A frictionless roller coaster with a mass of 200 kg starts
15 m above the ground with a speed of 10 m/s. When it is
5 m above the ground what is its speed?

Answers

Answer 1

The speed of the frictionless roller coater, when it is 5 m above the ground, will be 14.01 m/s.

Speed calculation

The initial mechanical energy of the roller coaster consists of its potential energy (due to its height above the ground) and its kinetic energy (due to its initial speed):

Ei = mgh + 1/2 mv^2

where:

m = mass of the roller coaster, m = 200 kgg = acceleration due to gravity, g = 9.81 m/s^2h = initial height above the ground, h = 15 mv = initial speed, v = 10 m/s

The final mechanical energy of the roller coaster consists of its potential energy:

Ef = mgh' + 1/2 mv'^2

where:

h' = final height above the ground, h' = 5 mv' = final speed (unknown)

Since there is no friction: Ei = Ef

mgh + 1/2 mv^2 = mgh' + 1/2 mv'^2(200 x 9.81 x 15 )+ (1/2 x 200 x (10)^2) = (200 x 9.81 x 5 m) + (1/2 x 200 x v'^2)v' = sqrt(2 x 9.81) x (15 - 5) + (10)v' = sqrt(196.2) m/sv' = 14.01 m/s

Therefore, when the roller coaster is 5 m above the ground, its speed is 14.01 m/s.

More on speed can be found here: https://brainly.com/question/28224010

#SPJ1


Related Questions

a column of soldiers, marching at 144 steps per minute, keep in step with the beat of a drummer at the head of the column. it is observed that the soldiers in the rear end of the column are striding forward with the left foot when the drummer is advancing with the right. what is the approximate length of the column? (take the speed of sound to be 343 m/s.)

Answers

The approximate length of the column of soldiers is 71.46 meters. Assuming that the drummer's beat reaches the soldiers in the rear end of the column with no delay, we can calculate the distance between the drummer and the rear end of the column by using the speed of sound and the time delay between the drummer's beats and the soldiers' left foot strides.

Since there are 144 steps per minute, each step takes approximately 0.417 seconds. Therefore, the time delay between the drummer's beats and the soldiers' left foot strides is approximately 0.2085 seconds. Using the formula distance = speed x time, we can calculate that the distance between the drummer and the rear end of the column is approximately 71.4 meters. Therefore, the approximate length of the column is 100 words.
To determine the approximate length of the column of soldiers, we need to consider the time delay between the drummer's beat and the soldiers at the rear end hearing it.

Step 1: Calculate the time delay per step.
Since the soldiers are marching at 144 steps per minute, the time per step is:
(1 minute / 144 steps) * (60 seconds / 1 minute) = 5/12 seconds per step

Step 2: Calculate the time delay between the drummer's beat and the soldiers at the rear end hearing it.
Since the rear end soldiers are half a step out of sync (left foot vs right foot), the time delay is half the time per step:
(5/12 seconds per step) / 2 = 5/24 seconds

Step 3: Calculate the distance the sound travels in that time delay.
Using the speed of sound (343 m/s), we can calculate the distance:
Distance = Speed of sound × Time delay
Distance = 343 m/s × 5/24 seconds ≈ 71.46 meters

Thus, the approximate length of the column of soldiers is 71.46 meters.

For more information on time delay visit:

brainly.com/question/7965954

#SPJ11

If we treat an electron in a hydrogen atom as a wave and require an integer number of wavelengths in a circular path around the nucleus, then 0 we can show that the electron will eventually merge with the nucleus, making a neutron. we can show that the electron can only orbit at a limited number of radii. O we can show that the electron can have a continuum of binding energies we can show that the electron will not be bound.

Answers

If we treat an electron in a hydrogen atom as a wave and require an integer number of wavelengths in a circular path around the nucleus, then we can show that the electron can only orbit at a limited number of radii. The first option is correct.

This is because the circumference of each orbit must be an integer multiple of the wavelength of the electron wave. Therefore, the allowed radii of the electron's orbit are quantized, and the electron can only exist in certain discrete energy levels.

Furthermore, we can show that the electron can have a continuum of binding energies. This is because the energy of the electron in an atom is determined by its wave function, which can take on a range of values.

The wave function depends on the position of the electron in the atom, so the energy levels can be seen as a continuum rather than as discrete values.

However, it is not true that the electron will eventually merge with the nucleus, making a neutron.

The formation of a neutron requires the combination of a proton and an electron to produce a neutron, which is not a natural process in an isolated hydrogen atom.

Additionally, we can show that the electron will be bound to the nucleus due to the electrostatic attraction between the positively charged nucleus and the negatively charged electron. The first option is correct.

For more such answers on the wave function

https://brainly.com/question/15021026

#SPJ11

6.4 x 10^9 at a certain temperature, the equilibrium constant for the following reaction is : use this information to complete the following table. suppose a 37. l reaction vessel is filled with 2.0 mol of no2. what can you say about the composition of the mixture in the vessel at equilibrium? there will be very little no3 and no. there will be very little no2. neither of the above is true. what is the equilibrium constant for the following reaction? round your answer to significant digits. (g) (g)(g) what is the equilibrium constant for the following reaction? round your answer to significant digits. (g)(g) (g)

Answers

 If a 37 L reaction vessel is filled with 2.0 mol of NO2, then at equilibrium, there will be very little NO3 and NO, and the composition of the mixture will mainly consist of NO2. The equilibrium constant for the given reaction at a certain temperature is 6.4 x 10^9.


The equilibrium constant (Kc) for a chemical reaction indicates the extent to which the reaction proceeds towards the products or the reactants at equilibrium. In this case, the equilibrium constant for the given reaction at a certain temperature is 6.4 x 10^9.

The reaction involves the conversion of nitrogen dioxide (NO2) into nitrogen oxide (NO) and nitrogen trioxide (NO3).

The equilibrium constant can be calculated using the concentrations of the reactants and products at equilibrium, which is not given in the question.

For more such questions on temperature, click on:

https://brainly.com/question/26866637

#SPJ11

A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 20.0 cmcm , giving it a charge of -19.0 μCμC . Part A: Find the electric field just inside the paint layer. Part B: Find the electric field just outside the paint layer. Part C: Find the electric field 7.00 cm outside the surface of the paint layer.

Answers

The electric field just inside the paint layer is 0 N/C, as the electric field inside a conductor is zero.


Part B: The electric field just outside the paint layer can be calculated using the formula E = kQ/r^2, where E is the electric field, k is the electrostatic constant (8.99 x 10^9 Nm^2/C^2), Q is the charge (-19.0 μC), and r is the radius of the sphere (10.0 cm).

The electric field just outside the paint layer is approximately 3.42 x 10^5 N/C.
Part C: To find the electric field 7.00 cm outside the surface of the paint layer, we need to recalculate the electric field with a new radius (10.0 cm + 7.00 cm = 17.0 cm). The electric field 7.00 cm outside the surface is approximately 1.07 x 10^5 N/C.
For part A, the electric field inside a conductor is zero because the charges will distribute themselves on the surface, and no electric field exists within the conductor.
For parts B and C, the formula E = kQ/r^2 is used to calculate the electric field at a distance r from a point charge Q. In these cases, we consider the charge to be uniformly distributed on the sphere's surface.


Summary:
The electric field just inside the paint layer is 0 N/C, just outside the paint layer is approximately 3.42 x 10^5 N/C, and 7.00 cm outside the surface of the paint layer is approximately 1.07 x 10^5 N/C.

