hii
Step-by-step explanation:
length-10x
width-x
perimeter-2(l+b)
66=2(10x+x)
66-2=10x+x
64=11x
x=11/64
lenght-11
width-64
Find the circumference of a circular field with a diameter of 16 yards.
(Let it = 3.14)
Answer:
Hey there!
The circumference of a circle is [tex]\pi(d)[/tex], where d is the diameter, and [tex]\\\pi[/tex] is a constant roughly equal to 3.14.
The diameter is 16, so plugging this into the equation, we get 3.14(16)=50.24.
The circumference of the circle is 50.24 yards.
Hope this helps :)
Which of the following is false? Correlation measures the strength of linear association between two numerical variables. If the correlation between two variables is close to 0.01, then there is a very weak linear relation between them. Correlation coefficient and the slope always have the same sign (positive or negative). If the correlation coefficient is 1, then the slope must be 1 as well.
Answer:
If the correlation coefficient is 1, then the slope must be 1 as well.
Step-by-step explanation:
Coefficient of correlation is used in statistics to determine the relationship between two variables. Correlation coefficient and slope always have same sign. It measures the strength of linear relation between two variables. The values of correlation coefficient ranges between 0 to 1. where 0 determines that there is no relationship between two variables.
The equation that represents the canned goods order is 24x + 64y = 384, where x = number of minutes for producing fruit cans and y = number of minutes for producing vegetable cans.
What is the meaning of the y-intercept?
Answer:
The y-intercept is the number of minutes for producing vegetable cans when no minutes are used for fruit cans
Step-by-step explanation:
The problem statement tells you y is the number of minutes for producing vegetable cans. The y-intercept is the y-value when x = 0.
The y-intercept is the number of minutes for producing vegetable cans when no minutes are used for fruit cans.
Answer:
The y-intercept, at the point (0, 6), designates the choice to compose vegetables for 6 minutes. In 6 minutes, making 64 cans of vegetables per minute, 384 cans for the order decree performed. The 0 for the x-value designs that no time spent producing cans of fruit.
Step-by-step explanation:
I got it right on edgenuity
The probability of a potential employee passing a drug test is 91%. If you selected 15 potential employees and gave them a drug test, how many would you expect to pass the test
Answer:
The number expected to pass that test is [tex]k = 14 \ employees[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.91
The sample size is n = 15
The number of employee that will pass the test is mathematically represented as
[tex]k = n * p[/tex]
substituting values
[tex]k = 15 * 0.91[/tex]
[tex]k = 14 \ employees[/tex]
The equation to the graph is y = -1/2 x - 3
Answer:
Hope it helps <3
━━━━━━━☆☆━━━━━━━
▹ Answer
Use a graphing calculator. Attached is an image.
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Find the general solution of the differential equation and check the result by differentiation. (Use C for the constant of integration.)
1. dy/dt = 35t^4
2. dy/dx = 5x^(5/7)
Answer:
1. Y= 7t^5 +C
2. Y= 35/12x^(12/7)+C
Step-by-step explanation:
The general solution will be determined by integrating the equations as the integration is a simple integration.
For dy/dt = 35t^4
The general solution y
= integral (35t^4)dt
The general solution y
=( 35/(4+1))*t^(4+1)
= 35/5t^5
= 7t^5 +C
To prove by differentiating the above.
Y= 7t^5 +C
Dy/Dt= (5*7)t^(5-1) +0
Dy/Dt= 35t^4
For dy/dx = 5x^(5/7)
Y=integral 5x^(5/7)Dx
Y= 5/(5/7 +1)*x^(5/7+1)
Y= 5/(12/7) *x^(12/7)
Y= 35/12x^(12/7)+C
To prove by differentiating
Y= 35/12x^(12/7)+C
Dy/Dx= (35/12)*(12/7) x^(12/7-1) +0
Dy/Dx=(35/7)x^(5/7)
Dy/Dx= 5x^(5/7)
The length of a rectangle is six times its width. The area of the
rectangle is 294 square centimeters. Find the dimensions of the
rectangle.
Answer:
length= 42
width = 7
Step-by-step explanation:
David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to-spice ratio is 15:1. He currently has 40 grams of the spice blend, and he can go buy more if necessary. He wants to make 10 servings, where each serving has 75 grams of rice. Overall, David spends 4.50 dollars on rice.
