It is an example of acceleration due to the wind.
Acceleration: the rate at which the speed and direction of a moving object vary over time. A point or object going straight ahead is accelerated when it accelerates or decelerates. Even if the speed is constant, motion on a circle accelerates because the direction is always shifting. Both effects contribute to the acceleration of all other motions.
Acceleration is a vector quantity since it has both a magnitude and a direction. A vector quantity is also velocity. The velocity vector change during a time interval divided by the time interval is the definition of acceleration.
To learn more about acceleration please visit-
https://brainly.com/question/12550364
#SPJ9
Alexus was resting on the couch but then decided she needed some food. She ran at up to 15m/s, accelerating
at 3m/s² the whole time, until she got to the fridge. How far away is the fridge from the couch?
Alexus was resting on the couch but then decided she needed some food. She ran at up to 15m/s, accelerating at 3m/s² the whole time, until she got to the fridge . The fridge will be 37.5 m far away from the couch
The branch of physics that defines motion with respect to space and time, ignoring the cause of that motion, is known as kinematics. Equation of kinematics are a set of equations that can derive an unknown aspect of a body’s motion if the other aspects are provided.
given
final velocity = 15m/s
initial velocity = 0
a = 3m/s²
s = ?
a = acceleration = final - initial / time
3 = 15 - 0 / time
time = 15 /3 = 5 seconds
[tex]v^{2}[/tex] - [tex]u^{2}[/tex] = 2as
[tex]15^{2}[/tex] - 0 = 2 * 3 * s
s = 225 /6
= 37.5 m
The fridge will be 37.5 m away from the couch
To learn more about equation of kinematics here
https://brainly.com/question/14355103
#SPJ1
A fugitive tries to hop on a freight train traveling at a constant speed of 5.2 m/s. Just as an empty box car passes him,the fugitive starts from rest and accelerates at a =1.2 m/s^2 to his maximum speed of 5.8 m/s, which he then maintains. How long does it take him to catch up to the empty box car?
It will take the fugitive 4.83 s to catch the empty box car
What is acceleration?This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
a is the acceleration v is the final velocity u is the initial velocity t is the time How to determine the timeThe time taken for the fugitive to catch the car if he maintains his maximum speed can be obtained as follow:
Initial velocity (u) = 0 m/sAcceleration (a) = 1.2 m/s² Final velocity (v) = 5.8 m/sTime (t) =?a = (v – u) / t
Thus,
t = (v – u) / a
t = (5.8 – 0) / 1.2
t = 5.8 / 1.2
t = 4.83 s
Learn more about acceleration:
https://brainly.com/question/491732
#SPJ1
2. Link walks 5 miles east, then 7 miles north, than 2 miles south.
a) What distance did he travel? What is his displacement?
b) Suppose Link made the whole journey in 4 hours. What was his average speed and
average velocity during his journey?
Link walks 5 miles east, then 7 miles north then 2 miles south
If you draw a simple diagram you’ll see that your displacement from the start is 5 miles East and 7 miles North and then 2 miles south
These distances are the sides of a right-angled triangle. The displacement you are looking for is the hypotenuse of the triangle. Use the Pythagorean theorem to calculate it.
Displacement
= √ (5+2)^2 + 7^2)
= 9.899 miles
Distance
= 5+7+2
= 14 miles
Time to complete his whole journey = 4 hours
Average Speed= Distance travelled / Time
= 14÷4
= 3.5 miles/hour
Average velocity= Displacement / Time
= 9.899÷4
= 2.47475 miles/hour
The distance is 14 miles and the displacement is 9.899 miles, the Average Speed is 3.5 miles/hour and the Average Velocity is 2.47475 miles/hour
Learn more about Speed, Distance and Time here
https://brainly.ph/question/13274784
#SPJ9
An object starts from rest and undergoes uniform acceleration. From 3.44s to 9.49s it travels 2.9m. What is the average velocity of the object during the time interval 18.6s to 22.92s (in m/s )?
First, see that in the time interval 3.44 to 9.49, the average velocity is [tex]2.9\text{m} / (9.49\text{s} - 3.44\text{s})=2.9\text{m}/6.05\text{s} \approx 0.479\text{m/s}[/tex]. So, as we have uniform acceleration, the velocity must be linearly increasing over this entire interval, so for the average to be 0.479 m/s over this interval, the velocity must be 0.479 m/s in the exact middle of this interval, or at 5.465s.