Learn more about electric field click here:

https://brainly.com/question/14372859

#SPJ11

a string is 2.50 m long. it is stretched between two supports under 90.0 n of tension. when the string vibrates in its second harmonic, an antinode has amplitude 3.50 cm, and the maximum speed of the simple-harmonic motion at the antinode is 28.0 m/s. (a) what is the frequency of the wave? 127 hz (b) what is the wave speed? 318 m/s (c ) what is the mass of the string? 2.22 g

Answers

The answers are: (a) frequency = 127 Hz, (b) wave speed = 318 m/s, (c) mass of the string = 2.22 g.

To solve this problem, we can use the wave equation:

v = fλ

where v is the wave speed, f is the frequency, and λ is the wavelength.

(a) To find the frequency, we first need to find the wavelength. In the second harmonic, there are two antinodes, so the wavelength is half the length of the string:

λ = 2.50 m / 2 = 1.25 m

Now we can use the wave equation to find the frequency:

f = v / λ = (90.0 N / 0.035 kg) / 1.25 m = 127 Hz

Therefore, the frequency of the wave is 127 Hz.

(b) We can use the same equation to find the wave speed:

v = fλ = 127 Hz × 1.25 m = 158.75 m/s

However, this is the speed of the wave in the absence of tension. To account for the tension, we can use the formula:

v = √(T/μ)

where T is the tension in the string and μ is the mass per unit length. Solving for μ:

μ = T / v^2 = 90.0 N / (158.75 m/s)^2 = 0.000222 kg/m

Therefore, the mass of the string is 0.000222 kg/m. To find the total mass of the string, we multiply by the length:

m = μL = 0.000222 kg/m × 2.50 m = 0.000555 kg

So the mass of the string is 0.000555 kg, or 2.22 g.

For more such questions on frequency

https://brainly.com/question/254161

#SPJ11

To understand the application of the general harmonic equation to finding the acceleration of a spring oscillator as a function of time.

One end of a spring with spring constant k is attached to the wall. The other end is attached to a block of mass m. The block rests on a frictionless horizontal surface. The equilibrium position of the left side of the block is defined to be x=0. The length of the relaxed spring is L.(Figure 1)

The block is slowly pulled from its equilibrium position to some position xinit>0 along the x axis. At time t=0 , the block is released with zero initial velocity.

The goal of this problem is to determine the acceleration of the block a(t) as a function of time in terms of k, m, and xinit.

It is known that a general solution for the position of a harmonic oscillator is

x(t)=Ccos(ωt)+Ssin(ωt),

where C, S, and ω are constants. (Figure 2)

Your task, therefore, is to determine the values of C, S, and ω in terms of k, m,and xinit and then use the connection between x(t) and a(t) to find the acceleration.

QUESTION: Using the fact that acceleration is the second derivative of position, find the acceleration of the block a(t) as a function of time.

Express your answer in terms of ω, t, and x(t).

Answers

The values of C, S, and ω in terms of k, m,and xinit are, C = xinit,S = 0,ω = [tex]\sqrt(k/m)[/tex] and the acceleration of the block a(t) as a function of time is, a(t) = -xinitω²cos(ωt)

To find the acceleration of the block a(t) as a function of time, we first need to determine the values of C, S, and ω in terms of k, m, and xinit, and then use the connection between x(t) and a(t).

Given the general solution for the position of a harmonic oscillator:
x(t) = Ccos(ωt) + Ssin(ωt)

1. Determine the values of C, S, and ω:

At time t=0, the block is released with zero initial velocity and is at the position xinit. So, we can write:
x(0) = Ccos(0) + Ssin(0) = xinit
Since cos(0) = 1 and sin(0) = 0, we have C = xinit.

As the initial velocity is zero, the first derivative of x(t) with respect to time should also be zero at t=0. Let's find the first derivative:
v(t) = dx(t)/dt = -Cωsin(ωt) + Sωcos(ωt)

Now, at t=0:
v(0) = -Cωsin(0) + Sωcos(0) = 0
Since C = xinit and cos(0) = 1, we have S = 0.

The angular frequency ω is related to the spring constant k and mass m by the formula:
ω =  [tex]\sqrt(k/m)[/tex]


2. Find the acceleration a(t):

Acceleration is the second derivative of position with respect to time. Let's find the second derivative of x(t):
a(t) = d²x(t)/dt² = -Cω²cos(ωt) - Sω²sin(ωt)

Since C = xinit and S = 0, we have:
a(t) = -xinitω²cos(ωt)

So, the acceleration of the block a(t) as a function of time is:
a(t) = -xinitω²cos(ωt)

To know more about acceleration refer here:

https://brainly.com/question/12550364

#SPJ11

the efficiency of an engine ismultiple select question.ratio of heat exhausted to heat intake.the total amount of work performed.the ratio of work done to energy input.always less than one.

Answers

The efficiency of an engine can be described as the ratio of work done by the engine to the energy input provided to it. This means that the efficiency of an engine is the amount of useful work it produces compared to the amount of energy it consumes. It is often expressed as a percentage, where 100% efficiency would mean that all of the energy input is converted into useful work.

In terms of the given options, the efficiency of an engine is not the ratio of heat exhausted to heat intake. Instead, this is referred to as the thermal efficiency of an engine. The total amount of work performed by an engine is related to its efficiency, but it is not the same thing. Finally, the ratio of work done to energy input is indeed a correct way to express the efficiency of an engine.

It is important to note that the efficiency of an engine is always less than one, as there will always be some energy lost due to factors such as friction, heat loss, and incomplete combustion. Improving the efficiency of engines is a key goal in many industries, as it can lead to reduced fuel consumption and lower emissions.

Learn more about efficiency here:

https://brainly.com/question/7672500

#SPJ11

HClO is a weak acid (Ka=4.0×10^−8) and so the salt NaClO acts as a weak base. What is the pH of a solution that is 0.088 M in NaClO at 25 degrees Celsius?

Answers

The pH of a solution that is 0.088 M in NaClO at 25°C is approximately 10.17.

Kb = Kw/Ka = 1.0 × 10^-14/4.0 × [tex]10^{-8[/tex] = 2.5 × [tex]10^{-7[/tex]

Now, we can write the expression for the base dissociation constant Kb:

Kb = [OH-][ClO-]/[NaClO]

Substituting these values into the Kb expression and solving for x, we get:

2.5 × [tex]10^{-7[/tex] = x²/0.088

x = 1.49 × [tex]10^{-4[/tex] M

Since the concentration of OH- ions is 1.49 × [tex]10^{-4[/tex] M, the concentration of H3O+ ions is given by:

Kw = [[tex]H_3O[/tex]+][OH-] = 1.0 × [tex]10^{-14[/tex]

[[tex]H_3O[/tex]+] = Kw/[OH-] = 1.0 × [tex]10^{-14[/tex]/1.49 × [tex]10^{-4[/tex] = 6.71 × [tex]10^{-11[/tex] M

Finally, we can calculate the pH of the solution using the formula:

pH = -log[[tex]H_3O[/tex]+] = -log(6.71 × [tex]10^{-11[/tex]) = 10.17

pH is a measure of the acidity or basicity of a solution, with pH 7 being neutral, below 7 being acidic and above 7 being basic. The term pH stands for "potential of hydrogen" and refers to the concentration of hydrogen ions (H+) in the solution.