Answer:
8 servings
Step-by-step explanation:
Given:Rice-to-spice ratio = 15:1Amount of spice = 40 gramsRice required for one serving = 75 gramsTo find:Number of servingsSolution:Spice required for one serving, using the rice-to-spice ratio to calculate:
75 grams/15 = 5 gramsDavid can make servings according to amount of spice he has:
40 grams / 5 grams = 8Answer: David will be able to make 8 servings
Answer: 8
Step-by-step explanation:
Helen has 48 cubic inches of clay to make a solid
square right pyramid with a base edge measuring 6
inches.
Which is the slant height of the pyramid if Helen uses all
the clay?
O 3 inches
O4 inches
O 5 inches
O 6 inches
6 in
Save and Exit
Next
Submit
Mark this and return
Answer:
4 inches.
Step-by-step explanation:
The formula for the volume of a pyramid is v=1/3bh.
V is the volume of the shape
1/3 is just a rational number or fraction.
b is the area of the base shape of the 3d shape
h is the height of the shape (slant height).
The general formula for the volume of all shapes is V=Bh
V is the volume
B is the area of the base
h is the height of the prism.
In this case, we have a pyramid, so let's use the formula V=1/3Bh.
We know what the volume so 48=?
We can put 1/3 so 48=1/2 times ? times ?.
The base shape of this pyramid is a square, and it has an edge of 6 inches. We need to find the area of that square because it is the area of our base. the formula for finding the area of a square is A=S squared.
A is the area of the shape
S is the side length.
The reason why it is squared is because all sides of a square are equal to each other. Since the base edge is 6 inches, the other edges are 6 inches as well. There are 4 edges in a square.
A= 6 times 6.
A=36.
We have the area of the base, so we can put 48=1/3 times 36 times ?.
We are finding what the slant height is, so let's put the letter "h" to represent the slant height.
Now, 48=1/3 times 36 times h.
All we have to do is solve for h.
First we have to simplify one side of the equation.
To simplify, we have to do 1/3 times 36, or you can do 36 divided by 3. It is your choice. 36 divided by 3 is 12.
Now we have 12h=48.
Isolate h by dividing both sides by 12. 12h divided 12 is h. 48 divided by 12 is 4.
Therefore h=4 inches. The reason we divide both sides is because we have to do the inverse operation of the original equation. For instance 12h=48. To get to 48, you do 12 times h. We take the inverse (opposite) operation of multiplication (division). That will isolate for h.
The slant height of this square pyramid is 4 inches.
Hope this helps. Have a good rest of your day!
The slant height of the pyramid is 4 inches. Therefore, the option B is the correct answer.
What is the volume?Volume is the measure of the capacity that an object holds.
Formula to find the volume of the object is Volume = Area of a base × Height.
Given that, volume of square right pyramid = 48 cubic inches and base edge measuring 6 inches.
We know that, the volume of square based pyramid =a²h/3.
Here, a=6 inches and h=slant height
Now, 48= (6²×h)/3
48=36h/3
48=12h
h=4 inches
Therefore, the option B is the correct answer.
To learn more about the volume visit:
https://brainly.com/question/13338592.
#SPJ7
Which of the following proves ABC DEF?
A.
SAS
B.
SSS
C.
SSA
D.
ASA
Answer:
SAS
Step-by-step explanation:
SAS
two side 1 angle
if not that try SSA
Answer:
SAS
Step-by-step explanation:
We have two sides are equal and the angle between the two sides are equal so we can use the side angle side
Rationalize the denominator of $\frac{5}{2+\sqrt{6}}$. The answer can be written as $\frac{A\sqrt{B}+C}{D}$, where $A$, $B$, $C$, and $D$ are integers, $D$ is positive, and $B$ is not divisible by the square of any prime. If the greatest common divisor of $A$, $C$, and $D$ is 1, find $A+B+C+D$.
Answer:
[tex]A +B+C+D = 3[/tex] is the correct answer.
Step-by-step explanation:
Given:
[tex]$\frac{5}{2+\sqrt{6}}$[/tex]
To find:
[tex]A+B+C+D = ?[/tex] if given term is written as following:
[tex]$\frac{A\sqrt{B}+C}{D}$[/tex]
Solution:
We can see that the resulting expression does not contain anything under [tex]\sqrt[/tex] (square root) so we need to rationalize the denominator to remove the square root from denominator.
The rule to rationalize is:
Any term having square root term in the denominator, multiply and divide with the expression by changing the sign of square root term of the denominator.
