A cycloid is given as a trajectory of a point on a rim of a wheel of radius 7 meters, rolling without slipping along x-axis with the speed 14 meters per second. It is described as a parametric curve by:

x

=

7

(

y



s

i

n

y

)

,

y

=

7

(

1



c

o

s

y

)

a. Find the area under one arc of the cycloid. (Hint: y from 0 to 2

π

).

b. Sketch the arc and show the point P which corresponds to y=(

π

/3) radians on your sketch

c. Find the Cartesian slope of the line tangent to the cycloid at a point that corresponds to y=(

π

/

3) radians.

d. Will any of your results change if the same wheel rolls with the speed 28 meters per second?

Answers

Answer 1

a. The area under one arc of the cycloid is 98π square meters.

b. To sketch the arc of the cycloid and show the point P which corresponds to y=(π/3) radians, we can plot the parametric equations x=7(y−siny) and y=7(1−cosy) for values of y between 0 and 2π.

c. The Cartesian slope of the line tangent to the cycloid at the point that corresponds to y=(π/3) radians is √3.

d. If the same wheel rolls with the speed 28 meters per second, the equations for the cycloid would become:

x = 14(y - sin(y))

y = 14(1 - cos(y))

Yes, the results will change.

a. To find the area under one arc of the cycloid, we can use the formula for the area between two curves. In this case, we have the parametric equations x=7(y−siny) and y=7(1−cosy) which describe the cycloid. We can eliminate the parameter y to find the equation of the curve in terms of x:

y = 1 - cos((1/7)x)

To find the limits of integration for x, we note that the cycloid completes one full arc when y goes from 0 to 2π. Therefore, we need to find the values of x that correspond to these values of y:

When y = 0, x = 0

When y = 2π, x = 14π

The area under the arc of the cycloid can then be found using the formula:

Area = ∫[tex]_0^{(14\pi)[/tex] y dx

Substituting y in terms of x, we get:

Area = ∫[tex]_0^{(14\pi)[/tex] (1 - cos((1/7)x)) dx

Using integration by substitution with u = (1/7)x, we get:

Area = 98π

Therefore, the area under one arc of the cycloid is 98π square meters.

b. To sketch the arc of the cycloid and show the point P which corresponds to y=(π/3) radians, we can plot the parametric equations x=7(y−siny) and y=7(1−cosy) for values of y between 0 and 2π. At y = π/3, we have:

x = 7(π/3 - sin(π/3)) = 7(π/3 - √3/2) ≈ 0.772 m

y = 7(1 - cos(π/3)) = 7/2 ≈ 3.5 m

c. To find the Cartesian slope of the line tangent to the cycloid at the point that corresponds to y=(π/3) radians, we can differentiate the equations x=7(y−siny) and y=7(1−cosy) with respect to y and evaluate them at y = π/3:

dx/dy = 7(1 - cos(y)) = 7(1 - cos(π/3)) = 7/2

dy/dy = 7sin(y) = 7sin(π/3) = 7√3/2

The Cartesian slope of the line tangent to the cycloid at the point that corresponds to y=(π/3) radians is therefore:

dy/dx = (dy/dy) / (dx/dy) = (7√3/2) / (7/2) = √3

d. If the same wheel rolls with the speed 28 meters per second, the equations for the cycloid would become:

x = 14(y - sin(y))

y = 14(1 - cos(y))

The area under one arc of the cycloid would be twice as large, since the speed of the wheel is twice as large. The point P that corresponds to y=(π/3) radians would have different coordinates, but the Cartesian slope of the line tangent to the cycloid at this point would be the same as before, since it depends only on the geometry of the cycloid and not on the speed of the wheel.

To know more about Cartesian slope, refer to the link below:

https://brainly.com/question/11599583#

#SPJ11


Related Questions

Two surveys were independently conducted to estimate a pop- ulation mean u. Suppose X1, ... , Xn and Y1,..., Ym are the two samples obtained that are both i.i.d from the same population. Denote Xn and Ým as the sample means. For some real numbers a and B, the two sample means can be combined to give a better estimator:üm+n = aXn + BÝm.(1) Find the conditions on a and B that make the combined estimate unbiased.(2) What choice of a and B minimizes the variance of Wm+n, subject to the condition of unbiasedness?

Answers

1) The condition for the combined estimator to be unbiased is a + b = 1. 2) The values of a and b that minimize the variance of the combined estimator subject to the condition of unbiasedness are: a = m/(n + m) and b = n/(n + m).

(1) To find the conditions that make the combined estimator unbiased, we need to have:

E(üm+n) = u,

where u is the true population mean.

Using the linearity of expectation and the fact that Xn and Ym are i.i.d, we have:

E(üm+n) = E(aXn + BÝm)

= aE(Xn) + BE(Ým)

= au + bu,

where u is the true population mean.

For the combined estimator to be unbiased, we need au + bu = u, which simplifies to:

a + b = 1.

Therefore, the condition for the combined estimator to be unbiased is a + b = 1.

(2) To find the values of a and b that minimize the variance of the combined estimator subject to the condition of unbiasedness, we need to minimize the expression:

Var(üm+n) = Var(aXn + BÝm)

= a^2Var(Xn) + B^2Var(Ým) + 2abCov(Xn, Ým),

where Cov(Xn, Ým) is the covariance between Xn and Ým.

Using the fact that Xn and Ym are i.i.d and have the same variance σ^2, we have:

Var(Xn) = Var(Ym) = σ^2/n.

Using the fact that Xn and Ym are independent, we have:

Cov(Xn, Ým) = 0.

Therefore, the expression for the variance simplifies to:

Var(üm+n) = a^2(σ^2/n) + B^2(σ^2/m).

Subject to the condition a + b = 1, we can write:

b = 1 - a.

Substituting this into the expression for the variance, we get:

Var(üm+n) = a^2(σ^2/n) + (1 - a)^2(σ^2/m).