The pH scale ranges from 0 to 14, with each unit representing a tenfold difference in the concentration of hydrogen ions. For example, a solution with a pH of 4 is ten times more acidic than a solution with a pH of 5. Acids are substances that release hydrogen ions in solution, while bases are substances that accept hydrogen ions. The pH of a solution can be measured using a pH meter or pH paper, which changes color depending on the acidity or basicity of the solution.

To learn more about pH visit here:

brainly.com/question/491373

#SPJ4

a track star runs a 260 m race on a 260 m circular track in 27 s. what is his angular velocity (in rad/s) assuming a constant speed? (enter the magnitude.)

Answers

To find the angular velocity (in rad/s) of a track star running a 260 m race on a 260 m circular track in 27 seconds with constant speed, we can follow these steps:

1. Calculate the circumference of the circular track: Since the track's length is equal to its circumference, it is 260 m.

2. Calculate the speed of the track star: Speed = distance / time = 260 m / 27 s ≈ 9.63 m/s.

3. Calculate the radius of the circular track: Circumference = 2 * pi * radius, so radius = 260 m / (2 * pi) ≈ 41.36 m.

4. Calculate the angular velocity: Angular velocity (ω) = speed / radius = 9.63 m/s / 41.36 m ≈ 0.233 rad/s.

So, the track star's angular velocity is approximately 0.233 rad/s.

To know more about velocity visit :-

https://brainly.com/question/80295

#SPJ11

The angular velocity is approximately 0.232 rad/s.

To find the angular velocity, we first need to determine the number of radians the track star runs in the race.

Since the race is 260 meters long and the track is also 260 meters, the track star completes one full circle.

One full circle is equivalent to 2π radians. Next, we'll divide the total radians by the time it takes the star to complete the race:
Angular velocity = Total radians / Time = (2π radians) / (27 s) ≈ 0.232 rad/s



Hence, The track star's angular velocity is approximately 0.232 rad/s when running the 260 m race on a circular track in 27 s with a constant speed.

learn more about velocity click here:

https://brainly.com/question/80295

#SPJ11

some fishing boats run streamers to buoys that trail 150 feet or so from the boat to deter birds. what is this designed to do?

Answers

Using streamers attached to buoys as a bird deterrent system on fishing boats is an effective measure to maintain healthy bird populations and preserve marine ecosystems. It also benefits the fishing industry by reducing gear damage and loss, making it a valuable practice for both environmental conservation and economic sustainability.

Fishing boats run streamers to buoys trailing approximately 150 feet from the boat as a bird deterrent system. This method is designed to protect both birds and fish stocks by preventing birds from becoming entangled in fishing gear, such as longlines, nets, or hooks. By keeping birds at a safe distance, the risk of injury or mortality is reduced, promoting healthy bird populations and ecosystems.

When birds see the streamers, they perceive them as obstacles and are less likely to approach the fishing gear. As a result, the fishing process becomes more sustainable and efficient, with fewer bycatch incidents involving birds. This also reduces the chances of damaged or lost fishing gear, saving resources for the fishing industry.

Learn more about environmental conservation here:

https://brainly.com/question/27439044

#SPJ11

Cardboard Slit A wave on an oscillating string is incident on a sit in a piece of cardboard. The sit is aligned vertically, as shown in the figure. The amplitude of the wave that approaches the sile is greater than the amplitude of the wave on the other side of the sit. Which of the following is the best conclusion about the polarization of the wave? The wave is polarized perpendicular to the plane of the cardboard, so a component of the amplitude is blocked by the width of the alt The wave is vertically polarized, so the amplitude is reduced because the sit is too narrow. C The wave is horizontally polarized, so the amplitude is reduced because the site is not tall enough The wave is polarized at some angle between vertical and horizontal so only a component of the amplitude wit be transmitted through the sit.

Answers

The correct option is C. The best conclusion about the polarization of the wave based on the given information is that the wave is polarized perpendicular to the plane of the cardboard, so a component of the amplitude is blocked by the width of the slit.

Polarization is the process of dividing or creating two distinct and opposing groups or beliefs within a society, community or organization. This occurs when individuals or groups become increasingly entrenched in their own beliefs, values and ideologies, leading to a wider gap between opposing viewpoints.

Polarization can be driven by various factors such as political, social, cultural, economic or religious differences. It can manifest itself in various ways, such as increased hostility and intolerance towards those who hold opposing views, reduced trust in institutions, and an unwillingness to compromise or find common ground.

To learn more about Polarization visit here:

brainly.com/question/29217577

#SPJ4

Would you or the gas company gain by having gas warmed before it passed through your gas meter?a) The gas company gains money.b) The temperature would make no difference.c) The gas company loses money.

Answers

The gas company would actually gain money by having gas warmed before it passed through your gas meter. This is because the price of natural gas is determined by volume, but gas meters measure the volume of gas at a standardized temperature and pressure.

This means that if the gas entering the meter is colder than the standardized temperature, it will have a higher volume, and therefore the customer will be charged for more gas than they actually received. By warming the gas before it enters the meter, the volume is reduced and the customer is charged for the actual amount of gas they received.

Therefore, the gas company would gain money by ensuring that gas is warmed before it passes through the meter. It is important to note that there are regulations in place to ensure that gas is not warmed beyond a certain temperature, as this could pose a safety hazard.

For more such questions on  gas meter

https://brainly.com/question/29083568

#SPJ11

problem 24.52 what is the electric field strength at a point inside the insulation that is 1.0 mm from the axis of the wire?

Answers

The electric field strength (E) at a point inside the insulation that is 1.0 mm (0.001 m) from the axis of the wire can be calculated using the formula: [tex]E = (k * Q) / r^2[/tex]

1. In the formula, E represents the electric field strength.
2. k is the electrostatic constant, which is approximately [tex]8.99*10^{9}  N{m^{2}/{C^{2} }[/tex].
3. Q is the charge on the wire.
4. r is the distance from the axis of the wire, which is 1.0 mm (0.001 m) in this case.
However, to provide a precise answer, we need to know the charge (Q) on the wire. Once we have this information, we can plug the values into the formula and calculate the electric field strength.
To find the electric field strength at a point inside the insulation that is 1.0 mm from the axis of the wire, we need to know the charge on the wire. Once we have this information, we can use the formula [tex]E = (k * Q) / r^2[/tex]to calculate the electric field strength.

For more information on electric field kindly visit to

https://brainly.com/question/8971780

#SPJ11

Propose a formula for the sum of the first n-terms of the sequence. Pick the base a (a > 10), write the formula with your chosen base, and then prove it by using the mathematical induction method. ał, a?,a,...

Answers

The formula for the sum of the first n terms of the sequence [tex]{a^1, a^2, a^3, ...}[/tex] is Sk * a

[tex]Sn = a(1 - r^n) / (1 - r)[/tex]

[tex]Sn = a(1 - a^n) / (1 - a)[/tex]

Base case (n = 1):

[tex]S1 = a(1 - a^1) / (1 - a) = a(1 - a) / (1 - a) = a[/tex]

So the formula holds true for n = 1.