Applying this rule to rationalize the given expression:
[tex]\dfrac{5}{2+\sqrt{6}} \times \dfrac{2-\sqrt6}{2-\sqrt6}\\\Rightarrow \dfrac{5 \times (2-\sqrt6)}{(2+\sqrt{6}) \times (2-\sqrt6)} \\\Rightarrow \dfrac{10-5\sqrt6}{2^2-(\sqrt6)^2}\ \ \ \ \ (\because \bold{(a+b)(a-b)=a^2-b^2})\\\Rightarrow \dfrac{10-5\sqrt6}{4-6}\\\Rightarrow \dfrac{10-5\sqrt6}{-2}\\\Rightarrow \dfrac{-5\sqrt6+10}{-2}\\\Rightarrow \dfrac{5\sqrt6-10}{2}[/tex]
Comparing the above expression with:
[tex]$\frac{A\sqrt{B}+C}{D}$[/tex]
A = 5, B = 6 (Not divisible by square of any prime)
C = -10
D = 2 (positive)
GCD of A, C and D is 1.
So, [tex]A +B+C+D = 5+6-10+2 = \bold3[/tex]
Please answer this correctly without making mistakes
Answer:
16 km
Step-by-step explanation:
From Washington, as the question asks, will now be considered 0 aka the starting point.
So as of now, we know Washington from Oakdale is 6.2 km.
And from Stanford to Salem is 11.9 km, also Salem to Washington is 10.3 km. Hence the addition of 11.9 km and 10.3 km to figure out the whole distance between Stanford and Washington.
11.9 km + 10.3 km = 22.2 km
Now we subtract 22.2 km to 6.2 km for the product of 16 km.
Find The measure of the unknown angle.
1. Add the two known angles:___+___=___
2. Subtract the sum from 180°: 180-___=___
3. The measure of the unknown angle is:____
Answer:
L = 45°
Step-by-step explanation:
1. 82° + 53° = 135°
2. 180° - 135° = 45°
3. Angle L is 45°
I hope this helps.
Anyone Willing To Hell Out?
Z=
37
39
51
the answer is 36.36 but the closest to it is 37
A hemoglobin test measures 29 grams of hgb per 200 milimiters of blood. If the patient has 11 quarts of blood in her body, how many grams of Hgb are present
Answer:
[tex] 11 quarts *\frac{946.353 ml}{1 quarter}= 10409.883 ml[/tex]
And for this case we can create the following proportion rule:
[tex]\frac{29 gr}{200 ml} =\frac{x}{10409.883 ml}[/tex]
And solving for x we got:
[tex] x= 10409.883 ml *\frac{29 gr}{200ml}= 1509.433 gr[/tex]
Step-by-step explanation:
For this problem we know that A hemoglobin test measures 29 grams of hgb per 200 milimiters of blood. and we want to know how many grams of Hgb are present in 11 quarts
First we need to convert the quarts to ml and we have:
[tex] 11 quarts *\frac{946.353 ml}{1 quarter}= 10409.883 ml[/tex]
And for this case we can create the following proportion rule:
[tex]\frac{29 gr}{200 ml} =\frac{x}{10409.883 ml}[/tex]
And solving for x we got:
[tex] x= 10409.883 ml *\frac{29 gr}{200ml}= 1509.433 gr[/tex]
Listed below are the measured radiation absorption rates (in W/kg) corresponding to 11 cell phones. Use the given data to construct a boxplot and identify the 5-number summary.
1.26 0.98 1.07 0.97 1.28 0.89 1.14 0.58 1.42 0.59 0.96
Answer:
Five-number summary in ascending order: [tex] 0.58, 0.89, 0.98, 1.26, 1.42 [/tex]
Step-by-step Explanation:
The number summary, in ascending order, includes the minimum value, maximum value, median value, upper quartile and lower quartile.
To find each of the above values, first, order the data set in ascending order. Our values given, when ordered, would be:
0.58, 0.59, 0.89, 0.96, 0.97,| 0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
1.The minimum value (the least value or lower value in the given data set).
