of Neon is 20g/mol (Neon is monoatomic and its atomic mass is 20).
We can substitute this value to find out the molar mass of the unknown gas.
M₁ = 9.98 × 20
M₁ = 199.6 g/mol
Hence, the estimated molar mass of the unknown gas is 199.6 g/mol.
To know more about molar mass, refer here:
https://brainly.com/question/14268211#
#SPJ11