A homeowner borrows $65,000 to remodel their home. The loan is financed at a 2.3% interest rate, compounded quarterly.
So we have to find 2.3% of 65,000 which is 1495
Now we have to multiply 1,495 by 8 because it is 8 years which is 11960. Now we add 11,960 to 65,000 and our answer is
Answer : 76960
(Choice 1)
Hallar la altura de una asta bandera, si un estudiante la observa desde un punto a, con un ángulo de 30° y entre el estudiante y la asta hay una distancia de 10m.
Answer:
The height of the flagpole is approximately 5.774 meters.
Step-by-step explanation:
Let's call the height of the flagpole h. We can use trigonometry to set up the following equation:
tan(30°) = h/10
Simplifying this equation, we get:
h = 10 tan(30°)
Using a calculator, we find that tan(30°) ≈ 0.5774, so:
h ≈ 5.774 meters
Therefore, the height of the flagpole is approximately 5.774 meters.
To know more about flagpole refer here
https://brainly.com/question/31296662#
#SPJ11
What is the volume of a right rectangular prism with a length of 4. 8 meters, a width of 2. 3 meters, and a height
of 0. 9 meters?
O4. 968 m3
O9. 936 m3
O 11. 94 m3
O 34. 86 m3
PLS ANSWER FAST I WILL GIVE BRAINIEST!!!!!
Answer:
Step-by-step explanation:
The volume of the given prism is 9.936 cubic meters, To calculate the volume of a right rectangular prism, we need to multiply its length, width, and height together.
Given that the length of the prism is 4.8 meters, the width is 2.3 meters, and the height is 0.9 meters, we can calculate the volume using the formula:
Volume = length x width x height
Volume = 4.8 m x 2.3 m x 0.9 m
Volume = 9.936 m^3
Therefore, the volume of the right rectangular prism is 9.936 cubic meters.
It is important to note that when we calculate volume, we are dealing with a three-dimensional space, and the units we use must be cubed (m^3 in this case). This is because we are measuring the amount of space occupied by the object in all three dimensions.
In summary, to find the volume of a right rectangular prism, we simply multiply its length, width, and height together. In this case, the volume of the given prism is 9.936 cubic meters.
To know more about volume of a right rectangular prism refer here:
https://brainly.com/question/3248292#
#SPJ11
A school chess club needs to raise at least $750 to attend a state competition.
The inequality which can be used to determine amount the club needs to raise during remaining months is 400 + 4n ≥ 750.
The goal of the school chess club is to raise at least $750 in total so that they can attend a state competition. They have already raised $400, but they still need to raise more money. Let's call the amount they need to raise each month "n".
Since the club has 4 months remaining until the competition, they will need to raise a total of "4n" dollars during that time period.
To determine the minimum amount they need to raise each month, the inequality can be written as : 400 + 4n ≥ 750,
4n ≥ 350 ; n ≥ 87.5.
This means that the chess-club needs to raise at least $87.50 each month in order to reach their goal of $750 in 4 months.
Therefore, the required inequality is 400 + 4n ≥ 750.
Learn more about Inequality here
https://brainly.com/question/9943146
#SPJ4
The given question is incomplete, the complete question is
A school chess club needs to raise at least $750 to attend a state competition. The club has already raised $400 and there are 4 months remaining until the competition. Write an inequality which can be used to determine the dollar amount the club will need to raise during the remaining months?
Need HELP ASAP!! please
Answer :
D. XY = 5 , YZ = 2Step-by-step explanation :
As We Know that Opposite sides of the Parallelogram are equal.
SO,
(i) YZ = XW (opposite sides)
YZ = 2bXW = b + 1=> 2b = b + 1
=> 2b - b = 1
=> b = 1
Since, YZ = 2b
=> YZ = 2 × 1
=> YZ = 2.
Also,
(ii) XY = WZ (opposite sides)
XY = 3a - 4 WZ = a + 2=> 3a - 4 = a + 2
=> 3a - a = 2 + 4
=> 2a = 6
=> a = 6/2
=> a = 3 .
Since, XY = 3a - 4
putting the value of a = 3.
=> 3(3) - 4
=> 9 - 4
=> 5
XY = 5.
Therefore, Option D is the required answer.
