(a) The length of the pendulum is 3.96 m.
(b) The amplitude is 7.89 m.
(c) The frequency is 0.25 Hz.
(d) The maximum velocity is 12.38 m/s.
(e) The total energy is 9.67 J.
(f) The maximum height is 3.94 m.
Length of the pendulum
The length of the pendulum at the given parameters is determined using the following formula.
[tex]T = 2\pi \sqrt{\frac{l}{gcos(\theta)} } \\\\\frac{T}{2\pi } = \sqrt{\frac{l}{gcos(\theta)} }\\\\\frac{T^2}{4\pi ^2 } =\frac{l}{gcos(\theta)}\\\\l = \frac{gcos(\theta)T^2}{4\pi^2} \\\\l = \frac{(9.8)cos(5)\times (4)^2}{4\pi^2} \\\\l = 3.96 \ m[/tex]
Amplitude of the pendulumThe amplitude of the pendulum is calculated as follows;
mgLcosθ = ¹/₂FA
mgLcosθ = ¹/₂(mg)A
Lcosθ = ¹/₂A
A = 2Lcosθ
A = 2 x 3.96 x cos(5)
A = 7.89 m
Angular speed of the wave[tex]\omega = \sqrt{\frac{g}{l} } \\\\\omega = \sqrt{\frac{9.8}{3.96} } \\\\\omega = 1.57 \ rad/s[/tex]
Frequency of the waveω = 2πf
f = ω/2π
f = (1.57) / (2π)
f = 0.25 Hz
Maximum velocityThe maximum velocity is calculated as follows;
v = Aω
v = 7.89 x 1.57
v = 12.38 m/s
Total energyE = mgLcosθ
E = 0.25 x 9.8 x 3.96 x cos(5)
E = 9.67 J
Maximum height reached by the pendulumh = Lcosθ
h = 3.96 x cos(5)
h = 3.94 m
Learn more about length of pendulum here: https://brainly.com/question/8168512