To minimize this expression, we differentiate it with respect to a and set the derivative equal to zero:

d/dx [a^2(σ^2/n) + (1 - a)^2(σ^2/m)] = 2a(σ^2/n) - 2(1 - a)(σ^2/m) = 0.

Solving for a, we get:

a = m/(n + m).

Substituting this value of a into the expression for b, we get:

b = n/(n + m).

Therefore, the values of a and b that minimize the variance of the combined estimator subject to the condition of unbiasedness are:

a = m/(n + m) and b = n/(n + m).

Visit here to learn more about derivative brainly.com/question/30365299

#SPJ11

Sketch the bounded region enclosed by y= e²ˣ, y = e⁴ˣ and x = 1. Decide whether to integrate with respect to x or y, and then find the area of the region. The area is ...

Answers

The area of the region enclosed by y = e²ˣ, y = e⁴ˣ and x = 1 is approximately 0.77425 square units.

What is integration?

Integration is a mathematical operation that is the reverse of differentiation. Integration involves finding an antiderivative or indefinite integral of a function.

To sketch the bounded region enclosed by the curves, we first plot the two functions:

y = e²ˣ (in blue)

y = e⁴ˣ (in red)

And the line x = 1 (in green) which is a vertical line passing through x = 1.

We can see that the two functions e²ˣ and e⁴ˣ both increase rapidly as x increases. In fact, e⁴ˣ grows much faster than e²ˣ, so it quickly becomes the larger of the two functions. Additionally, both functions start at y = 1 when x = 0, and they both approach y = 0 as x approaches negative infinity.

To find the bounds of integration, we need to find the points where the two curves intersect. Setting e²ˣ = e⁴ˣ, we have:

e²ˣ = e⁴ˣ

2x = 4x

x = 0

So the two curves intersect at the point (0,1). Since e⁴ˣ grows much faster than e²ˣ, the curve y = e⁴ˣ will always be above the curve y = e²ˣ. Therefore, the region is bounded by the curves y = e²ˣ, y = e⁴ˣ, and the line x = 1.

To find the area of this region, we can integrate with respect to x or y. Since the region is vertically bounded, it makes sense to integrate with respect to x. The limits of integration are x = 0 and x = 1 (the vertical line).

The area A is given by:

A = ∫₀¹ (e⁴ˣ - e²ˣ) dx

= [ 1/4 * e⁴ˣ - 1/2 * e²ˣ ] from 0 to 1

= (1/4 * e⁴ - 1/2 * e²) - (1/2 * 1) + (1/4 * 1)

= 0.77425 (rounded to five decimal places).

Therefore, the area of the region enclosed by y = e²ˣ, y = e⁴ˣ and x = 1 is approximately 0.77425 square units.

To learn more about integration from the given link:

brainly.com/question/18125359

#SPJ4

What is the circumference of a circle with a diameter of 14 cm? Approximate using .

22 cm
44 cm
154 cm
616 cm

Answers

Answer:

step-by-step explanation: PI times diameter = 43. 96 so 44 when rounded.

Let g and h be the functions defined by g(x)=sin(π2(x 2)) 3 and h(x)=−14x3−32x2−94x 3. If f is a function that satisfies g(x)≤f(x)≤h(x) for −2

Answers

The limit of f(x) as x approaches 0 exists and is equal to -47/50 where

[tex]h(x)=−14 {x}^{3} −32{x}^{2}−94{x}^{3}[/tex]

Since g(x) ≤ f(x) ≤ h(x) for -2 ≤ x ≤ 2, we will utilize the squeeze theorem, to discover the constraint of f(x) as x approaches 0.

Agreeing with the press hypothesis, in the event that g(x) ≤ f(x) ≤ h(x) for all x in a few interims containing a constrain point c.

and in case the limits of g(x) and h(x) as x approaches c rise to, at that point, the constrain of f(x) as x approaches c moreover exists and is rise to the common constrain of g(x) and h(x).

In this case, we have:

[tex] - 1 \leqslant \sin( \frac{\pi}{2} {(x)}^{2} ))^{3} \leqslant \frac{ - 1}{4 {x}^{3} } - \frac{3}{2 {x}^{2} } - \frac{47}{50} \\ for - 2[/tex]

Taking the limit as x approaches 0 on both sides of the above inequality, we get:

[tex] - 1 \leqslant lim(x = 0) \sin( \frac{\pi}{2} {(x)}^{2} )^{3} ) \leqslant lim(x = 0)( \frac{ - 1}{4x^{3} - \frac{3}{2 {x}^{3} } }) - \frac{47}{50} [/tex]

The limit on the right-hand side can be found by evaluating each term separately:

[tex]lim(x = 0) \frac{ - 1}{4 {x}^{3} } = 0 \\ lim(x = 0) \frac{ - 3}{2 {x}^{2} } = 0[/tex]

lim (x→0) -47/50 = -47/50

Therefore, the limit of f(x) as x approaches 0 exists and is equal to -47/50:

[tex]lim(x = 0)f(x) = lim(x = 0) \sin( \frac{\pi}{2} ( {x}^{2})^{3} = \frac{ - 47}{50} ) [/tex]

hence, we have shown that the function f(x) defined by g(x) ≤ f(x) ≤ h(x) for -2 ≤ x ≤ 2 approaches a limit of -47/50 as x approaches 0.

To learn more about squeeze theorem: brainly.com/question/18446513

#SPJ4

Find the radius of convergence,R, of the series.
[infinity]
∑ 9 (?1)^n nx^n
n=1
R=_____
Find the interval,I, of convergence of the series. (Enter answer using interval notation.)
I=

Answers

The series converges for -1 < x < 1, and the interval of convergence is:

I = (-1, 1).

To find the radius of convergence, we can use the ratio test:

lim┬(n→∞)⁡|[tex]9(-1)^n n x^{2} /|9 (-1)^n nx^n[/tex]| = lim┬(n→∞)⁡|x|/|1| = |x|

The series converges if the ratio is less than 1 and diverges if it is greater than 1.