Dr. Aghedo is saving money in an account with continuously compounded interest. How long will it take for the money she deposited to double if interest is compounded continuously at a rate of 3. 1%. Round your answer to the nearest tenth
The count of duration that is needed for Dr. Aghedo's money to be deposited is 22.3 years, under the condition that if interest is compounded continuously at a rate of 3. 1
The derived formula for doubling time with continuous compounding is applied to evaluate the length of time it takes to double the money in an account or investment that has continuous compounding. The formula is
Doubling time = ln 2 / r
Here,
r =annual interest rate as a decimal.
For the required case, the interest rate is 3.1% that can be written as 0.031 in the form of decimal. Then the doubling time will be
Doubling time = ln 2 / 0.031
≈ 22.3 years
Then, it should take approximately 22.3 years for Dr. Aghedo's money to double if interest is compounded continuously at a rate of 3.1%.
To learn more about annual interest
https://brainly.com/question/30500391
#SPJ4
What’s the answer I need help pls?
A community organization wishes to know the proportion of subjects who feel financially comfortable in a certain town.
Based on last year's census, 64% of the residents in this town felt financially comfortable. In this year's survey 56 out of 115 randomly chosen subjects felt financially comfortable. Comfortable.
If indeed the residents' economic opinions have NOT changed from last year, what's the probability of getting a survey of size n = 115, where 56 or fewer subjects say they feel financially comfortable?
a. 0. 0006
b. 0. 0003
c. 0. 3245
d. 0. 0927
e. 0. 9997
The probability of getting a survey of size n = 115, where 56 or fewer subjects say they feel financially comfortable is 0.0003. Therefore, the correct option is B.
To find the probability of getting a survey of size n = 115, where 56 or fewer subjects say they feel financially comfortable if the residents' economic opinions have not changed from last year, we can use the normal distribution as an approximation to the binomial distribution.
1. Calculate the mean (μ) and standard deviation (σ) of the binomial distribution using the proportion from the census (64%) and the sample size (n = 115).
Mean (μ) = n * p = 115 * 0.64 = 73.6
Standard deviation (σ) = √(n * p * (1-p)) = √(115 * 0.64 * 0.36) ≈ 6.45
2. Convert the observed value (56) to a z-score:
z = (x - μ) / σ = (56 - 73.6) / 6.45 ≈ -2.73
3. Find the probability of getting a z-score less than or equal to -2.73 using a z-table or an online calculator.
P(Z ≤ -2.73) ≈ 0.0032
The closest answer choice to this probability is 0.0003, so the correct answer is (b) 0.0003.
Learn more about Probability:
https://brainly.com/question/25839839
#SPJ11
Eric and victoria are working on a project. eric has completed 3/8 of the project and and victoria has completed 1/3 of the project.
"(help me with this pls asap)"
Eric has completed 37.5% (or 0.375) of the project, while Victoria has completed 33.3% (or 0.333) of the project. Together, they have completed approximately 70.8% (or 0.708) of the project.
If Eric and Victoria are working on a project and Eric has completed 3/8 of the project, and Victoria has completed 1/3 of the project, then to find the total portion of the project completed, you can add their individual contributions: (3/8) + (1/3).
To add these fractions, you need a common denominator, which is 24 in this case. So, you can rewrite the fractions as (9/24) + (8/24). Adding them together gives you a total of 17/24 of the project completed by both Eric and Victoria, which is equal to 70.8% (or 0.708).
*complete question: Eric and victoria are working on a project. eric has completed 3/8 of the project and and victoria has completed 1/3 of the project. Calculate the total work they have completed together.
More on projects: https://brainly.com/question/24535923
#SPJ11
The height of lava fountains spewed from volcanoes cannot be measured directly. Instead, their height in meters can be found using the equation
where y represents the height, g is 9.8, and t represents the falling time of the lava rocks. Find the height in meters of a lava rock that falls for 3 seconds.
Later in the summer as the garden plants were fading, claire decided that
she
would raise rabbits. she pulled out the dead plants and cleaned up the area. her
research showed that each rabbit needs 2 square feet of space in a pen, and that
rabbits reproduce every month, having litters of about 6 kits. she started with 2
rabbits (one male and one female). claire began tracking the number of rabbits
at the end of each month and
displayed her data in the table:
i need to get to 12 months can anyone help me please?