We now note that the object starts from rest, which means that at 0s, the velocity is 0 m/s. So, in 5.465 seconds, the velocity increases by 0.479 m/s. We again have that the object undergoes uniform acceleration, meaning that the acceleration over this interval is a constant [tex]\frac{0.479\text{m/s}}{5.465\text{s}} \approx 0.0876 \text{m/s}^2[/tex].
Finally, note again that as we are looking at uniform acceleration, by the same principle at the beginning, the average velocity of the object during the time interval from 18.6s to 22.92s is the same as the velocity at the exact middle of this interval, or at 20.76s. We have that acceleration is constant and 0.0876 m/s^2, and initial velocity is 0 at 0s. So, in 20.76 seconds, the object will have accelerated [tex]0.0876\text{m/s}^2 \cdot 20.76\text{s} \approx 1.82 \text{m/s}[/tex].
So, average velocity will be 1.82 m/s over the time interval 18.6s to 22.92s.
What is the relationship between the distance traveled and time for an object that travels at a constant speed ?
On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a golf club improvised from a tool. The free-fall acceleration on the moon is 1/6 of its value on earth. Suppose he hit the ball with a speed of 25 m/s at an angle 34° above the horizontal.
How long was the ball in flight?
How far did it travel?
Ignoring air resistance, how much farther would it travel on the moon than on earth?
The time of flight of the ball is 17.12 seconds.
The horizontal distance or range of the ball is 354.8 m.
Time of flight of the ball
The time of flight of the ball is calculated as follows;
T = (2u sinθ)/g
where;
u is the initial velocityg is acceleration due to gravity on moonT = (2 x 25 sin34) / (¹/₆ x 9.8)
T = 17.12 s
Horizontal displacement of the golf ballThe range of the golf ball is calculated as follows;
R = Uxt
R = (U cosθ)t
R = (25 cos34) x 17.12
R = 354.8 m
Thus, the time of flight of the ball is 17.12 seconds.
The horizontal distance or range of the ball is 354.8 m.
Learn more about time of flight here: https://brainly.com/question/25216102
#SPJ1
Image has question details
The electric force on one of the masses is 0.6 N.
The acceleration of the mass is 0.35 m/s².
Electric force between the masses
The electric force between the masses is calculated as follows;
F = kq²/r²
where;
K is Coulomb's constantr is the distance between the chargesq is the chargeF = (9 x 10⁹ x (9.8 x 10⁻⁶)²)/(1.2²)
F = 0.6 N
Acceleration of the massThe acceleration of the mass is calculated as follows;
F = ma
a = F/m
a = (0.6 N) / (1.7 kg)
a = 0.35 m/s²
Thus, the electric force on one of the masses is 0.6 N.
The acceleration of the mass is 0.35 m/s².
Learn more about electric force here: https://brainly.com/question/17692887
#SPJ1
If an object travels at 10 m/s constantly for 1 minute, how far will it have travelled?
A model shows that the moon has grown to twice its size yet has remained in the same place and one or two sentences explain how this would impact the gravity between earth and the moon?
The attractive force of Earth on the moon will be said to be double when there is a doubling of the mass of the moon.
Since the moon has an attracting force, it is one that will remain the same on Earth. In gravitational forces, the two concerned objects always feel the same force.
What would occur to the gravitational pull between Earth and moon if the moon were twice as large?The explanation of how this would affect the gravity between earth and the moon is that this can result to the earth tilt a little bit harder to change, which could imply that there will be a more stable climate and ice ages may not occur as often.
Therefore, The attractive force of Earth on the moon will be said to be double when there is a doubling of the mass of the moon. Since the moon has an attracting force, it is one that will remain the same on Earth. In gravitational forces, the two concerned objects always feel the same force.
Learn more about gravity from
https://brainly.com/question/28660865
#SPJ1
The most commonly used conductor in the laboratory is?
Answer:
A battery
Explanation:
A battery is the biggest conductor. I think.
Select the correct answer.
Which physical property causes you to lean to one side when the bus you are traveling in takes a sharp turn?