So, we need to find the values of x such that |x| < 1:

|x| < 1

Thus, the radius of convergence is R = 1.

To find the interval of convergence, we need to test the endpoints x = -1 and x = 1:

When x = -1, the series becomes:

[tex]\sum 9 (-1)^n n(-1)^n = \sum -9n[/tex]

which is divergent since it is a multiple of the harmonic series.

When x = 1, the series becomes:

[tex]\sum 9 (-1)^n n(1)^n = \sum 9n[/tex]

which is also divergent since it is a multiple of the harmonic series.

For similar question on converges.

https://brainly.com/question/28209832

#SPJ11

Evaluate the integral ve (2x + 3y)2 dA, where R is the triangle with vertices at ( – 5,0), (0,5), and (5,0). R Enter the exact answer. L (2+ (2x + 3y)2 dA = |

Answers

To evaluate the integral ∬R (2x + 3y)² dA over the given region R, which is the triangle with vertices at (-5, 0), (0, 5), and (5, 0), we need to set up the integral using appropriate bounds.

Since R is a triangular region, we can express the bounds of the integral in terms of x and y as follows:

For y, the lower bound is 0, and the upper bound is determined by the line connecting the points (-5, 0) and (5, 0). The equation of this line is y = 0, which gives us the upper bound for y.

For x, the lower bound is determined by the line connecting the points (-5, 0) and (0, 5), which has the equation x = -y - 5. The upper bound is determined by the line connecting the points (0, 5) and (5, 0), which has the equation x = y + 5.

Therefore, the integral can be set up as follows:

∬R (2x + 3y)² dA = ∫₀⁵ ∫_{-y-5}^{y+5} (2x + 3y)² dx dy

Now, we can evaluate the integral using these bounds:

∬R (2x + 3y)² dA = ∫₀⁵ ∫_{-y-5}^{y+5} (2x + 3y)² dx dy

                    = ∫₀⁵ [ (2/3)(2x + 3y)³ ]_{-y-5}^{y+5} dy

                    = ∫₀⁵ [ (2/3)((2(y + 5) + 3y)³ - (2(-y - 5) + 3y)³) ] dy

                    = ∫₀⁵ [ (2/3)(5 + 5y)³ - (-5 - 5y)³ ] dy

Evaluating this integral will require further calculation and simplification. Please note that providing the exact answer requires performing the necessary algebraic manipulations.

To know more about vertices refer here

https://brainly.com/question/29154919#

#SPJ11

engineers must consider the diameters of heads when designing helmets. the company researchers have determined that the population of potential clientele have head diameters that are normally distributed with a mean of 7.1-in and a standard deviation of 0.8-in. due to financial constraints, the helmets will be designed to fit all men except those with head diameters that are in the smallest 0.5% or largest 0.5%. what is the minimum head diameter that will fit the clientele? min

Answers

The head diameters are normally distributed with a mean of 7.1 inches and a standard deviation of 0.8 inches.

Due to financial constraints, the helmets will be designed to fit all men except those with head diameters in the smallest 0.5% or largest 0.5%. To determine the minimum head diameter that will fit the targeted clientele, we can use the z-score formula. A z-score represents the number of standard deviations a data point is from the mean. We'll need to find the z-score that corresponds to the 0.5 percentile (smallest 0.5%) using a standard normal distribution table or calculator. The z-score for the 0.5 percentile is approximately -2.58. We can now plug this z-score into the formula to find the corresponding head diameter:

Head Diameter = Mean + (z-score × Standard Deviation)
Head Diameter = 7.1 + (-2.58 × 0.8)
Head Diameter = 7.1 - 2.064
Head Diameter ≈ 5.036 inches
Therefore, the minimum head diameter that will fit the targeted clientele is approximately 5.036 inches.

Learn more about standard deviation here

https://brainly.com/question/24298037

#SPJ11

the statistical interpretation of a chi-square value is determined by identifying the ________.

Answers

The statistical interpretation of a chi-square value is determined by identifying the p-value associated with it. The p-value represents the probability of obtaining the observed chi-square value or a more extreme value if the null hypothesis is true.

A lower p-value indicates stronger evidence against the null hypothesis, suggesting that the observed data deviates significantly from what would be expected under the null hypothesis. This interpretation helps researchers assess the significance of their findings and make informed decisions about accepting or rejecting the null hypothesis.

In statistical hypothesis testing, the chi-square test is used to determine if there is a significant association between categorical variables. After calculating the chi-square test statistic, which measures the difference between observed and expected frequencies, the next step is to interpret its value. The interpretation is based on the p-value associated with the chi-square value.

The p-value represents the probability of observing a chi-square value as extreme as, or more extreme than, the one calculated, assuming that the null hypothesis is true. The null hypothesis typically assumes that there is no association between the variables being tested. A low p-value indicates strong evidence against the null hypothesis, suggesting that the observed data deviates significantly from what would be expected under the null hypothesis. In this case, researchers reject the null hypothesis in favor of an alternative hypothesis, concluding that there is a significant association between the variables.

Conversely, a high p-value suggests that the observed data is not significantly different from what would be expected under the null hypothesis. In such cases, researchers fail to reject the null hypothesis, indicating that there is not enough evidence to support a significant association between the variables.

By interpreting the p-value associated with the chi-square value, researchers can assess the statistical significance of their findings and make informed decisions about accepting or rejecting the null hypothesis. This allows them to draw conclusions about the relationship between the categorical variables being studied and contribute to the understanding of the underlying phenomenon.

Learn more about P-Value:

brainly.com/question/30461126

#SPJ11

The tens digit in the sum of 2374 and 3567 is

Answers

Answer: The tens digit of the sum of 2374 and 3567 is 4.

Step-by-step explanation:

The sum of 2374 and 3567 is 5941.

The ones digit is 1 (1st digit from right side)

The tens digit is 4 (2nd digit from right side)

The hundreds digit is 9 (3rd digit from right side)

The thousands digit is (4th digit from right side)

Which statements are true for this function and graph? Select three options.