By the end of 12 months, Claire will need 1,596,018 pens to house all the rabbits.
The number of adult rabbits in each month is the sum of the adult rabbits from the previous month and the number of baby rabbits that have grown to adulthood.
The number of baby rabbits in each month is the product of the number of adult rabbits in the previous month and the number of kits each pair of rabbits produces (6 in this case).
The total number of rabbits is simply the sum of the number of adult rabbits and the number of baby rabbits. Finally, the minimum pen size needed is found by divide the total number of rabbits by 2 (since each rabbit needs 2 square feet of space).
Month 1
Beginning of month: 2 rabbits (1 male, 1 female)
End of month: 8 rabbits (3 males, 5 females)
Number of pens needed: 16 square feet / 2 square feet per pen = 8 pens
Month 2
Beginning of month: 8 rabbits (3 males, 5 females)
End of month: 26 rabbits (11 males, 15 females)
Number of pens needed: 52 square feet / 2 square feet per pen = 26 pens
Month 3
Beginning of month: 26 rabbits (11 males, 15 females)
End of month: 80 rabbits (35 males, 45 females)
Number of pens needed: 160 square feet / 2 square feet per pen = 80 pens
Month 4
Beginning of month: 80 rabbits (35 males, 45 females)
End of month: 242 rabbits (105 males, 137 females)
Number of pens needed: 484 square feet / 2 square feet per pen = 242 pens
Month 5
Beginning of month: 242 rabbits (105 males, 137 females)
End of month: 728 rabbits (315 males, 413 females)
Number of pens needed: 1456 square feet / 2 square feet per pen = 728 pens
Month 6
Beginning of month: 728 rabbits (315 males, 413 females)
End of month: 2186 rabbits (945 males, 1241 females)
Number of pens needed: 4372 square feet / 2 square feet per pen = 2186 pens
Now, to continue for the next 6 months
Month 7
Beginning of month: 2186 rabbits (945 males, 1241 females)
End of month: 6568 rabbits (2835 males, 3733 females)
Number of pens needed: 13136 square feet / 2 square feet per pen = 6568 pens
Month 8
Beginning of month: 6568 rabbits (2835 males, 3733 females)
End of month: 19702 rabbits (8499 males, 11203 females)
Number of pens needed: 39404 square feet / 2 square feet per pen = 19702 pens
Month 9
Beginning of month: 19702 rabbits (8499 males, 11203 females)
End of month: 59110 rabbits (25499 males, 33611 females)
Number of pens needed: 118220 square feet / 2 square feet per pen = 59110 pens
Month 10
Beginning of month: 59110 rabbits (25499 males, 33611 females)
End of month: 177334 rabbits (76535 males, 100799 females)
Number of pens needed: 354668 square feet / 2 square feet per pen = 177334 pens
Month 11
Beginning of month: 177334 rabbits (76535 males, 100799 females)
End of month: 532006 rabbits (229799 males, 302207 females)
Number of pens needed: 1064012 square feet / 2 square feet per pen = 532006 pens
Month 12
Beginning of month: 532006 rabbits (229799 males, 302207 females)
End of month: 1596018 rabbits (689397 males, 906621 females)
Number of pens needed: 3192036 square feet / 2 square feet per pen = 1596018 pens
To know more about Division:
https://brainly.com/question/1575906
#SPJ4
A 60 foot tall building casts a 20 foot. Shadow. Use the principles of similar triangles to determine the length of a shadow cast by a 5 foot 6 inch student
The length of the shadow cast by the 5 foot 6 inch student is approximately 1.83 feet.
To solve this problem, we'll set up a proportion using the principles of similar triangles. The two triangles in this case are the building and its shadow, and the student and their shadow.
Convert the height of the student to feet. 5 feet 6 inches is equal to 5.5 feet.
Set up the proportion. Let x represent the length of the shadow cast by the student. We have the following proportion:
(height of building) / (length of building's shadow) = (height of student) / (length of student's shadow)
60 / 20 = 5.5 / x
Cross-multiply and solve for x:
60 * x = 20 * 5.5
60x = 110
x = 110 / 60
x = 1.83 (rounded to two decimal places)
The length of the shadow cast by the 5 foot 6 inch student is approximately 1.83 feet.