A.
inertia
B.
mass
C.
speed
D.
velocity
Answer: I believe that the answer to your question is "Inertia", or A
Explanation:
A bowling ball results in ______ friction compared to a sliding bowling ball.
A bowling ball results in kinetic friction compared to a sliding bowling ball.
What is the Conservation of momentum?According to Conservation of momentum, if a bowling ball hits some pins, the momentum that lost by the bowling ball is known to be equal to the momentum obtained by the pins.
The friction that is used in bowling is kinetic friction because the more oil that is placed down, the lower the friction that is found between the ball and that of the lane surface. The little friction, the stronger it is for the bowler to be able to send the ball in a curved path and thus the formula to find the kinetic friction is know to be : µk=F k/mg.
Therefore, A bowling ball results in kinetic friction compared to a sliding bowling ball.
Learn more about kinetic friction from
https://brainly.com/question/14111192
#SPJ1
Ann is driving down a street at 56 km/h. Suddenly a child runs into the street. If it takes Ann 0.749 s to react and apply the brakes, how far will she have moved before she begins to slow down? Answer in units of m.
The distance travelled by Ann before she begins to slow down is 11.65 m
How do I determine the distance travelled by Ann?First, we shall enlighten ourselves on what speed is. This is given below.
Speed is the distance an object travelled per unit time. It can be expressed as:
Speed = distance / time
Finally, we can obtain the distance Ann travelled as illustrated below.
From the question given above, the following data were obtained:
Speed = 56 Km/h = 56 / 3.6 = 15.56 m/sTime = 0.749 sDistance =?Speed = distance / time
15.56 = distance / 0.749
Cross multiply
Distance = 15.56 × 0.749
Distance = 11.65 m
Learn more about speed:
https://brainly.com/question/680492
#SPJ1
ou throw a rock from the upper edge of a 87.0 m vertical dam with a speed of 21.0 m/s at 58.0∘ above the horizon. Neglect any effects due to air resistance. How much time 1 after throwing the rock will it return to its initial height?
You throw a rock from the upper edge of a 75.0 -m vertical dam with a speed of 25.0 m/s at 65.0∘ above the horizon.
What is horizon?The horizon is the line that, when seen from a position on or near the surface of a celestial body, appears to separate the surface from the sky of that body. All viewing directions are split according to whether it crosses the surface of the relevant body or not.
Since the true horizon is an imaginary line, it can only be seen with any degree of accuracy when it is situated along a generally flat surface, such as the oceans of the Earth. On Earth, the geography may also cause biological objects like trees and/or man-made objects like buildings to obstruct this line in some locations. The location where these obstructions overlap the sky is known as the visible horizon.
To learn more about horizon from the given link;
https://brainly.com/question/26241814
#SPJ4
What are the scientific factors for time machine?
Explanation:
probably luck or the right material's
How large is a neutrino?
1 picometer
1 gigameter
1 yoctometer
1 nanometer
a half meter ruler is pivoted at its midpoint and balances whaen a weight of 20N is placed at the 10 cm mark and a weight W is placed at the 45 cm mark on the ruleer. Calculate the weight W
Answer:
35
Explanation:
A kayaker needs to paddle north across a
100-m-wide harbor. The tide is going out, creating
a tidal current that flows to the east at 2.0 m/s
The kayaker can paddle with a speed of 3.0 m/s
Answer:
100
Explanation:
3-2=1
100/1=100
The Autobots are flying away from their home planet in a space cruiser that is accelerating constantly at 61.5 m/s2. If the ship started at rest, how far is it from the planet's surface after 10 min?
The space cruiser is 11070000 m far from the planet's surface
Data obatined from the questionThe following data were obtained from the question:
Initial velocity (u) = 0 mph = 0 m/sAcceleration (a) = 61.5 m/s² Time (t) = 10 minutes = 10 × 60 = 600 sDistance (s) =?How to determine the distanceWe can obtain the distance of the space cruiser from the planet's surface as follow:
s = ut + ½gt²
s = (0 × 600) + (½ × 61.5 × 600²)
s = 0 + (½ × 61.5 × 360000)
s = 0 + 11070000
s = 11070000 m
Learn more about acceleration:
https://brainly.com/question/491732
Learn more about velocity:
https://brainly.com/question/3411682
#SPJ1
During camp, a simple way to estimate the height of a cliff is to drop a stone from the top and hear the splash when it hits the water below. The stone takes 3.6 seconds to drop. Assume sound speed is infinite. The height of the cliff is ___ meters.