The initial value of the function is One-third.
The base of the function is One-third.
The function shows exponential decay.
The function is a stretch of the function f(x) = (one-third) Superscript x.
The function is a shrink of the function f(x) = 3x.

Answers

Options 2, 3, and 4 are true for the exponential function f(x) = 3(1/3)^x and its graph.

How did we arrive at these assertions?

The following statements are true for the exponential function f(x) = 3(1/3)^x and its graph:

2. The base of the function is 1/3. This is true because the exponential function is of f(x) = a(b)^x,

where "a" is the initial value, "b" is the base, and "x" is the exponent. In this case, "a" is 3 and "b" is 1/3, hence, the base of the function is 1/3.

3. The function shows exponential decay. This is true also, because, the base of the function is < 1. In general, exponential decay occurs when the base of the function is between 0 and 1.

4. The function is a stretch of the function f(x) = (1/3)^x. This is true as well, because, multiplying a function by a constant "a" gives a vertical stretch or compression of the function. In this case, the constant "a" is 3, which gives a vertical stretch of the function f(x) = (1/3)^x by a factor of 3.

Therefore, options 2, 3, and 4 are true for the exponential function f(x) = 3(1/3)^x and its graph.

learn more about exponential function: https://brainly.com/question/2456547

#SPJ1

The complete question goes thus:

Consider the exponential function f(x) = 3(1/3)^x and its graph.

Which statements are true for this function and graph? Select three options.

1. The initial value of the function is One-third.

2. The base of the function is 1/3.

3. The function shows exponential decay.

4. The function is a stretch of the function f(x) = (1/3)^x

5. The function is a shrink of the function f(x) = 3x.

please solve problemson album Place transform to solve the following initial value problem: ty=1+ te;y(0) = 1 [4M]

Answers

The solution to the initial value problem ty=1+ te;y(0) = 1 is: y(t) = t - e^(-t)

To solve the initial value problem ty=1+ te;y(0) = 1 using the method of Laplace transforms, we first take the Laplace transform of both sides of the equation: L{ty} = L{1+ te}

Using the property L{t^n f(t)} = (-1)^n F^(n)(s) where F(s) is the Laplace transform of f(t), we can simplify the left-hand side: -L{y'(t)} = -s Y(s) + y(0) Plugging in the initial condition y(0) = 1, we get: -L{y'(t)} = -s Y(s) + 1 Using the Laplace transform of te: L{te} = 1/s^2

Substituting these expressions into the original equation and solving for Y(s), we get: -s Y(s) + 1 = 1/s + 1/s^2 Simplifying this expression, we get: Y(s) = 1/s^2 + 1/s(s-1)

Using partial fractions, we can write this as: Y(s) = 1/s^2 - 1/(s-1) + 1/s Taking the inverse Laplace transform, we get: y(t) = t - e^(-t)

Visit here to learn more about Laplace Transforms:

brainly.com/question/28167584

#SPJ11

Let Ly=y' py" qy. Suppose that yY1 and Yz are two functions such that Ly1 f(x) and Lyz g(x) . Show that their sum y =Y1 Yz satisfies the nonhomogeneous equation Ly = f(x) + g(x): What is an appropriate first step to show y=Y1 Yz satisfies the nonhomogeneous equation Ly = f(x) + g(x)? A Substitute g(x) for y in the differential equation Ly =y"' + py' qy B. Substitute f(x) for y in the differential equation Ly =y"' + py' + QY: C. Substitute y =Y1 Yz fory in the differential equation Ly =y"' + py' + qy: D: Substitute f(x) and g(x) in for Y1 and yz, respectively; in the equation y=Y1 Y2

Answers

The appropriate first step was to substitute y = Y1 Yz for y in the differential equation Ly = y''' + py' + qy. (C)Substitute y = Y1 + Y2 for y in the differential equation Ly = y'' + py' + qy.

The appropriate first step to show that y = Y1 Yz satisfies the nonhomogeneous equation Ly = f(x) + g(x) is to substitute y = Y1 Yz for y

in the differential equation Ly = y''' + py' + qy. This will give us Ly = Y1 Yz''' + pY1 Yz' + qY1 Yz. We then need to show that this is equal to f(x) + g(x). To do this, we can use the fact that Ly1 = f(x) and Lyz = g(x).

We know that Ly1 = Y1''' + pY1' + qY1 and Lyz = Yz''' + pYz' + qYz. Therefore, we can substitute these equations into our expression for Ly: Ly = Ly1 + Lyz.


Ly = Y1''' + pY1' + qY1 + Yz''' + pYz' + qYz
Ly = Y1''' + Yz''' + p(Y1' + Yz') + q(Y1 + Yz).



We can then simplify this expression by using the fact that y = Y1 Yz:

Ly = Y1'''Yz + Y1Yz''' + p(Y1'Yz + Y1Yz') + qY1Yz
Ly = Y1(Yz''' + pYz' + qYz) + Yz(Y1''' + pY1' + qY1) + Y1'Yz'

Using the fact that Ly1 = f(x) and Lyz = g(x), we can substitute these equations into our expression for Ly:

Ly = f(x) + g(x)

Therefore, we have shown that y = Y1 Yz satisfies the nonhomogeneous equation Ly = f(x) + g(x). The appropriate first step was to substitute y = Y1 Yz for y in the differential equation Ly = y''' + py' + qy.
C. Substitute y = Y1 + Y2 for y in the differential equation Ly = y'' + py' + qy.

To know more about equation click here

brainly.com/question/649785

#SPJ11

determine whether the series converges or diverges 4 8^n / 4 7^n

Answers

Applying the ratio test to this series, we get: | (8^(n+1) / 7^(n+1)) / (8^n / 7^n) | = | (8/7)^n * 8/7 | = (8/7) Since this limit is greater than 1, the series diverges. Therefore, the series 4 (8^n) / 4 (7^n) diverges.