From the ordered data set, minimum value = 0.58
2. The maximum value is the highest value in the data set = 1.42
3. Median value is the middle value of the data set. The middle value is the 6th value = 0.98.
The median value divides the data set into lower and upper region, as shown below.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
4. Lower Quartile (Q2) is the middle value of the lower region = 0.89, as shown below,
0.58, 0.59, [0.89], 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
5. Upper Quartile (Q3) is the middle value of the upper region = 1.26, as shown below.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, [1.26], 1.28, 1.42
: this is the middle value of lower region, after our median divides the data set into two.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
Therefore, the five-number summary in ascending order is as follows: [tex] 0.58, 0.89, 0.98, 1.26, 1.42 [/tex]
Min = 0.58
Q1 = 0.89
Median = 0.98
Q3 = 1.26
Max = 1.42
A box plot has been constructed using the five-number summary. Check the attachment below.
The min value is represented by the whisker that starts from your left and connects to the rectangular box.
The max value is indicated at the extreme end of the other whisker that you have from the end of the rectangular box to your far right.
The median value is indicated by the vertical line that divides the rectangular box into 2.
The lower quartile is indicated at the beginning of the rectangular box, while the upper quartile is located at the end of the rectangular box.
[PLEASE HELP] in the function above, the slope of it will be multiplied by 1/2 and it’s y value of its y intercept will be increased by 3 units, which of the graphs below best shows the new function???
Answer:
The graph at the bottom left in your group of possible answers.
Step-by-step explanation:
Notice that the original given graph corresponds to the equation:
[tex]y=2x+1[/tex]
since the line's slope is 2/1 = 2 and the y-intercept is at the point (0, 1).
So if one modifies the equation multiplying the current slope by 1/2, and the y intercept increased by 3 units, Then the new function would be:
[tex]y=x+4[/tex]
A line of slope 1 and y-intercept at (0, 4)
Notice that the graph at the bottom left in your possible answers is representing such function.
Answer:
Answer Y: or Bottom Left of Given Answers
Step-by-step explanation:
Please show step by step of working out the value of r for which is A minimum and calculate the minimum surface area of the container.
The total surface area, Acm^2, of each container is modelled by function A= πr^2+100/r.
(remember to use the derivative to show you have found the minimum)
Answer:
A = 59.63cm^2
Step-by-step explanation:
You have the following function for the surface area of the container:
[tex]A=\pi r^2+\frac{100}{r}[/tex] (1)
where r is the radius of the cross sectional area of the container.
In order to find the minimum surface are you first calculate the derivative of A respect to r, to find the value of r that makes the surface area a minimum.
[tex]\frac{dA}{dr}=\frac{d}{dr}[\pi r^2+\frac{100}{r}]\\\\\frac{dA}{dr}=2\pi r-\frac{100}{r^2}[/tex] (2)
Next, you equal the expression (2) to zero and solve for r:
[tex]2\pi r-\frac{100}{r^2}=0\\\\2\pi r=\frac{100}{r^2}\\\\r^3=\frac{50}{\pi}\\\\r=(\frac{50}{\pi})^{1/3}[/tex]
Finally, you replace the previous result in the equation (1):
[tex]A=\pi (\frac{50}{\pi})^{2/3}+\frac{100}{(\frac{50}{\pi})^{1/3}}}[/tex]
[tex]A=59.63[/tex]
The minimum total surface area is 59.63cm^2
Determine whether each of the following functions is even, odd, or neither even nor odd.
(a) f(x) = 1 + 3x 2 − x 4
(b) ????(????) = ???? ???? ????+�
Answer:
A.) Even.
Step-by-step explanation:
If a function is an even function, then
F(-x) = f(x)
Also, if a function is an odd function, then, f(-x) = -f(x)
You are given the below function
f(x) = 1 + 3x^2 − x^4
Let x = 2
Substitute 2 for x in the function
F(x) = 1 + 3(2)^2 - (2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Also, Substitute -2 for x in the function
F(x) = 1 + 3(-2)^2 - (-2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Since f(-x) = f(x), we can conclude that
F(x) = 1 + 3x^2 - x^4 is even
A concert starts at 7:45pm and ends at 1:35 am. How long was the concert?
Answer:
The concert starts at 7:45 pm and ended at 1:35 am which mean the concert going on 5 hours and 50 minutes.
Which of the following graphs is described by the function below ?
Answer:
The point of interception of the graph and x axis are -2.366 and -0.634.