The heigth of the cliff is 63.504 m.
What is height?
Height is the vertical distance between two points.
To calculate the height of the cliff, we use the formula below.
Formula:
S = ut+gt²/2........... Equation 1Where:
S = Height of the clifft = Timeu = Initial velocityg = Accceleration.From the question,
Given:
u = 0 m/st = 3.6 sg = 9.8 m/s²Substitute these values into equation 1
S = 0×3.6+9.8×3.6²/2S = 63.504 mHence, the heigth of the cliff is 63.504 m.
Learn more about height here: https://brainly.com/question/983412
#SPJ1
What is the speed over the ground mosquito flying 2 m/s relative to the ar caught in a 2 m/s right angle crosswind
The speed over the ground is 0 m/s.
The speed of an object or body is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity.
As it is given that the mosquito is flying at 2 m/s relatives to the air caught in a 2 m/s right angle crosswind.
As we know that speed over the ground is the difference between the flight speed and resistance speed.
So, the general equation for the speed over the ground is :
v = Flight Speed of the mosquito - Resistance Speed of the crosswind
This implies, [tex]v= 2 {~}m / s - 2{~} m / s[/tex]
[tex]v = 0 {~}m / s[/tex]
Hence, the speed over the ground is 0 m/s.
Learn more about relative speed / Relative Velocity here:
brainly.com/question/17228388
#SPJ9
A horizontal force of 100 N is required to push a bookcase across a floor at a constant velocity.
The correct answer is :
Here 100 N force is applied to make the box move with constant velocity from rest. That means 100 N force is applied to overcome the limiting static friction and as soon as 100 N force is applied it starts moving.
Now,
Constant velocity means acceleration = 0
Net force acting on the box =mass × accelaration = mass × 0 = 0
Conceptually it is zero as it is balanced by kinetic friction which has equal value that of applied force. Because net force =Applied force - friction force and hence here friction force =applied force.
If there was any accelaration then there would exist a net force and then frictional force and applied force will be the same.
To learn more about accelaration refer the link:
https://brainly.com/question/21509870
#SPJ9
At the beginning of a 3.0-h plane trip, you are traveling due north at 192 km/h. At the end, you are traveling 250 km/h in the northwest direction (45° west of north).
Find the magnitude of the change in velocity.
Find the change in direction of your velocity. Enter the angle in degrees where negative indicates north of west and positive indicates south of west.
What is the magnitude of your average acceleration during the trip?
EDIT: ANSWERED
Magnitude of the change in velocity: 177.4 km/h
Change in direction of velocity: 4.9°
Magnitude of average acceleration during trip: 59.1 km/h2
The magnitude of the change in velocity is determined as 408.94 km/h.
The change in direction of the velocity is 64.4⁰ north of west.
The magnitude of the average acceleration during the trip is 0.0105 m/s².
Magnitude of change in velocityThe magnitude of change in velocity is the resultant velocity of the plane.
v² = a² + b² - 2ab cosθ
where;
θ is the angle between the two velocities = 45 + 90 = 135v² = (192²) + (250²) - 2(192 x 250) cos(135)
v² = 167,236
v = √167,236
v = 408.94 km/h
Vertical component of the velocityvyi = 192 km/h
vy2 = 250 x sin(45) = 176.77 km/h
vy(total) = 192 km/h + 176.77 km/h = 368.77 km/h
Horizontal component of the velocityvxi = 0
vx2 = - 250 km/h x cos(45) = -176.77 km/h
Change in direction of the velocityθ = arc tan (Vy/Vx)
θ = arc tan(368.77 / -176.77)
θ = -64.4 ⁰
θ = 64.4⁰ north of west.
Acceleration of the tripa = v/t
v = 408.94 km/h = 113.6 m/s
h = 3 h = 10,800 seconds
a = (113.6 m/s) / ( 10,800 s)
a = 0.0105 m/s²
Learn more about change in velocity here: https://brainly.com/question/25749514
#SPJ1
2. A radiographic technique calls for a 400 mA, 1/30s exposure. What is
the mAs?