To determine whether the series converges or diverges, consider the given series: 4 * 8^n / (4 * 7^n). First, we can simplify the series by canceling the common factor of 4: (4 * 8^n) / (4 * 7^n) = 8^n / 7^n

Now, rewrite the series as a single exponent: (8/7)^n To determine if this series converges or diverges, we can apply for the Ratio Test.

Since the ratio is constant (8/7), we just need to check if it's less than, equal to, or greater than 1: 8/7 > 1 Since the ratio is greater than 1, the series diverges.

Visit here to learn more about Ratio Test:

brainly.com/question/31584977

#SPJ11

On her trip from home to school, Karla drives along three streets after exiting the driveway. She drives 1. 85 miles south, 2. 43 miles east and 0. 35 miles north. Determine the magnitude of Karla's resultant displacement.

show work

Answers

The magnitude of Karla's resultant displacement is approximately 2.854 miles.

Let's call the distance traveled south as negative, and the distance traveled north as positive. Then, we can break down the distances traveled in the east-west and north-south directions as follows:

Distance traveled east-west = 2.43 miles

Distance traveled north-south = 0.35 - 1.85 = -1.5 miles

Now, we can use these values to find the magnitude of the resultant displacement as follows:

Resultant displacement = √[(Distance traveled east-west)^2 + (Distance traveled north-south)]

[tex]= [(2.43)² + (-1.5)²= (5.9049 + 2.25)\\= √8.1549\\= 2.854 miles[/tex] (rounded to three decimal places)

Therefore, the magnitude of Karla's resultant displacement is approximately 2.854 miles.

To know more about displacement  here

https://brainly.com/question/14422259

#SPJ4

You and your friend go to a store where all the shirts cost the same amount and all the pants cost same amount. You buy 2 shirts and 5 pairs of pants for $99. Your friend buys 3 shirts and 3 pairs of pants for $81. What is the cost for each shirt and each pair of pants?

Answers

Let s be the cost of each shirt and let p be the cost of each pair of pants.

From the first piece of information, we can write the equation:

2s + 5p = 99

From the second piece of information, we can write the equation:

3s + 3p = 81

Now we have a system of two linear equations in two variables:

2s + 5p = 99

3s + 3p = 81

To solve for s and p, we can use the method of substitution. Solving the second equation for s, we get:

s = (81 - 3p) / 3

Now we can substitute this expression for s into the first equation:

2s + 5p = 99

2[(81 - 3p) / 3] + 5p = 99

54 - 2p + 5p = 99

3p = 45

p = 15

Now we can substitute p = 15 into either of the equations to solve for s. Using the second equation, we get:

3s + 3p = 81

3s + 3(15) = 81

3s = 36

s = 12

Therefore, each shirt costs $12 and each pair of pants costs $15.

The value of the cost for each shirt and each pair of pants is,

⇒ Shirt = $12

⇒ Pant = $15

What is an expression?

Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

Given that;

You buy 2 shirts and 5 pairs of pants for $99.

And, Your friend buys 3 shirts and 3 pairs of pants for $81.

Let cost of one shirt = x

And, cost of pants = y

Hence, We get;

2x + 5y = 99  .. (i)

And, 3x + 3y = 81

⇒ x + y = 27 .. (ii)

After simplifying we get;

y = 15

x = 12

Thus, The value of the cost for each shirt and each pair of pants is,

⇒ Shirt = $12

⇒ Pant = $15

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ2

find c ∇f · dr, where c has parametric equations x = t2 + 1, y = t3 + t, 0 t 1.

Answers

To evaluate c ∇f · dr, we need to first find the gradient vector ∇f and the differential vector dr.

Since the function f is not given, we cannot find ∇f explicitly. However, we know that ∇f points in the direction of greatest increase of f, and that its magnitude is the rate of change of f in that direction. Therefore, we can make an educated guess about the form of ∇f based on the information given.

The function f could be any function, but let's assume that it is a function of two variables x and y. Then, we have:

∇f = (∂f/∂x, ∂f/∂y)

where ∂f/∂x is the partial derivative of f with respect to x, and ∂f/∂y is the partial derivative of f with respect to y.

Now, let's find the differential vector dr. The parameterization of c is given by:

x = t^2 + 1

y = t^3 + t

0 ≤ t ≤ 1

Taking the differentials of x and y, we get:

dx = 2t dt

dy = 3t^2 + 1 dt

Therefore, the differential vector dr is given by:

dr = (dx, dy) = (2t dt, 3t^2 + 1 dt)

Now, we can evaluate c ∇f · dr as follows:

c ∇f · dr = (c1 ∂f/∂x + c2 ∂f/∂y) (dx/dt, dy/dt)

where c1 and c2 are the coefficients of x and y in the parameterization of c, respectively. In this case, we have:

c1 = 2t

c2 = 3t^2 + 1

Substituting these values, we get:

c ∇f · dr = (2t ∂f/∂x + (3t^2 + 1) ∂f/∂y) (2t dt, 3t^2 + 1 dt)

Now, we need to make an educated guess about the form of f based on the information given. We know that f is a function of x and y, and we could assume that it is a polynomial of some degree. Let's assume that:

f(x, y) = ax^2 + by^3 + cxy + d

where a, b, c, and d are constants to be determined. Then, we have:

∂f/∂x = 2ax + cy

∂f/∂y = 3by^2 + cx

Substituting these values, we get:

c ∇f · dr = [(4at^3 + c(3t^2 + 1)t) dt] + [(9bt^4 + c(2t)(t^3 + t)) dt]

Integrating with respect to t from 0 to 1, we get:

c ∇f · dr = [(4a/4 + c/2) - (a/2)] + [(9b/5 + c/2) - (9b/5)]

Simplifying, we get:

c ∇f · dr = -a/2 + 2c/5

Therefore, the value of c ∇f · dr depends on the constants a and c, which we cannot determine without more information about the function f.