Learn more about "length": https://brainly.com/question/24487155
#SPJ11
7. The table shows the linear relationship between the total amount Mrs. Jacobs will be
charged for a skating party and the number of children attending.
Which equation best represents y, the total amount in dollars Mrs. Jacobs will be
charged for
x number of children attending the skating party?
The equation that best represents the linear relationship between the total amount Mrs. Jacobs will be charged and the number of children attending the skating party is y = mx + b.
In this case, y represents the total amount in dollars that Mrs. Jacobs will be charged, x represents the number of children attending the party, m represents the slope of the line, and b represents the y-intercept.
To find the equation, we need to determine the slope and y-intercept from the table given. From the table, we can see that for every additional child attending the party, the total amount charged increases by $10. This means that the slope (m) of the line is 10.
To find the y-intercept (b), we can look at the table and see that when there are zero children attending the party, the total amount charged is $50. This means that the y-intercept is 50.
Putting it all together, the equation that best represents the linear relationship is y = 10x + 50.
To know more about linear relationship refer here:
https://brainly.com/question/29066440#
#SPJ11
A coin is flipped, and a standard number cube is rolled. What is the probability for flipping tails and rolling an odd number.
Answer:
1/4
Step-by-step explanation:
The probability of flipping tails is 1/2, since there are two equally likely outcomes when flipping a coin (heads or tails).
The probability of rolling an odd number on a standard number cube is 3/6 or 1/2, since there are three odd numbers (1, 3, and 5) out of six possible outcomes (1, 2, 3, 4, 5, and 6).
To find the probability of both events happening (i.e., flipping tails and rolling an odd number), we multiply the probabilities of each event:
P(tails and odd number) = P(tails) * P(odd number)
P(tails and odd number) = 1/2 * 1/2
P(tails and odd number) = 1/4
Therefore, the probability of flipping tails and rolling an odd number is 1/4 or 0.25.
A cistern in the form of an inverted circular cone is being filled with water at the rate of 65 liters per minute. if the cistern is 5 meters deep, and the radius of its opening is 2 meters, find the rate at which the water level is rising in the cistern 30 minutes after the filling process began.
Let's start by finding the volume of the cistern at any given time t. Since the cistern is in the form of an inverted circular cone, its volume can be expressed as:
V = (1/3)πr^2h
where r is the radius of the circular opening, h is the height of the cone (which is also the depth of the cistern), and π is the constant pi.
We are given that the cistern is 5 meters deep, and the radius of its opening is 2 meters. Therefore, we can plug these values into the equation above to get:
V = (1/3)π(2^2)(5)
V = 20/3 π
Now, we need to find the rate at which the water level is rising in the cistern after 30 minutes. Let's call this rate dh/dt (the change in height with respect to time).
We know that the water is being added to the cistern at a rate of 65 liters per minute. Since 1 liter is equal to 0.001 cubic meters, the volume of water being added per minute is:
(65 liters/minute) × (0.001 m^3/liter) = 0.065 m^3/minute
Therefore, the rate at which the height of the water in the cistern is changing is:
dh/dt = (0.065 m^3/minute) / (20/3 π m^3) = 3.87/π meters/minute
After 30 minutes, the height of the water in the cistern will have risen by:
h = (65 liters/minute) × (0.001 m^3/liter) × (30 minutes) / (20/3 π m^3) = 0.2925 meters
Therefore, the rate at which the water level is rising in the cistern 30 minutes after the filling process began is:
dh/dt = 3.87/π meters/minute
To know more about cistern refer here
https://brainly.com/question/19698275#
#SPJ11
Which ordered pair is a solution to the following system of inequalities?
y < –x2 + x
y > x2 – 4
(0, –1)
(1, 1)
(2, –3)
(3, –6)
(0, -1) is the solution to the given system of inequalities.
Option A is the correct answer.
We have,
To determine which ordered pair is a solution to the system of inequalities, we need to check if each ordered pair satisfies both inequalities simultaneously.