Answer:
13.33 mA s
Explanation:
400 mA * 1/30 s = 13.33 mA s
please help look the pictures
The angular momentum can be indicated by formula mvr. The correct option is A.
What is angular momentum?The property of any rotating object given by moment of inertia times angular velocity is defined as angular momentum.
It is the property of a rotating body determined by the product of the rotating object's moment of inertia and angular velocity.
The rotational equivalent of linear momentum is the angular momentum formula. Both concepts are concerned with the rate at which anything moves.
It can be represented by symbol L.
L = mvr.
Thus, the correct option is A.
For more details regarding angular momentum, visit:
https://brainly.com/question/15104254
#SPJ1
ANSWER NOW PLEASE
When you are standing still on the Earth, your speed relative to the sun is approximately how many km/s.
If you were standing still on the equator of Earth you would move at nearly 1,000 miles/hour which is approximately 1,600 km/hr.
What is speed?
Speed is measured as the ratio of distance to the time in which the distance was covered.
The Earth is round and spins once every 24 hours. This spinning of the earth causes the daily motion which we feel here. If you were standing still on the equator of Earth you would move at nearly 1,600 km/hr.
Speed is a scalar quantity as it has only direction and no magnitude.
Speed is defined mathematically as distance/ time.
speed = distance/time expressed in m/s.
Learn more about speed at: https://brainly.com/question/13943409
#SPJ1
21
est
Show instructions
Question 26 of 27 | Page 26 of 27
Question 26 (1 point)
You are traveling down the road with a speed of 15 m/s when a deer runs out 20 m in front of your car. If at that instant you apply the brakes
and can decelerate your car at 4.5 m/s/s, will you hit the deer?
The car travels 25 meters before coming to rest and will hit the deer.
Given in the Question,
Initial speed = u = 15 m/s
Deceleration = a = 4.5 m/s²
According to the question, if the car stops before traveling 20m, it will avoid hitting the deer. So, we need to find the stopping distance for the car.
Deceleration is negative acceleration, so the sign of acceleration is will be -.
Also, the car comes to rest after applying the brakes. Therefore the final speed of the car will be zero.
Final speed = v = 0 m/s
Using the Third equation of motion,
v² - u² = 2as
Put in the values, we get
(0)² - (15)² = 2(-4.5)s
-2×4.5 × s = - 15× 15
s = 225/9
s = 25 m
So the car will come to rest after traveling 25 meters. But the Deer is present at 20 meters; therefore the car will hit the deer.
LEARN MORE ABOUT THE EQUATIONS OF MOTION HERE:
https://brainly.com/question/25951773
#SPJ9
A test car carrying a crash test dummy accelerates from 0 to 30 m/s and then crashes into a brick wall. Describe the direction of the initial acceleration vector and compare the initial acceleration vector's magnitude with respect to the crash acceleration magnitude.
Question 8 options:
The direction of the initial acceleration vector will point towards the wall, and its magnitude will be less than the acceleration vector of the crash.
The direction of the initial acceleration vector will point away from the wall, and its magnitude will be more than the acceleration vector of the crash.
The direction of the initial acceleration vector will point away from the wall, and its magnitude will be less than the vector of the crash.
The direction of the initial acceleration vector will point towards the wall, and its magnitude will be more than the acceleration vector of the crash.
The direction of the initial acceleration vector will point towards the wall, and its magnitude will be less than the acceleration vector of the crash, therefore the correct answer is option A.
What is acceleration?The rate of change of the velocity with respect to time is known as the acceleration of the object.
As given in the problem, a test car carrying a crash test dummy accelerates from 0 to 30 m/s and then crashes into a brick wall. Describe the direction of the initial acceleration vector and compare the initial acceleration vector's magnitude with respect to the crash acceleration magnitude.
Thus, the initial acceleration vector will point in the direction of the wall and be smaller than the crash's acceleration vector, therefore the correct answer is option A.
To learn more about acceleration from here, refer to the link;
brainly.com/question/2303856
#SPJ1
What is physical quantity?....
physics help needed
Answer: 1 > 3 > 2
Explanation: The range will increase with the velocity. If they are all launched at the same time the ones that are launched the hardest or with the most velocity will go the furthest horizontally. But because they are all launched from the same height and the force of gravity on all three projectiles is constant (the same for all three) they will all hit the ground at the same time but different distances from the starting point.