The value of c where c has parametric equations x = t2 + 1, y = t3 + t, 0 t 1. is  c ∇f · dr=  [(2t^5 + 2t^3)(∂f/∂x) + (9t^7 + 3t^5)(∂f/∂y)] dt.

We have the following information:

c(t) = (t^2 + 1)i + (t^3 + t)j, 0 ≤ t ≤ 1

f(x, y) is a scalar function of two variables

We need to find c ∇f · dr.

We start by finding the gradient of f:

∇f = (∂f/∂x)i + (∂f/∂y)j

Then, we evaluate ∇f at the point (x, y) = (t^2 + 1, t^3 + t):

∇f(x, y) = (∂f/∂x)(t^2 + 1)i + (∂f/∂y)(t^3 + t)j

Next, we need to find the differential vector dr = dx i + dy j:

dx = dx/dt dt = 2t dt

dy = dy/dt dt = (3t^2 + 1) dt

dr = (2t)i + (3t^2 + 1)j dt

Now, we can evaluate c ∇f · dr:

c ∇f · dr = [c(t^2 + 1)i + c(t^3 + t)j] · [(∂f/∂x)(2t)i + (∂f/∂y)(3t^2 + 1)j] dt

= [c(t^2 + 1)(∂f/∂x)(2t) + c(t^3 + t)(∂f/∂y)(3t^2 + 1)] dt

= [(t^2 + 1)(2t^3 + 2t)(∂f/∂x) + (t^3 + t)(9t^4 + 3t^2)(∂f/∂y)] dt

Therefore, c ∇f · dr = [(2t^5 + 2t^3)(∂f/∂x) + (9t^7 + 3t^5)(∂f/∂y)] dt.

Learn more about parametic equation at https://brainly.com/question/24097871

#SPJ11


Re-write the quadratic function below in standard form

Answers

Answer:

[tex]y = - (x - 4)(x - 7)[/tex]

[tex]y = - ( {x}^{2} - 11x + 28)[/tex]

[tex]y = - ( {x}^{2} - 11x + \frac{121}{4} + \frac{7}{4}) [/tex]

[tex]y = - {(x - \frac{11}{2} })^{2} - \frac{7}{4} [/tex]

[tex]y = - {(x - 5.5)}^{2} - 1.75[/tex]

suppose the exam instructions specify that at most one of questions 1 and 2 may be included among the eleven. how many different choices of eleven questions are there?

Answers

There are 2 different choices of eleven questions under the given exam instructions.

To answer your question, let's use the following terms: total choices, combination with question 1, combination with question 2, and combination without questions 1 and 2.

Total choices: There are 12 questions in total (1 through 12).

Combination with question 1: If you choose question 1, you cannot include question 2. This leaves 10 other questions (3 through 12) to choose from, and you need to choose 10 to make a total of 11. The number of combinations in this case is C(10, 10) = 1.

Combination with question 2: If you choose question 2, you cannot include question 1. This leaves 10 other questions (3 through 12) to choose from, and you need to choose 10 to make a total of 11. The number of combinations in this case is C(10, 10) = 1.

Combination without questions 1 and 2: If you do not include questions 1 and 2, you have 10 questions left (3 through 12) and you need to choose 11. However, since you can only choose 10 out of the 10 remaining questions, this case has no valid combinations (0).

To find the total number of different choices of eleven questions, add the combinations from each case:

Total different choices = Combination with question 1 + Combination with question 2 + Combination without questions 1 and 2
Total different choices = 1 + 1 + 0
Total different choices = 2

There are 2 different choices of eleven questions under the given exam instructions.

Visit here to learn more about Combination  : https://brainly.com/question/13387529
#SPJ11

Find the general Solution of given differential Equation. do y das 5 duy 2 d34 10d²y. + + 3 dre doch de 2 o dy + 5y = 0 du

Answers

The general solution of the given differential equation, d⁵y/dx⁵ + 5d⁴y/dx⁴ - 2d³y/dx³ - 10d²y/dx² + dy/dx + 5y = 0, involves: solving for the function y(x) that satisfies this equation.

To find the general solution, first, we must determine the characteristic equation associated with the given differential equation. The characteristic equation is:

r^5 + 5r^4 - 2r^3 - 10r^2 + r + 5 = 0.

Solving this equation for the roots r will give us the form of the general solution. The general solution will be a linear combination of the solutions corresponding to each root of the characteristic equation. If the roots are distinct, the general solution will have the form:

y(x) = C₁e^(r₁x) + C₂e^(r₂x) + C₃e^(r₃x) + C₄e^(r₄x) + C₅e^(r₅x),

where C₁, C₂, C₃, C₄, and C₅ are arbitrary constants and r₁, r₂, r₃, r₄, and r₅ are the roots of the characteristic equation. If some roots are repeated, the general solution will involve terms with additional powers of x multiplied by the exponential terms.

To know more about  differential equation, refer here:

https://brainly.com/question/1164377#

#SPJ11

Complete question:

Find the general Solution of given differential Equation.

d⁵y/dx⁵ + 5d⁴y/dx⁴ - 2d³y/dx³- 10d²y/dx²+ dy/dx+ 5y= 0

In Exercises 3 to 7, find the extrema of f subject to the stated constraints. 1. f(x-y-z) = x-y+z, subject to x^2 + y^2 +z^2 2. f(x, y) = x - y, subject to x^2- y^2 = 2

Answers

The critical points we obtain are (±√2, ±√2/2) and we need to check which of these are extrema by plugging them back into f(x, y) = x - y. We find that (±√2, ±√2/2) are saddle points, since f changes sign as we move in different directions.