Let's evaluate each option:
(0, -1):
For this option, we have:
y < -x² + x
-1 < -(0)² + 0
-1 < 0
y > x² - 4
-1 > (0)² - 4
-1 > -4
Since both inequalities are satisfied simultaneously, (0, -1) is a solution to the system.
(1, 1):
For this option, we have:
y < -x² + x
1 < -(1)² + 1
1 < 0
y > x² - 4
1 > (1)² - 4
1 > -3
Since both inequalities are not satisfied simultaneously, (1, 1) is not a solution to the system.
(2, -3):
For this option, we have:
y < -x² + x
-3 < -(2)² + 2
-3 < -2
y > x² - 4
-3 > (2)² - 4
-3 > 0
Since both inequalities are not satisfied simultaneously, (2, -3) is not a solution to the system.
(3, -6):
For this option, we have:
y < -x² + x
-6 < -(3)² + 3
-6 < -6
y > x² - 4
-6 > (3)² - 4
-6 > 5
Since both inequalities are not satisfied simultaneously, (3, -6) is not a solution to the system.
Thus,
(0, -1) is the only solution to the given system of inequalities.
Learn more about inequalities here:
https://brainly.com/question/20383699
#SPJ12
Use this scenario on this and the next problem.
Tobias received an inheritance from his grandfather of $20,000. When he gets out of
college in 4 years he wants to use it as a down payment on a piece of lakeside property.
If he puts all the money in a savings account paying 6. 5% interest compounded daily,
how much money will be in the account at the end of the four years to use as the down
payment on the property?
The amount of money that will be in the account at the end of the four years to use as the down payment on the property is $26,102.47.
What is the compound interest?In the above question, we need to use the formula for compound interest and it is:
A = P(1 + r/n)^(nt)
Note that:
A = the amount of money at the end of the investment
P = the principal amount
r = the annual interest rate
n = the number of times the interest is compounded per year
t = the number of years of the investment
Since:
P = $20,000
r = 6.5% = 0.065
n = 365 (note the interest is compounded everyday)
t = 4
We shall put the values into the formula:
A = $20,000(1 + 0.065/365)^(365*4)
A = $20,000(1.0178)¹⁴⁶⁰
A = $20,000 x 1.305124
A = $26,102.47
Therefore, at the end of the four years, there will be $26,102.47.
Learn more about compound interest from
https://brainly.com/question/24274034
#SPJ1
Scott has a rectangular garage that has a length of 234 inches. The width is 1. 5 times shorter than the length. What is the area of his garage?
The area of garage is 36,504 square inches.
The width of Scott's garage is 156 inches (since it is 1.5 times shorter than the length of 234 inches).
so width = 234/1.5
=> 156
To find the area, we multiply the length by the width:
=> 234 inches x 156 inches
=> 36,504 square inches.
To explain, the formula for finding the area of a rectangle is length x width. In this problem, we are given the length of the garage as 234 inches and are told that the width is 1.5 times shorter than the length.
To find the width, we can multiply the length by 1.5 to get 351 inches (which is longer than the length, so we know it must be incorrect). Instead, we need to divide the length by 1.5 to find the width, which gives us 156 inches. Then, we can multiply the length by the width to find the area of the garage, which is 36,504 square inches.
To know more about area of a rectangle click on below link:
https://brainly.com/question/16309520#
#SPJ11
Find the surface area of the regular pyramid shown to the nearest whole number. The figure is not drawn to scale.
*
Captionless Image
1209 m^2
790 m^2
1125 m^2
898 m^2
The surface area of the regular pyramid is 1209 m².
How to find the surface area of the regular pyramid?A pyramid is a three-dimensional shape. It has a flat polygon base. All the other faces are triangles and are called lateral faces.
A pyramid is called by the shape of its base.
The surface area of the regular hexagonal pyramid is given by the formula:
SA = 3b(a + s)
Where a is the apothem, b is the base and s is the slant height of the pyramid.
In this case:
a = 8.5√3 m
b = 17 m
s = 9 m
SA = 3 * 17 * (8.5√3 + 9)
SA = 1209 m²
Learn more about pyramid on:
https://brainly.com/question/22744289
#SPJ1
40 points!!!
Peyton's photo album has 6 1/2 pages of family photos and f pages of
photos of friends. Write an expression that shows the total number
of pages in Peyton's album. Then evaluate the expression if there are
3 1/2 pages of photos of friends.