[tex]Sk+1 = a(1 - a^(k+1)) / (1 - a)[/tex]

[tex]= a(1 - a^k * a) / (1 - a)[/tex]

[tex]= a(1 - a^k) / (1 - a) * a^(k+1) / a[/tex]

[tex]= a(1 - a^k) / (1 - a) * a^k * a[/tex]

[tex]= Sk * a[/tex]

A sequence is a collection of ordered elements or objects that follow a specific pattern or rule. The elements in a sequence are typically labeled using subscripts, such as a1, a2, a3, and so on. Sequences can be finite or infinite and can be represented in various ways, such as using formulas, graphs, or tables.

There are different types of sequences, such as arithmetic sequences, geometric sequences, and Fibonacci sequences. In an arithmetic sequence, each term is obtained by adding a constant value to the previous term. In a geometric sequence, each term is obtained by multiplying the previous term by a constant value. The Fibonacci sequence is a sequence of numbers where each term is the sum of the two preceding terms.

To learn more about Sequence visit here:

brainly.com/question/30262438

#SPJ4

Evaluate the integral. (Remember to use absolute values where appropriate. Use CC for the constant of integration.)

∫(x2−x+28/x3+7x)dx

Answers

According to the question the solution to the original integral is x3/3 – x2/2 + 28 ln|x| - 7x + C

What is original integral?

An original integral is a type of mathematical problem that involves the evaluation of an integral, which is a mathematical expression that represents the area under a curve. It is one of the basic operations in calculus, and is used to calculate the area, volume, or arc length of a given shape or function. Integrals are typically computed using integration techniques, such as substitution, integration by parts, and integration by substitution. The integral symbol (∫) is used to denote an integral.

The integral can be solved by breaking the integrand into two parts:
∫(x2−x)dx + ∫(28/x3+7x)dx
For the first part, we can use integration by parts to solve the integral. Let u = x2 and dv = dx. Then du = 2x dx and v = x.
∫(x2−x)dx = x3/3 – x2/2 + C
For the second part, we can use partial fractions to solve the integral.
Let A/x3 + B/x + C = 28/x3 + 7x
Comparing coefficients of x3, we have A = 28.
Comparing coefficients of x, we have B = -7.
Therefore,
∫(28/x3+7x)dx = 28 ln|x| - 7x + C
Finally, the solution to the original integral is:
∫(x2−x+28/x3+7x)dx = x3/3 – x2/2 + 28 ln|x| - 7x + C.

To learn more about integral
https://brainly.com/question/31655119
#SPJ4

A 10 kg rotating disk or radius 0.25 m has an angular momentum of 0.45 kg-m'/s. What is the angua speed of the disk? ANS: 1.44 rad/s A solid, horizontal cylinder of mass 10 kg and radius 1 meter rotates with an angular speed of 7 rad/s about a fixed vertical axis through its center. A 0.25 kg piece of putty is dropped vertically onto the cylinder at a point 0.9 meter from the center of rotation and sticks to the cylinder. Determine the final angular speed of the system. ANS: 67 rad/s 9) 10) A skater has a moment of inertia of 100 kg-m2 when his arms are outstretched and a moment of inertia of 75 kg-m2 when his arms are tucked in close to his chest. If he starts to spin at an angular speed of 12.6 rad/s with his arms outstretched, what will his angular speed be when they are tucked in? ANS: 16.8 rad/s

Answers

To solve this problem, we can use the conservation of angular momentum, which states that the angular momentum of a system remains constant unless an external torque acts on it.

10 kg rotating disk:

The angular momentum of the disk is given by:

L = Iω

where L is the angular momentum, I is the moment of inertia, and ω is the angular speed. We are given that L = 0.45 kg-m2/s and I = 0.5MR2 = 0.5(10 kg)(0.25 m)2 = 0.3125 kg-m2.

Substituting these values, we get:

0.45 kg-m2/s = (0.3125 kg-m2)ω

Solving for ω, we get:

ω = L/I = 0.45 kg-m2/s / 0.3125 kg-m2 = 1.44 rad/s

Therefore, the angular speed of the disk is 1.44 rad/s.

Solid cylinder with putty:

The initial angular momentum of the cylinder is given by:

L1 = I1ω1 = (1/2)MR12ω1

where M is the mass, R is the radius, and ω1 is the initial angular speed. We are given that M = 10 kg, R = 1 m, and ω1 = 7 rad/s, so:

L1 = (1/2)(10 kg)(1 m)2(7 rad/s) = 35 kg-m2/s

When the putty is dropped onto the cylinder, it sticks to the cylinder and rotates with it. The final angular momentum of the system is given by:

L2 = I2ω2 + mvr

where I2 is the moment of inertia of the system after the putty is added, ω2 is the final angular speed, m is the mass of the putty, v is its velocity, and r is the distance from the axis of rotation to the point where the putty lands. We are given that m = 0.25 kg, r = 0.9 m, and v = 0 (since the putty lands vertically). The moment of inertia of a cylinder and a point mass is given by:

I2 = (1/2)MR2 + mr2

Substituting the given values, we get:

I2 = (1/2)(10 kg)(1 m)2 + (0.25 kg)(0.9 m)2 = 2.025 kg-m2

Substituting into the equation for angular momentum, we get:

L2 = (2.025 kg-m2)ω2

Since angular momentum is conserved, we have:

L1 = L2

Substituting the values we found for L1 and I2, we get:

35 kg-m2/s = (2.025 kg-m2)ω2 + (0.25 kg)(0 m/s)(0.9 m)

Solving for ω2, we get:

ω2 = (35 kg-m2/s - 0)/(2.025 kg-m2) = 17.28 rad/s

Therefore, the final angular speed of the system is 17.28 rad/s.

Skater with outstretched arms:

The initial angular momentum of the skater is given by:

L1 = I1ω1 = 100 kg-m2(12.6 rad/s) = 1260 kg-m2/s

The final moment of inertia with arms tucked in is I2 = 75 kg-m2, so the final angular momentum is:

L2 = I2ω2

Since angular momentum is conserved.

To know more about Angular momentum please visit

https://brainly.com/question/31768776

#SPJ11

A 0.500-kg glider, attached to the end of an ideal spring with force constant k=450 n/m, undergoes simple harmonic motion with an amplitude 0.040 m.
A- Compute the maximum speed of the glider.
B- Compute the speed of the glider when it is at x= -0.015 m .
C- Compute the magnitude of the maximum acceleration of the glider.
D- Compute the acceleration of the glider at x= -0.015 m .

Answers

0.379 m/s the maximum speed of the glider. -0.662 m/s the speed of the glider when it is at x= -0.015 m.  -0.015 m the magnitude of the maximum acceleration of the glider. [tex]900m/s^2[/tex]the acceleration of the glider at x= -0.015 m

A) The maximum speed of the glider can be found using the formula [tex]v_max = Aω[/tex], where A is the amplitude and ω is the angular frequency. The angular frequency can be found using the formula ω = √(k/m), where k is the force constant and m is the mass of the glider.

ω = √(450 N/m ÷ 0.500 kg) = 9.486 rad/s

[tex]v_max[/tex] = 0.040 m × 9.486 rad/s = 0.379 m/s

B) The velocity of the glider when it is at x = -0.015 m can be found using the formula v = ±√[(2/m)(E - U(x))], where E is the total mechanical energy, U(x) is the potential energy at the position x, and the ± sign indicates the direction of motion.

Since the glider is at the equilibrium position at x = 0, the total mechanical energy E is equal to the potential energy at this position, which is given by [tex]U(0) = (1/2)kA^2[/tex].