In the first problem, we are asked to find the extrema of the function f(x-y-z) = x-y+z subject to the constraint x^2 + y^2 + z^2.
To find the extrema, we need to use the method of Lagrange multipliers. We introduce a new variable λ and set up the Lagrangian function L(x,y,z,λ) = f(x,y,z) + λ(g(x,y,z) - c), where g(x,y,z) is the constraint function (x^2 + y^2 + z^2) and c is a constant chosen so that g(x,y,z) - c = 0.
Then we find the partial derivatives of L with respect to x, y, z, and λ, and set them equal to zero to get a system of equations. Solving this system gives us the critical points, which we then plug back into f to determine whether they are maxima, minima, or saddle points.
In this case, we have:
L(x,y,z,λ) = x-y+z + λ(x^2 + y^2 + z^2 - c)
∂L/∂x = 1 + 2λx = 0
∂L/∂y = -1 + 2λy = 0
∂L/∂z = 1 + 2λz = 0
∂L/∂λ = x^2 + y^2 + z^2 - c = 0
Solving for x, y, z, and λ, we get:
x = -1/2λ
y = 1/2λ
z = -1/2λ
x^2 + y^2 + z^2 = c/λ
Substituting these back into f(x-y-z) = x-y+z, we get:
f(x,y,z) = x-y+z = (-1/2λ) - (1/2λ) - (1/2λ) = -3/2λ

To find the extrema, we need to check the sign of λ. If λ > 0, we have a minimum at (-1/2λ, 1/2λ, -1/2λ). If λ < 0, we have a maximum at the same point. If λ = 0, the Lagrangian does not give us any information, and we need to check the boundary of the constraint set.
The constraint x^2 + y^2 + z^2 = c is the equation of a sphere with radius √c centred at the origin. The function f(x-y-z) = x-y+z defines a plane that intersects the sphere in a circle. To find the extrema on this circle, we can use the method of Lagrange multipliers again, setting up the Lagrangian L(x,y,λ) = x-y+z + λ(x^2 + y^2 + z^2 - c) and following the same steps as before.
In the second problem, we are asked to find the extrema of the function f(x, y) = x - y subject to the constraint x^2 - y^2 = 2.  Again, we use the method of Lagrange multipliers, setting up the Lagrangian L(x,y,λ) = x - y + λ(x^2 - y^2 - 2) and solving the system of equations ∂L/∂x = ∂L/∂y = ∂L/∂λ = 0.

Learn more about critical points here: brainly.com/question/31017064

#SPJ11

A square table 4 feet on each side has two drop leaves, each a semicircle 4 feet in diameter. What is the perimeter of the table with the drop leaves?

Answers

The perimeter of the table with the drop leaves is 41.12 feet.

We have,

The table has four sides, each measuring 4 feet, so its perimeter without the drop leaves.

= 4 x 4

= 16 feet.

With the drop leaves, the table has two semicircles with a diameter of 4 feet each.

When the leaves are down, they create a full circle with a diameter of 4 feet.

The circumference of a circle is π times its diameter, so the circumference of the drop leaves.

C = πd = π x 4 = 12.56 feet

Since there are two drop leaves, the total increase in the perimeter.

= 12.56 feet x 2

= 25.12 feet

So the perimeter of the table with the drop leaves.

= 16 feet + 25.12 feet

= 41.12 feet

Therefore,

The perimeter of the table with the drop leaves is 41.12 feet.

Learn more about perimeter here:

https://brainly.com/question/6465134

#SPJ1

he 3233 people residing in the state of oz want their yellow brick road repaved. it could be repaved with standard asphalt for a cost of $129711 or with shimmering gold asphalt for $6327777 . the senator that represents oz in the national legislature argues that the yellow brick road is a national treasure and a tourist attraction. as such, the senator argues that the nation of 3517177 people should pay for the repaving. round your answer to two decimals for all of the following questions. what is the cost per person if the national government pays for gold asphalt? what is the cost per person if the state of oz pays for gold asphalt?

Answers

If the national government pays for the shimmering gold asphalt, the cost per person can be calculated by dividing the total cost by the population of the nation. In this case, the cost is $6,327,777, and the national population is 3,517,177 people.


Cost per person (national government) = Total cost / National population
Cost per person (national government) = $6,327,777 / 3,517,177
Cost per person (national government) ≈ $1.80 (rounded to two decimals)
If the state of Oz pays for the gold asphalt, we need to divide the total cost by the population of Oz, which is 3,233 people.
Cost per person (state of Oz) = Total cost / Oz population
Cost per person (state of Oz) = $6,327,777 / 3,233
Cost per person (state of Oz) ≈ $1,956.09 (rounded to two decimals)
So, if the national government pays for the gold asphalt, the cost per person is approximately $1.80. If the state of Oz pays for it, the cost per person is approximately $1,956.09.

Learn more about population here

https://brainly.com/question/31243583

#SPJ11

you intend to conduct an anova with 3 groups in which each group will have the same number of subjects: n = 19. (This is reffered to as a "balanced" single-factor ANOVA).
What are the degrees of freedom for the numerator?
What are the degrees of freedom for denominator?

Answers

The degrees of freedom for the numerator is  2. The df for the denominator is 54

For a one-way ANOVA with k groups and n observations per group, the degrees of freedom (df) for the numerator and denominator are calculated as follows:

The df for the numerator is k - 1, which represents the number of groups minus one.

The df for the denominator is N - k, which represents the total number of observations minus the number of groups.

In this case, there are 3 groups and each group has n = 19 observations, so the total number of observations is N = 3 x 19 = 57. Therefore:

The df for the numerator is 3 - 1 = 2

The df for the denominator is 57 - 3 = 54

Learn more about ANOVA at https://brainly.com/question/17313328

#SPJ11

A.)Evaluate the following indefinite integral. Do not include +C in your answer. ∫(−2x5+2x−1+3ex)dx

B)Evaluate the following indefinite integral. Do not include +C in your answer.

∫(−6x6−2x3−4)dx

C.)Consider the function f(x)=−2x2+5x+5. If a right Riemann sum with n=4 subintervals is used over the interval [2,4], will the result be an overestimate or an underestimate?

D)Given the function f(x)=2x−4, find the net signed area between f(x) and the x-axis over the interval [−2,9]. Do not include any units in your answer.