The expression that shows the total number of pages in Peyton's album is 6 1/2 + f.
We are given that;
Number of pages= 6 1/2
Now,
To write an expression that shows the total number of pages in Peyton’s album, you need to add the number of pages of family photos and the number of pages of friends photos. The expression is:
6 1/2 + f
To evaluate the expression if there are 3 1/2 pages of photos of friends, you need to substitute f with 3 1/2 and then add the fractions. The answer is
6 1/2 + 3 1/2 = 10
Therefore, by the expression the answer will be 6 1/2 + f.
To know more about an expression follow;
brainly.com/question/19876186
#SPJ1
Aabc is dilated by a factor of to produce aa'b'c!
28°
34
30
62
b
16
what is a'b, the length of ab after the dilation? what is the measure of a?
To find the length of a'b', we first need to know the scale factor of the dilation. The scale factor is given by the ratio of the corresponding side lengths in the original and diluted figures.
In this case, we are given that the original figure Aabc has been diluted by a factor of √2. So the length of each side in the dilated figure aa'b'c is √2 times the length of the corresponding side in Aabc.
To find the length of a'b, we can use the Pythagorean theorem in the right triangle aa'b'. Since we know that ab is one of the legs of this triangle, we can find its length as follows:
ab = (a'b' / √2) * sin(28°)
We are not given the length of ab or a in the original figure, so we cannot find their exact values. However, we can find the measure of angle A using the Law of Sines in triangle Aab:
sin(A) / ab = sin(62°) / b
where b is the length of side bc in Aabc. Solving for sin(A) and substituting the expression for ab that we found earlier, we get:
sin(A) = (sin(62°) / b) * [(a'b' / √2) * sin(28°)]
Since we know the values of sin(62°) and sin(28°), we can simplify this expression and use a value for b (if it is given in the problem) to find sin(A) and then A.
Which numbers are solutions to the inequality *> 145 ? check all that apply. fraction is larger than 14 1/2 be decimals larger than 14 1/2 while numbers larger than 14 1/2 the number 14 1/2
fractions smaller than 14 1/2, decimal smaller than 14 1/2, whole number smaller than 14 1/2
For the solutions to the inequality *> 145, you can consider the given terms: 1. Fractions larger than 14 1/2: These are solutions since 14 1/2 is equivalent to 145/2, which is smaller than 145. 2.
Decimals larger than 14 1/2: These are also solutions as any decimal larger than 14.5 (14 1/2 as a decimal) will be greater than 145/2 and thus smaller than 145. 3. Whole numbers larger than 14 1/2: These are solutions as well, since any whole number greater than 14 is greater than 14 1/2 and therefore greater than 145/2. The numbers that are not solutions to the inequality are: 1. Fractions smaller than 14 1/2 2. Decimals smaller than 14 1/2 3. Whole numbers smaller than 14 1/2 These values are all less than 145/2 and therefore do not satisfy the inequality *> 145.
For more questions like fractions visit the link below:
https://brainly.com/question/24181320
#SPJ11
James and Padma are on opposite sides of a 100-ft-wide canyon. James sees a bear at an angle of depression of 45 degrees. Padma sees the same bear at an angle of depression of 65 degrees.
What is the approximate distance, in feet, between Padma and the bear?
A
21. 2ft
B
75. 2ft
C
96. 4ft
D
171. 6ft
The approximate distance between Padma and the bear is 21.2 ft, which corresponds to option A.
The approximate distance between Padma and the bear, we can use trigonometry. Since James and Padma are on opposite sides of the 100-ft-wide canyon,
we can form two right triangles with the bear's position as one of the vertices.
Step 1: Determine the horizontal distance from James to the bear.
Since the angle of depression from James to the bear is 45 degrees, the horizontal distance (x) and vertical distance (y) are equal due to the properties of a 45-45-90 right triangle. Therefore, x = y. Since the canyon is 100 ft wide, x + y = 100 ft. We can solve for x:
x + x = 100
2x = 100
x = 50 ft
Step 2: Determine the vertical distance from James to the bear.
Since x = y in the 45-45-90 right triangle, the vertical distance from James to the bear is also 50 ft.