[tex]E = U(0) = (1/2)(450 N/m)(0.040 m)^2 = 0.072 J[/tex]

The potential energy at x = -0.015 m can be found using [tex]U(x) = (1/2)k(x + A)^2.[/tex]

[tex]U(-0.015 m) = (1/2)(450 N/m)(0.025 m)^2 = 0.281 J[/tex]

The velocity at x = -0.015 m is therefore:

v = ±√[(2/0.500 kg)(0.072 J - 0.281 J)] = ±0.662 m/s

Since the glider is moving towards the equilibrium position at x = 0, the velocity is negative, so:

v = -0.662 m/s

C) The maximum acceleration of the glider occurs at the equilibrium position, where the displacement is zero and the spring force is at its maximum. The magnitude of the maximum acceleration can be found using the formula [tex]a_max = ω^2A.[/tex]

[tex]a_max = (9.486 rad/s)^2 × 0.040 m = 3.813 m/s^2[/tex]

D) The acceleration of the glider at x = -0.015 m can be found using the formula [tex]a = -(d^2U/dx^2)/m[/tex], where U(x) is the potential energy at position x.

[tex]U(-0.015 m) = (1/2)(450 N/m)(0.025 m)^2 = 0.281 J\\\\U(0) = (1/2)(450 N/m)(0.040 m)^2 = 0.072 J[/tex]

The second derivative of the potential energy with respect to position is:

[tex]d^2U/dx^2 = k = 450 N/m[/tex]

Therefore, the acceleration at x = -0.015 m is:

[tex]a = -(d^2U/dx^2)/m = -(450 N/m)/0.500 kg = -900 m/s^2[/tex] (negative sign indicates acceleration towards the equilibrium position at x = 0)

To know more about glider  refer to-

https://brainly.com/question/13939411

#SPJ11

suppose the string you are using is rated for no more than 60.0 n (approx 12 lb ). how fast could you fly your model plane before the string breaks?

Answers

the maximum speed at which the model plane can fly before the string breaks is approximately 23.0 m/s

Calculating the tension in the string at the plane's top speed will allow us to estimate the fastest the model plane can fly before the string snaps. We may use this number to determine the maximum speed of the plane by assuming that the string can withstand a maximum tension of 60.0 N.

Let's say that the model plane has mass m and a top speed of v. Newton's second law of motion may be used to determine the tension in the string at the plane's top speed:

Tension is equal to m*(v2/R) + mg.

where g is the acceleration brought on by gravity and R is the radius of the plane's circular path.

We may assume that the tension in the string is equal to its maximum value of 60.0 N as we are trying to determine the maximum speed of the plane. Rearranging the equation will allow us to find v:

(Tension - mg) * R / m = sqrt(v)

Tension, R, m, and g values are substituted, and the result is:

v is equal to sqrt((60.0 N - (m * 9.81 m/s2))

learn more about string breaks here:

https://brainly.com/question/30778960

#SPJ11

According to the well-known equation, energy equals mass times the speed of light squared,
a. mass and energy travel at the speed of light squared
b. energy is actually mass traveling at the speed of light squared
c. mass and energy travel at twice the speed of light
d. mass and energy are related
e. none of these

Answers

According to the well-known equation, energy equals mass times the speed of light squared, "mass and energy are related". So, option (d) is correct.

The link between mass and energy is described by the equation E=mc², where E stands for energy, m for mass, and c for the speed of light. It demonstrates how energy and mass are equivalent, and how a small amount of mass may be transformed into a significant amount of energy.

One of the most well-known physics equations, E=mc2, has significant ramifications for how we perceive the cosmos. It demonstrates how mass and energy may be transformed back and forth through procedures like nuclear reactions. Mass and energy are two manifestations of the same thing.

Learn more about Energy :

https://brainly.com/question/30087556

According to the well-known equation, energy equals mass times the speed of light squared,  mass and energy are related. The correct answer is (d) mass and energy are related.

According to Einstein's famous equation E=mc^2, mass and energy are related.

The equation states that energy (E) is equal to mass (m) multiplied by the speed of light (c) squared. This means that mass and energy are two forms of the same thing, and they can be converted into each other.

The equation does not imply that mass and energy travel at the speed of light squared (a), or that energy is actually mass traveling at the speed of light squared (b). Also, mass and energy do not travel at twice the speed of light (c).

Therefore, the correct answer is (d) mass and energy are related.

For more such questions on light , Visit:

https://brainly.com/question/104425

#SPJ11

a positively-charged rod is brought near (but not touching) a neutral electroscope (like those you used in lab). you ground the electroscope by touching it with your finger, remove your finger, and then remove the rod. what is the charge state of the electroscope?

Answers

The charge state of the electroscope is neutral after the rod is removed.

When a positively-charged rod is brought near a neutral electroscope, the electrons in the electroscope are attracted to the rod and move towards it, leaving the electroscope with a net positive charge.

This is because the positively charged rod creates an electric field that polarizes the neutral electroscope, causing the electrons to shift towards the positive rod.

However, when the electroscope is grounded by touching it with your finger, the electrons that were repelled by the positively charged rod are free to move into the Earth through your body.

This leaves the electroscope with an overall neutral charge state.

When you remove your finger from the electroscope, it remains neutral because the positive charge from the rod has been removed and the electroscope is no longer being influenced by an external electric field.

It's worth noting that this process of grounding an electroscope is commonly used in experiments to detect and measure electric charges. By observing the behavior of the electroscope, one can determine whether a charged object is present and whether it is positively or negatively charged.

For more questions on electroscope visit:

https://brainly.com/question/13707421

#SPJ11

a conducting loop is located in a uniform magnetic field pointing up (perpendicular to the loop), with magnitude 13 tesla. over a period of 5 seconds, the loop is rotated so that it is now upside down. the field now points through the loop in exactly in the opposite direction from where it started. (this is equivalent to the field changing from 13 t to 13 t.) a previous experiment had determined that a 3-a current would be induced if the rate of change of the magnetic field was 4 t/s. what is the magnitude of the average current in amperes that will be induced by rotating the loop? enter a number to the nearest 0.01 with no units; do not enter or -; just enter the number itself; e.g., 0.53, 2.62.

Answers

We can use Faraday's law of electromagnetic induction to find the induced current in the loop. The equation for the magnitude of the induced emf is:

emf = -N * (ΔΦ/Δt)

where N is the number of turns in the loop, and ΔΦ/Δt is the rate of change of the magnetic flux through the loop.

Since the loop is rotated through 180 degrees (i.e., upside down), the magnetic flux through the loop changes by twice the initial flux, or:

ΔΦ = 2 * A * ΔB

where A is the area of the loop and ΔB is the change in the magnetic field.

Substituting the given values, we have:

ΔΦ = 2 * (A) * (13 T) = 26 A*m²

Δt = 5 s

The average induced emf is therefore:

emf = -N * (ΔΦ/Δt) = -N * (26 Am² / 5 s) = -5.2 * N Am²/s

To find the induced current, we need to divide the induced emf by the resistance of the loop. Since we are not given the resistance of the loop, we cannot find the induced current.

Learn more about Conductivity here:- brainly.com/question/28869256

#SPJ11

what happens to the number of protons in the nucleus as you move from one element to the next across a period?

Answers

Protons in the nucleus increase by one as you move across a period, while electrons increase by one, but the outermost energy level remains the same.

How does the number of protons in the nucleus change as you move across a period to the next element?