The only graph that satisfy this conditions is Graph A
Step-by-step explanation:
Given the equation;
[tex]y = 2x^2 + 6x + 3\\[/tex]
at y = 0
[tex]2x^2 + 6x + 3=0\\[/tex]
the roots of the quadratic equation (at y =0) can be calculated using the quadratic formula;
[tex]x = \frac{-b\pm \sqrt{b^2 -4ac}}{2a}[/tex]
Using the quadratic equation to solve for the roots;
[tex]x = \frac{-6\pm \sqrt{6^2 -4*2*3}}{2*2}\\x = \frac{-6\pm \sqrt{36 - 24}}{4}\\x = \frac{-6\pm \sqrt{12}}{4}\\so, we have \\x = -2.366\\or\\x = -0.634\\[/tex]
Therefore, the point of interception of the graph and x axis are -2.366 and -0.634.
The only graph that satisfy this conditions is Graph A
Instructions
Chart of Accounts
Starting Question
Joumal
Instructions
Flush Mate Co. wholesales bathroom fixtures. During the current fiscal year, Flush Mate Co. received the following notes:
Date
Face Amount
Interest Rate
Term
1.
Mar. 6
$80,000
5%
45 days
2.
Apr. 23
24,000
9
60 days
3.
July 20
42,000
6
120 days
4
Sept. 6
54,000
7
90 days
5.
Nov. 29
27,000
6.
60 days
6
Dec. 30
72,000
5
30 days
Required:
1. Determine for each note (a) the due date and (b) the amount of interest due at maturity, identifying each note by number. Assume a 360-day
Answer:
Note Due Date Interest due at Maturity
1 Mar 6 $500
2 Apr 23 $360
3 July 20 $840
4 Sept 6 $945
5 Nov 29 $270
6 Dec 30 $300
Step-by-step explanation:
Calculation to Determine the due date and the amount of interest due at maturity for Flush Mate Co.
Using this formula to Calculate for the amount of interest due at maturity.
Interest due at Maturity= [Face amount * Numbers of days to maturity / 360 * Interest rate]
Note, Due Date, Face Amount, No of days to maturity, Interest rate, Interest due at Maturity
1 Mar 6 80,000× 45/360 ×5% =$500
2 Apr 23 24,000 × 60/360 ×9% =$360
3 July 20 42,000×120/360 ×6% =$840
4 Sept 6 54,000× 90/360 ×7% =$945
5 Nov 29 27,000× 60/360 ×6% =$270
6 Dec 30 72,000× 30/360 ×5% =$300
Therefore the due date and the amount of interest due at maturity for Flush Mate Co are:
Note Due Date Interest due at Maturity
1 Mar 6 $500
2 Apr 23 $360
3 July 20 $840
4 Sept 6 $945
5 Nov 29 $270
6 Dec 30 $300
find the area of the triangle shown
Answer
B. 27
firist divide 9÷2=4.5
the formula
=1/2×4.5×6
=13.5
cause there are 2 triangles. let's multiply 13.5 with 2
13.5×2= 27²
Colossus Added to six flags st. Louis in 1986, the Colossus is a giant Ferris wheel. Its diameter is 165 feet, it rotates at a rate of about 1.6 revolutions per minute, and the bottom of the wheel is 15 feet above the ground. Determine an equation that relates a rider's height the ride at the bottom of the wheel.
Given:
D=165 feet and the frequency of the motion is 1.6 revolutions per minute.
Solution:
The radius is half of the diameter.
The radius of the wheel is 82.5 feet.
[tex]T=\frac{1}{1.6} \text{ minutes}[/tex]
As we know: [tex]\omega=\frac{2\pi}{T}[/tex]
Substitute the value of T in the above formula.
[tex]\omega=\frac{2\pi}{\frac{1}{1.6}}\\\omega=3.2\pi[/tex]
If the center of the wheel is at the origin then for [tex]t=0[/tex] the rest position is [tex]-a[/tex].
This can be written as:
[tex]h(t)=-a\cos(\omega t)\\h(t)=-82.5cos(32.\pi t)[/tex]
The actual height of the rider from the ground is:
[tex]h(t)=\text{ Initial height from bottom}+\text{ radius}-82.5\cos(3.2\pi t)\\h(t)=15+82.5-82.5\cos(3.2\pi t)\\h(t)=97.5-82.5\cos(3.2\pi t)[/tex]
The required equation is [tex]h(t)=97.5-82.5\cos(3.2\pi t)[/tex].
What is the answer need answer now !!!
Step-by-step explanation:
RD=BL
RE=BU
ED=UL
Please mark brainliest!!!