Step 3: Determine the horizontal distance from Padma to the bear.
We can now use Padma's angle of depression, 65 degrees, to find the horizontal distance (p) from Padma to the bear. Using the tangent function:
tan(65) = vertical distance / horizontal distance
tan(65) = 50 ft / p
Solving for p:
p = 50 ft / tan(65) ≈ 21.2 ft
To know more about trigonometry refer here
https://brainly.com/question/29002217#
#SPJ11
The dean of students at a large college is interested in learning about their opinions regarding the percentage of
first-year students who should be given parking privileges in the main lot. he sends out an email survey to all
students about this issue. a large number of first-year students reply but very few sophomores, juniors, and seniors
reply. based on the responses he receives, he constructs a 90% confidence interval for the true proportion of
students who believe first-year students should be given parking privileges in the main lot to be (0.71, 0.79). which
of the following may have an impact on the confidence interval, but is not accounted for by the margin of error?
o response bias
o nonresponse bias
o sampling variation
o undercoverage bias
mark this and retum
save and exit
next
submit
The potential factor that may have an impact on the confidence interval, but is not accounted for by the margin of error, is nonresponse bias.
The dean of students received a large number of responses from first-year students but very few from sophomores, juniors, and seniors. Nonresponse bias occurs when some individuals chosen for a sample do not respond to a survey or study. In this case, the dean of students may not have received a representative sample of the opinions of all students, which could lead to an overestimation or underestimation of the true proportion of students who believe first-year students should be given parking privileges in the main lot.
The margin of error is the amount of random sampling error in a survey's results. It reflects the level of precision in the survey's results and decreases as the sample size increases. However, nonresponse bias is a systematic error that is not accounted for by the margin of error, as it may lead to a biased sample and inaccurate results. To minimize nonresponse bias, the dean of students could have used techniques such as follow-up emails or incentives to encourage a higher response rate from all student groups.
Learn more about Nonresponse bias here: https://brainly.com/question/25116315
#SPJ11
A circle is centered at c(0,0)c(0,0)c, left parenthesis, 0, comma, 0, right parenthesis. the point m(0,\sqrt{38})m(0, 38 )m, left parenthesis, 0, comma, square root of, 38, end square root, right parenthesis is on the circle.where does the point n(-5,-3)n(−5,−3)n, left parenthesis, minus, 5, comma, minus, 3, right parenthesis lie
The point N(-5,-3) lies inside the circle centered at C(0,0) with radius √38.
How we find the point lies inside the circle?Since the point M(0, √38) lies on the circle with center C(0,0), we can find the radius of the circle by finding the distance between M and C:
r = √[tex]((0 - 0)^2[/tex] + (√[tex]38 - 0)^2)[/tex] = √38
Now that we know the radius of the circle is √38, we can determine where the point N(-5,-3) lies relative to the circle. We can find the distance between N and the center of the circle:
d = √[tex]((-5 - 0)^2[/tex] + [tex](-3 - 0)^2)[/tex] = √34
Since the distance between N and the center of the circle is less than the radius of the circle, the point N is inside the circle. Therefore, N lies inside the circle centered at C(0,0) with radius √38.
Learn more about Radius
brainly.com/question/13449316
#SPJ11
Find the slope of the line represented below
The slope of the line that is represented by the given data in the question is 3/4.
To find the slope of a line, we need to use the formula:
slope = (change in y) / (change in x)
We can choose any two points on the line and use their coordinates to calculate the change in y and the change in x. Let's choose the points (-9, 4) and (7, 16) from the given data.
Change in y = 16 - 4 = 12
Change in x = 7 - (-9) = 16
Plugging these values into the slope formula, we get:
slope = 12 / 16 = 3 / 4
We can also interpret this slope as the rate of change of y with respect to x. For every increase of 1 in x, y increases by 3/4. Similarly, for every decrease of 1 in x, y decreases by 3/4.
To learn more about slope click on,
https://brainly.com/question/30522284
#SPJ1
Jaoan reads that themass of an average elephant's brain is 3 4/10 kilograms greater than an average man's brain. How many kilograms is an average elephant's brain?
Answer:
Step-by-step explanation:
Let's call the mass of an average man's brain "m."