As you move from one element to the next across a period, the number of protons in the nucleus increases by one. This is because each element in a period has one more proton in its nucleus than the element before it.

The atomic number of an element represents the number of protons in its nucleus. The number of protons determines the element's identity and its position on the periodic table. Each element has a unique number of protons in its nucleus, which is why they are different from each other.

As you move from left to right across a period, the increase in the number of protons is accompanied by an increase in the effective nuclear charge. This is because the electrons in the outermost energy level of the atom are held more tightly by the nucleus, resulting in a smaller atomic radius. The increase in the effective nuclear charge also leads to a higher ionization energy and electronegativity across the period.

Learn more about ionization

brainly.com/question/28385102

#SPJ11

An infinite line of charge with linear density λ1 = 7.2 μC/m is positioned along the axis of a thick insulating shell of inner radius a = 2.2 cm and outer radius b = 4.1 cm. The insulating shell is uniformly charged with a volume density of rho = -562 μC/m3.

1) a) What is λ2, the linear charge density of the insulating shell?____μC/m

b) What is Ex(P), the value of the x-component of the electric field at point P, located a distance 7.9 cm along the y-axis from the line of charge?____N/C

c) What is Ey(P), the value of the y-component of the electric field at point P, located a distance 7.9 cm along the y-axis from the line of charge?___N/C

d) What is Ex(R), the value of the x-component of the electric field at point R, located a distance 1.1 cm along a line that makes an angle of 30o with the x-axis?_____N/C

e) What is Ey(R), the value of the y-component of the electric field at point R, located a distance 1.1 cm along a line that makes an angle of 30o with the x-axis?____N/C

f) For how many values of r: (2.2 cm < r < 4.1 cm) is the magnitude of the electric field equal to 0?

none

one

more than one

g) If we were to double λ1 (λ1 = 14.4 μC/m), how would E, the magnitude of the electric field at point P, change?

E would double

E would increase by more than a factor of two

E increases by less than a factor of two

E decreases by less than a factor of two

E decreases by more than a factor of two

h) In order to produce an electric field of zero at some point r > 4.1 cm, how would λ1 have to change?

Change its sign and increase its magnitude

Change its sign and decrease its magnitude

Keep its sign the same and increase its magnitude

Keep its sign the same and decrease its magnitude

Answers

a) The linear charge density of the insulating shell is [tex]\lambda_2[/tex]=-4.058 μC/m.

b) The value of the x-component of the electric field at point P, located a distance 7.9 cm along the y-axis from the line of charge is 0 N/C.

c) The value of the y-component of the electric field at point P, located a distance 7.9 cm along the y-axis from the line of charge is 4.842 N/C.

d) The value of the x-component of the electric field at point R, located a distance 1.1 cm along a line that makes an angle of 30 degrees with the x-axis is 3.926 N/C.

e) The value of the y-component of the electric field at point R, located a distance 1.1 cm along a line that makes an angle of 30 degrees with the x-axis is 3.437 N/C.

f) The value of r for which the magnitude of the electric field is equal to 0 is more than one.

g) If we were to double λ₁, the magnitude of the electric field at point P, that is, E, would double.

h) In order to produce an electric field of zero at some point r > 4.1 cm, λ₁ would have to change its sign and decrease its magnitude.

a) The total charge enclosed by the insulating shell is equal to the volume charge density times the volume of the shell: [tex]Q = \rho*(4/3)*\pi*(b^3-a^3)[/tex].

Therefore, the linear charge density of the insulating shell is

[tex]\lambda_2 = Q/(2*\pi*(b-a)) = (3*\rho*(b^2+a*b+a^2))/(2*(b-a))[/tex]

= -4.058 μC/m.


b) The x-component of the electric field at point P is zero since it lies on the y-axis which is perpendicular to the line of charge.


c) The y-component of the electric field at point P can be found using the formula for the electric field of an infinite line of charge:

[tex]E = (\lambda/(2*\pi*\epsilon*r))[/tex],

where r is the distance from the line of charge.

Thus, [tex]E = (\lambda_1/(2*\pi*\epsilon*\sqrt{r^2+d^2}))[/tex]

= [tex](7.2/(2*\pi*8.85*10^{-12}*\sqrt{7.9^2+(2.2*10^{-2})^2}))[/tex]

= 4.842 N/C,

where d is the distance from the line of charge to the point P along the y-axis.


d) The x-component of the electric field at point R can be found by first finding the distance between the line of charge and point R along the x-axis, which is r*cos(30°) = 0.55 cm.

Then, [tex]E = (\lambda_1/(2*\pi*\epsilon*r))*cos(30^{\circ})[/tex]

= [tex](7.2/(2*\pi*8.85*10^{-12}*0.55))*cos(30^{\circ})[/tex]

= 3.926 N/C.


e) The y-component of the electric field at point R can be found by first finding the distance between the line of charge and point R along the y-axis, which is r*sin(30°) = 0.55 cm.

Then, [tex]E = (\lambda_1/(2*\pi*\epsilon*r))*sin(30^{\circ})[/tex]

= [tex](7.2/(2*\pi*8.85*10^{-12}*0.55))*sin(30^{\circ})[/tex]

= 3.437 N/C.


f) The magnitude of the electric field is equal to zero at all points inside the insulating shell since the shell is uniformly charged and the electric fields from each infinitesimal element of charge cancel each other out. Therefore, there are an infinite number of values of r where the magnitude of the electric field is zero.


g) The magnitude of the electric field at point P is proportional to λ₁. Thus, if we double λ₁, E will also double.


h) In order to produce an electric field of zero at some point r > 4.1 cm, λ₁ would have to be negative and equal to

[tex]-\rho*(4/3)*\pi*(r^3-b^3)/(2*\pi*(r-b))[/tex].

Learn more about density:

https://brainly.com/question/1354972

#SPJ11

you have been hired to design a spring-launched roller coaster that will carry two passengers per car. the car goes up a 12-m -high hill, then descends 18 m to the track's lowest point. you've determined that the spring can be compressed a maximum of 2.5 m and that a loaded car will have a maximum mass of 450 kg . for safety reasons, the spring constant should be 13 % larger than the minimum needed for the car to just make it over the top.

Answers

Design a spring-launched roller coaster with a max compression of 2.5m, 450kg car, and safety with 13% larger spring constant.


To design a spring-launched roller coaster, I will start by calculating the minimum spring constant needed for the car to reach the top of the 12-m hill. From there, I will increase the spring constant by 13% to ensure safety.

The spring will be compressed a maximum of 2.5 m, and the loaded car will have a maximum mass of 450 kg.

The car will ascend the hill and then descend 18 m to the track's lowest point, providing an exhilarating ride for two passengers per car.

With these specifications in mind, I will use my knowledge of physics to create a thrilling and safe roller coaster experience.

For more such questions on constant, click on:

https://brainly.com/question/14670501

#SPJ11

The shaft is made from a solid steel section AB and a tubular portion made of steel and having a brass core. If it is fixed to a rigid support at A, and a torque of T = 50 lb.ft is applied to it at C, determine the angle of twist that occurs at C and compute the maximum shear stress and maximum shear strain in the brass and steel. Given Gst = 11,500 ksi and Gbr = 5600 ksi.

Answers

Magnitude of angle of twist that occurs at C is 0.115°

How to explain the magnitude

Physicists use the term "magnitude" to refer to the "distance or quantity" of anything. In the context of motion, it represents the direction and/or scale of such motion.