The mean breaking strength of yarn used in manufacturing drapery material is required to be at least 100 psi. Past experience has indicated that the standard deviation of breaking strength is 2.6 psi. A random sample of 9 specimens is tested, and the average breaking strength is found to be 100.6 psi. Test the hypothesis that the mean breaking strength is larger than 100 psi by setting up the null and alternative hypotheses. Use alpha = .05.
a) What is the numerical value of your test statistic, z0?
b) What is the p-value resulting from the test of Part A? Answer to three decimal places.
c) What is the probability of Type II error for the hypothesis test of Part A if the true population mean is 101.3 psi? Answer to three decimal places
Answer:
Step-by-step explanation:
Given that:
Mean μ= 100
standard deviation σ = 2.6
sample size n = 9
sample mean X = 100.6
The null hypothesis and the alternative hypothesis can be computed as follows:
[tex]H_o : \mu \leq 100[/tex]
[tex]H_1 :\mu > 100[/tex]
The numerical value for the test statistics is :
[tex]z = \dfrac{x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{100.6- 100}{\dfrac{2.6}{\sqrt{9}}}[/tex]
[tex]z = \dfrac{0.6}{0.8667}[/tex]
z = 0.6923
At ∝ = 0.05
[tex]t_{\alpha/2 } = 0.025[/tex]
The critical value for the z score = 0.2443
From the z table, area under the curve, the corresponding value which is less than the significant level of 0.05 is 1.64
P- value = 0.244
c> If the true population mean is 101.3 ;
Then:
[tex]z = \dfrac{x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{101.3- 100.6}{\dfrac{2.6}{\sqrt{9}}}[/tex]
[tex]z = \dfrac{0.7}{0.8667}[/tex]
z = 0.808
From the normal z tables
P value = 0.2096
The dot plots show the number of hours a group of fifth graders and seventh graders spent playing outdoors over a one-
week period.
Time Spent Playing Outdoors
for Fifth Graders and Seventh Graders
.
5th Grade
0
ta
1 2 3 4 5
Hours
7
8
9 10
7th Grade
.
Answer: B
Step-by-step explanation:
Answer:B
Step-by-step explanation: I took the edge quiz and it was right.
4. (a) Two years ago a woman was 7 times as old as her daughter, but in 3 years time
she would be only 4
times as old as the girl. How old are they now?
Answer:
woman is 37, girl is 7
Step-by-step explanation:
7(x-2) = y-2
4(x+3) = y+3
7x - 14 = y - 2
7x - 12 = y
4x + 9 = y
3x - 21 = 0
x = 7
y = 37
[tex]5x-4+2(x-4)=16[/tex]
Answer:
[tex]\boxed{x = 4}[/tex]
Step-by-step explanation:
=> 5x-4+2(x-4) = 16
Expanding the brackets
=> 5x-4+2x-8 = 16
Combining like terms
=> 5x+2x-4-8 = 16
=> 7x - 12 = 16
Adding 12 to both sides
=> 7x = 16+12
=> 7x = 28
Dividing both sides by 7
=> x = 4
Answer:
x = 4
Step-by-step explanation:
5x - 4 + 2(x-4) = 16
Expand the equation by multiplying 2 to x and -4 separately:
5x - 4 + 2x - 8 = 16
Collect like terms:
5x + 2x - 4 - 8 = 16
7x -12 = 16
Add 12 to both sides:
7x = 16 + 12
7x = 28
Divide both sides by 7 :
x = 28/7
x = 4
In a Gallup poll of 557 randomly selected adults, 284 said that they were underpaid. Construct a 95% confidence interval estimate for the proportion of adults who say they are underpaid.
Answer:
[tex]0.51 - 1.96 \sqrt{\frac{0.51(1-0.51)}{557}}=0.468[/tex]
[tex]0.51 + 1.96 \sqrt{\frac{0.56(1-0.56)}{1507}}=0.552[/tex]
And the 95% confidence interval would be given (0.468;0.552).
Step-by-step explanation:
The estimated proportion of people who say that were underpaid is given by:
[tex]\hat p=\frac{284}{557}=0.510[/tex]
The confidence interval would be given by this formula
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
For the 95% confidence interval the value of [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.
[tex]z_{\alpha/2}=1.96[/tex]
And replacing into the confidence interval formula we got:
[tex]0.51 - 1.96 \sqrt{\frac{0.51(1-0.51)}{557}}=0.468[/tex]
[tex]0.51 + 1.96 \sqrt{\frac{0.56(1-0.56)}{1507}}=0.552[/tex]
And the 95% confidence interval would be given (0.468;0.552).