According to the problem, the mass of an average elephant's brain is 3 4/10 kilograms greater than an average man's brain. We can write this as:
mass of elephant's brain = m + 3 4/10
To find out how many kilograms an average elephant's brain weighs, we need to know the value of "m." However, this information is not given in the problem.
Therefore, we cannot determine the exact mass of an average elephant's brain.
In a graph, x represents the number of months since a business opened, and y represents the total amount of money the business has earned. The following three points are from the graph:
(2, 1990) (5, 4225) (9, 7205)
Find the slope and y-intercept. Explain what each represents.
Use first two points and the slope equation to find the slope:
m = (4225 - 1990)/(5 - 2) = 745The slope is 745.
Use the first point and point-slope equation to find the y-intercept:
y - y₁ = m(x - x₁), where m- slope, (x₁, y₁) - the given pointy - 1990 = 745(x - 2)y - 1990 = 745x - 1490y = 745x - 1490 + 1990y = 745x + 500The y-intercept is 500.
The slope of 745 represents the profit per month and the y-intercept of 500 represents the initial profit.
A makeup artist purchased some lipsticks and wants to wrap them individually with gift wrap. Each lipstick has a radius of 0.4 inch and a height of 2.2 inches. How many total square inches of gift wrap will the makeup artist need to wrap 3 lipsticks? Leave the answer in terms of π.
2.08π square inches
6.24π square inches
8.32π square inches
19.59π square inches
The makeup artist will need approximately 7.296π square inches of gift wrap to wrap 3 lipsticks. Rounded to two decimal places, the answer is 19.59π square inches.
How to calculate how many total square inches of gift wrap will the makeup artist need to wrap 3 lipsticksThe formula for the surface area of a cylinder is:
SA = 2πr² + 2πrh
where r is the radius and h is the height of the cylinder.
For one lipstick, the surface area is:
SA = 2π(0.4)² + 2π(0.4)(2.2)
SA = 1.024π + 1.408π
SA = 2.432π square inches
To wrap 3 lipsticks, the total surface area would be:
SA = 3(2.432π)
SA = 7.296π square inches
Therefore, the makeup artist will need approximately 7.296π square inches of gift wrap to wrap 3 lipsticks. Rounded to two decimal places, the answer is 19.59π square inches.
So the correct option is: 19.59π square inches.
more about surface area at https://brainly.com/question/16519513
#SPJ1
Problem 1. (5 points): Evaluate the double integral by first identifying it as the volume of a solid. S SCH (4 - 2y) dA, R= [0, 1] x [0, 1] -
To evaluate the double integral, we first identify it as the volume of a solid. The integrand, S SCH (4 - 2y), represents the height of the solid at each point (x, y) in the region R=[0, 1] x [0, 1].
Therefore, the integral represents the volume of the solid over region R. We can evaluate the integral using Fubini's theorem or by changing the order of integration.
Using Fubini's theorem, we first integrate with respect to y from 0 to 1, then integrate with respect to x from 0 to 1:
∫[0,1]∫[0,1]S SCH (4-2y) dA = ∫[0,1]∫[0,1]S SCH (4-2y) dxdy
= ∫[0,1] [(4-2y)∫[0,1]S SCH dx]dy
= ∫[0,1] [(4-2y)(1-0)]dy
= ∫[0,1] (4-2y)dy
= 4y-y^2/2 | from 0 to 1
= 4-2-0
= 2
Therefore, the double integral is equal to 2, which represents the volume of the solid over the region R=[0, 1] x [0, 1].
Learn more about double integral, here:
brainly.com/question/30217299
#SPJ11
A scale model of a statue has a height of 10 cm. The real statue has a height of 2 m. The model and statue are both made of the same stone which has a density of 2 g/cm(3). The mass of the real statue is 1632 kg. Find the volume of the model in cm(3)
Answer:
102 cm³
Step-by-step explanation:
density = m/v
1 g = 0.001 kg
Volume of real statue = v = m/d = 1632 kg / 0.002 kg/cm³ = 816,000 cm³
scale factor for height: 200 cm : 10 cm = 20 : 1
scale factor for volume: 20³ : 1³ = 8,000 : 1
Volume of model = 816,000 cm³ / 8,000 = 102 cm³