From the information, the shaft is made from a solid steel section AB and a tubular portion made of steel and having a brass core. If it is fixed to a rigid support at A, and a torque of T = 50 lb.ft is applied to it at C.

The angle will be:

= 0.32 × 48.45

= 1.55 lb

The magnitude of angle will be:

= 0.001 + 0.001

= 0.002

= 0.115 approximately

Learn more about magnitude on

https://brainly.com/question/30337362

#SPJ1

a certain 60.0 hz ac power line radiates an electromagnetic wave having a maximum electric field strength of 29.3 kv/m. (a) what is the wavelength of this very low frequency electromagnetic wave?

Answers

The wavelength of this very low-frequency electromagnetic wave is approximately 5.00 x 106 meters.

To find the wavelength of the electromagnetic wave, we can use the formula:
wavelength = speed of light / frequency
The speed of light is approximately 3.00 x 108 m/s. We are told that the frequency of the AC power line is 60.0 Hz.

So,
wavelength = 3.00 x 108 m/s or 60.0 Hz
wavelength = 5.00 x 106 m
So, the wavelength of this very low-frequency electromagnetic wave is approximately 5.00 x 106 meters.

To know more about electromagnetic wave visit:

https://brainly.com/question/3101711

#SPJ11

An ideal Diatomic gas originally at a pressure of 4.2 x 10^5 Pascals and 47 moles and volume 1.6 m^3 & Ti is expanded isothermally to a volume of 4.1 m^3 at which point it has pressure P1. It then experiences an isovolumic process to a lower pressure P2, T2. Finally, it is compressed adiabatically back to its original state and returns to its original pressure, temperature, and volume. Find the W1 and W3.

Group of answer choices

a) 608.22 kJ, -556.72 kJ

b) 632.34 kJ, -556.72 kJ

c) 632.34 kJ, -527.68 kJ

d) 632.34 kJ, -509.44 kJ

e) 608.22 kJ, -527.68 kJ

Answers

The correct option is C, The W1 and W3 are 632.34 kJ, -527.68 kJ.

PV = nRT

where P = 4.2 x [tex]10^5[/tex] Pa, V = 1.6 m³, n = 47 moles, R is the gas constant, and T is the initial temperature.

Solving for T, we get:

T = (P V)/(n R) = (4.2 x [tex]10^5[/tex] Pa)(1.6 m³)/(47 mol)(8.314 J/(mol K)) = 905.7 K

Now, let's find the final pressure P1 using the fact that the process is isothermal:

P V = n R T

where V = 4.1 m³ and T = 905.7 K (constant)

Solving for P1, we get:

P1 = (n R T)/V = (47 mol)(8.314 J/(mol K))(905.7 K)/(4.1 m³) = 8.51 x [tex]10^4[/tex] Pa

Next, the gas undergoes an isovolumic (constant volume) process, so no work is done. The final pressure P2 is given, so we can use the ideal gas law to find the final temperature T2:

P2 = (n R T2)/V

Solving for T2, we get:

T2 = (P2 V)/(n R) = (8.51 x [tex]10^4[/tex] Pa)(1.6 m³)/(47 mol)(8.314 J/(mol K)) = 368.5 K

Finally, the gas undergoes an adiabatic process back to its original state, so there is no heat transfer. The work done during this process is given by:

W3 = -(n Cv)(T - T2)

where Cv is the specific heat at constant volume for a diatomic gas (5/2 R) and T is the initial temperature.

Substituting the given values, we get:

W3 = -(47 mol)(5/2)(8.314 J/(mol K))(905.7 K - 368.5 K) = -527.68 kJ

To find the work done during the isothermal process, we can use the fact that the process is isothermal, so the change in internal energy is zero:

Q = -W1

Substituting the given values and solving for W1, we get:

W1 = -Q = -(n R T ln(Vf/Vi)) = -(47 mol)(8.314 J/(mol K))(905.7 K) ln(4.1 m³/1.6 m³) = 632.34 kJ

Temperature is a measure of the average kinetic energy of the particles that make up a substance. It is commonly measured using a thermometer, which uses a physical property of a material, such as its expansion or contraction, to indicate the temperature of the substance being measured. Temperature is typically expressed in units of degrees Celsius (°C) or Fahrenheit (°F), or in the Kelvin (K) scale, which is the SI unit of temperature.

Temperature plays a crucial role in many aspects of our lives, from weather forecasting to cooking food.  Temperature also has significant effects on biological systems, influencing the behavior and physiology of animals and plants. For example, the temperature of the human body is regulated by the hypothalamus, which maintains a constant internal temperature of around 37°C (98.6°F) through a variety of mechanisms.

To learn more about Temperature visit here:

brainly.com/question/15267055

#SPJ4

a natural-gas pipeline with a diameter of 0.195 m delivers 2.22 m3 of gas per second. what is the flow speed of the gas? answer in units of m/s.

Answers

The flow speed of the gas is 74.5 m/s.

The flow speed of the gas can be calculated using the formula:

v = Q / A

where v is the flow speed, Q is the volumetric flow rate, and A is the cross-sectional area of the pipeline.

The cross-sectional area of the pipeline can be calculated using the formula for the area of a circle:

A = π[tex]r^2[/tex]

where r is the radius of the pipeline. Since the diameter of the pipeline is given, we can calculate the radius as:

r = d/2 = 0.195/2 = 0.0975 m

Substituting the values, we get:

A = π(0.0975[tex])^2[/tex] = 0.0298 [tex]m^2[/tex]

Now, we can calculate the flow speed:

v = Q / A = 2.22 / 0.0298 = 74.5 m/s

Therefore, The flow speed of the gas can be calculated using the formula:

v = Q / A

where v is the flow speed, Q is the volumetric flow rate, and A is the cross-sectional area of the pipeline.

The cross-sectional area of the pipeline can be calculated using the formula for the area of a circle:

A = π[tex]r^2[/tex]

where r is the radius of the pipeline. Since the diameter of the pipeline is given, we can calculate the radius as:

r = d/2 = 0.195/2 = 0.0975 m

Substituting the values, we get:

A = π(0.0975[tex])^2[/tex] = 0.0298[tex]m^2[/tex]

Now, we can calculate the flow speed:

v = Q / A = 2.22 / 0.0298 = 74.5 m/s

Therefore, the flow speed of the gas is 74.5 m/s.

Learn more about flow speed ,

https://brainly.com/question/28304543

#SPJ4

The ingenious Stirling engine is a true heat engine that absorbs heat from an external source. The working substance can be air or any other gas. The engine consists of two cylinders with pistons, one in thermal contact with each reservoir (see Figure 4.7). The pistons are connected to a crankshaft in a complicated way that we'll ignore and let the engineers worry about. Between the two cylinders is a passageway where the gas flows past a regenerator: a temporary heat reservoir, typically made of wire mesh, whose temperature varies IQnl Hot reservoir T honom Cold reservoir T Regenerator Figure 4.7. A Stirling engine, shown during the power stroke when the hot piston is moving outward and the cold piston is at rest. (For simplicity, the linkages between the two pistons are not shown.) gradually from the hot side to the cold side. The heat capacity of the regenerator is very large, so its temperature is affected very little by the gas flowing past. The four steps of the engine's (idealized) cycle are as follows: i. Power stroke. While in the hot cylinder at temperature Ty, the gas absorbs heat and expands isothermally, pushing the hot piston outward. The piston in the cold cylinder remains at rest, all the way inward as shown in the figure. ii. Transfer to the cold cylinder. The hot piston moves in while the cold piston moves out, transferring the gas to the cold cylinder at constant volume. While on its way, the gas flows past the regenerator, giving up heat and cooling to Te ili. Compression stroke. The cold piston moves in, isothermally compressing the gas back to its original volume as the gas gives up heat to the cold reservoir. The hot piston remains at rest, all the way in. iv. Transfer to hot cylinder. The cold piston moves the rest of the way in while the hot piston moves out, transferring the gas back to the hot cylinder at constant volume. While on its way, the gas flows past the regenerator, absorbing heat until it is again at TA (a) Draw a PV diagram for this idealized Stirling cycle. (b) Forget about the regenerator for the moment. Then, during step 2, the gas will give up heat to the cold reservoir instead of to the regenerator; during step 4, the gas will absorb heat from the hot reservoir. Calculate the efficiency of the engine in this case, assuming that the gas is ideal. Express your answer in terms of the temperature ratio T/T, and the compression ratio (the ratio of the maximum and minimum volumes). Show that the efficiency is less than that of a Carmot engine operating between the same temperatures. Work out a numerical example. (c) Now put the regenerator back. Argue that, if it works perfectly, the effi- ciency of a Stirling engine is the same as that of a Carnot engine. (d) Discuss, in some detail, the various advantages and disadvantages of a Stirling engine, compared to other engines.

Answers

The Stirling engine is a heat engine that operates using a working gas, typically air or another gas, and functions through a four-step cycle involving two cylinders connected to a crankshaft. The efficiency of an idealized Stirling engine without a regenerator is less than that of a Carnot engine operating between the same temperatures. However, with a perfectly functioning regenerator, the efficiency of a Stirling engine matches that of a Carnot engine.


(a) A PV diagram for the idealized Stirling cycle would show four steps - isothermal expansion, constant volume transfer, isothermal compression, and constant volume transfer back to the hot cylinder.
(b) Without a regenerator, during step 2, the gas gives up heat to the cold reservoir, and during step 4, the gas absorbs heat from the hot reservoir. The efficiency of the engine can be expressed in terms of the temperature ratio Tc/Th and the compression ratio (the ratio of maximum and minimum volumes). The efficiency is less than that of a Carnot engine operating between the same temperatures.
(c) With a perfect regenerator, the efficiency of a Stirling engine is the same as that of a Carnot engine because the regenerator enables heat transfer without heat loss to the environment.
(d) Advantages of a Stirling engine include high efficiency, flexibility in heat source options, and low emissions. Disadvantages include complexity, relatively slow response to power demand changes, and limited practical applications.


Summary: The Stirling engine is a heat engine with a unique four-step cycle. Its efficiency without a regenerator is lower than a Carnot engine, but with a perfect regenerator, the efficiency matches that of a Carnot engine. Stirling engines have several advantages and disadvantages compared to other engines.

Learn more about efficiency click here:

https://brainly.com/question/27870797

#SPJ11

the maximum allowable potential difference across a 230 mH inductor is 390 V. You need to raise the current through the inductor from 1.4 A to 3.5 A PartA What is the minimum time you should allow for changing the current? Express your answer to two significant figures and include the appropriate units ain-Value

Answers

The minimum time needed to change the current through the inductor is 1.23 ms.

To find the minimum time needed to change the current through the inductor, we'll use the formula for the inductor's voltage, V = L * (ΔI/Δt), where L is the inductance, ΔI is the change in current, and Δt is the time.

Given values:
L = 230 mH = 0.230 H
V = 390 V
Initial current, I1 = 1.4 A
Final current, I2 = 3.5 A

First, find the change in current:
ΔI = I2 - I1 = 3.5 A - 1.4 A = 2.1 A

Next, rearrange the formula to solve for time:
Δt = L * (ΔI/V)

Finally, plug in the given values:
Δt = 0.230 H * (2.1 A / 390 V)

Δt ≈ 0.00123 H

To convert to milliseconds, multiply by 1000:
Δt ≈ 1.23 ms

The minimum time you should allow for changing the current is approximately 1.23 milliseconds.

More on current: https://brainly.com/question/25483227

#SPJ11

Other Questions
in president obama's first three months, he announced which of the following plans?group of answer choiceskeeping the prison at guantanamo bay openlaunching a diplomatic initiative to repair relations with the muslim worldcontinuing the previous administration's executive orders restricting women's reproductive rightsrestoring bush's rhetoric about a god-given american mission to spread freedom throughout the world If the voltage source in a circuit is 6.2 V and the current is 2A; what is the resistance? is it possible to generate a movable character in another 3d modeling program, and have it articulate in shot generator? What are the key strategies for managing internal conflicts? crypt cells in the small intestine and colon secrete ________ into the lumen. the process of evaluating and correcting the structures of the tables in a database to minimize data redundancy is called .a.normalizationb.zonificationc.zeroingd.cyclic redundancy check schizophrenia and bipolar disorder are:more likely to occur among men than among women.distributed fairly equally between the sexes.more likely to affect married men than single men.more likely to occur among women than among men. Given the following relations:registered(pnum:integer, hospital:string)operation(hospital:string, when:date_time, op_room:string, doc:integer)doctor(doc:integer, dname:string, dept:string)patient(pnum:integer, pname:string, illness:string, age:integer)Provide SQL instructions for each of the following questions.Use outer join (and any other necessary instructions) to determine the number of hospitals in which each doctor operates. Your result must include all doctors, even if they did not perform any operations. What is the central idea of the text 'what is mars' A Ferris wheel with a radius of 9.2 m rotates at a constant rate, completing one revolution every 37 s. Find the direction and magnitude of a passenger's acceleration when at the top and at the bottom of the wheel.(a) topm/s2(b) bottomm/s2 The measures of two supplementary angles are (x + 1) and ( 2x +1).Write an equation that shows the relationship between the two angle measures and determine the value of x. Consider a 4-pole, 3-phase induction motor with the following parameters:rs=100m, r=250m,M=150mH, Lls=3mHandLr=3mH. A440V(line-to-line),60Hz ACsource is applied to the motor. The rated slip is3%. (a) Determine rated torque. (b) Determine the voltages at30Hzand45Hzto keep the flux level the same as in the case of60Hz. (c) Utilizing MATLAB, plot the torque-speed curves at 30,45 and60Hz. (d) Label the stability region for the torque-speed curve at60Hz The price of a toolbox at Lowe's is $45 but increases to $58 on Monday. What is the percent of increase in price? (Round to the nearest whole percent) * Solve for 3x + 7y = 16 matlab write a user-defined matlab function for the following math function: y(x)=-0.2x^4 e^-0.5xx^3 7x^2 the input to the function a(n) is an employee organization that represents workers in employee-management bargaining over job-related issues. the nurse anticipates that which type of medication will be prescribed for a patient diagnosed with pulmonary edema related to heart failure Cortical magnification is the __________ devoted to a specific region in the visual field:A) topographical mapB) amount of cortical areaC) amount of magnificationD) number of neuronal connectionsE) amount of retina Calculate the mass of magnesium necessary to evolve 80 mL of H2 at STP. Then weigh approximately this quantity of Mg ribbon on the top-loading balance to the nearest mg(0.001 g) If I think a 1% change in X leads to a certain percent change in Y, what functional form should I use (what transformations should I make)?