Answers

A) The indefinite integral of the function is:

-2/6 x^6 + 2/2 x^2 -1x + 3ex

B) The indefinite integral of the function is:

-6/7 x^7 - 2/4 x^4 - 4x

C) A right Riemann sum with n=4 subintervals over the interval [2,4] will be an overestimate of the area under the curve because the function is decreasing on the interval [2,4].

D) The net signed area between f(x) and the x-axis over the interval [-2,9] is:

[2(9)^2 - 4(9)] - [2(-2)^2 - 4(-2)] = 178

(a) The following number of people attended the last 9 screenings of a movie: 195, 198, 199, 203, 205, 208, 209, 210, 292. Which measure should be used to summarize the data?
Mean Median Mode (b) In Prof. Diaz's class, the 9 students had the following scores on the last midterm: 127, 128, 129, 132, 136, 139, 140, 141, 142. Which measure should be used to summarize the data? Mean Median
Mode (c) The readers of a children's magazine are asked to name their favorite animals, Which measure indicates the animal chosen most often? Mean Median Mode

Answers

(a) The median should be used to summarize the data because there is an outlier (292) that would greatly affect the mean.

(b) The mean should be used to summarize the data because there are no outliers that would greatly affect the mean.

(c) The mode should be used to indicate the animal chosen most often.

There are different measures of central tendency that can be used to summarize data in statistics. These measures are used to describe the central or typical value of a set of observations or measurements. The three most common measures of central tendency are the mean, median, and mode.

The mean is the arithmetic average of a set of observations or measurements. It is calculated by adding up all the observations and dividing the sum by the number of observations.

The median is the middle value of a set of observations when the values are arranged in numerical order. To find the median, the observations are first arranged from smallest to largest, and then the middle value is identified. If there is an even number of observations, then the median is the average of the two middle values.

The mode is the value that appears most frequently in a set of observations or measurements. If no value appears more than once, then there is no mode for the data set.

In general, the choice of measure of central tendency depends on the nature of the data and the purpose of the analysis. The mean is sensitive to extreme values or outliers and may not be appropriate when the data is skewed.

The median is more robust to extreme values and is preferred when the data is skewed. The mode is useful for categorical data and can provide insights into the most common or popular value in the data set.

Learn more about mean median mode at https://brainly.com/question/29205891?

#SPJ11

What does an exchange rate of $1. 25: ¥1 mean or imply?

Implies that the ¥ has strengthened vis-à-vis the $U. S.

Implies that the $U. S. Has strengthened vis-à-vis the ¥

Means that each $U. S. Is worth 1. 25¥

Can also be expressed as $1: ¥0. 80

Answers

An exchange rate of $1.25: ¥1 means that each US dollar is worth 1.25 Japanese yen, or equivalently, each Japanese yen is worth 0.8 US dollars.

An exchange rate is the price of one currency in terms of another currency. It tells you how much of one currency you need to exchange for a unit of another currency.

In the case of $1.25: ¥1 exchange rate, it means that for every US dollar, you can exchange it for 1.25 Japanese yen.

This exchange rate does not necessarily imply that either currency has strengthened or weakened vis-à-vis the other.

Thus, it simply reflects the current exchange rate between the two currencies. However, if the exchange rate changes over time, it may indicate that one currency has strengthened or weakened relative to the other.

For more details regarding exchange rate, visit:

https://brainly.com/question/29562028

#SPJ4

How to solve two step equations

Answers

Answer:Step 1) Add or Subtract the necessary term from each side of the equation to isolate the term with the variable while keeping the equation balanced.Step 2) Mulitply or Divide each side of the equation by the appropriate value solve for the variable while keeping the equation balanced.

Step-by-step explanation:Beacause we want to achieve   x=some number, which is called the solution to an equation.2x−12+12=5+122x=17Now since two is being multiplied with the variable x, we are going to apply the inverse operation of division to remove it.2x2=172x=172

Step-by-step explanation:

An example of a two-step equation is:

2x + 3 = 13

Typically, in a two-step equation, there is a number multiplying a variable, and an additional number being added to or subtracted from the variable part.

In the example above, the variable x is being multiplied by 2.

Then, 3 is being added to the variable part, 2x.

Solving:

First undo the number being added or subtracted to the variable part by using the opposite operation.

In the example above,

2x + 3 = 13,

3 is being added to 2x, so use the opposite operation to addition which is subtraction.

Subtract 3 from both sides.

2x + 3 - 3 = 13 - 3

2x = 10

Now that you only have the product of a number and the variable, undo the operation, by applying the opposite operation. The variable x is being multiplied by 2, so do the opposite operation, which is divide both sides by 2.

2x/2 = 10/2

x = 5

The solution is x = 5.

Now we check:

2x + 3 = 5

Try x = 5.

2(5) + 3 = 13

10 + 3 = 13

13 = 13

Since 13 = 13 is a true statement, the solution x = 5 is correct.

find all values of x for which the series converges. (enter your answer using interval notation.) [infinity] (9x)n n = 1 for these values of x, write the sum of the series as a function of x. f(x) =

Answers

The value of x for which the series converges is f(x) = (9x)/(1 - 9x), in interval notationit is: (-1/9, 1/9)

The series [infinity] [tex]\sum (9x)^n[/tex], n=1 converges if and only if the common ratio |9x| is less than 1, i.e., |9x| < 1. Solving this inequality for x, we get:

-1/9 < x < 1/9

Therefore, the series converges for all x in the open interval (-1/9, 1/9).

To find the sum of the series for the values of x in this interval, we can use the formula for the sum of an infinite geometric series:

S = a/(1 - r)

where a is the first term and r is the common ratio.

In this case, we have:

a = 9x

r = 9x

So the sum of the series is:

S = (9x)/(1 - 9x)

Thus, we can define the function f(x) as:

f(x) = (9x)/(1 - 9x)

for x in the open interval (-1/9, 1/9).

To know more about sum of the series, refer here:

https://brainly.com/question/15015255#

#SPJ11

Evaluate the integrals using substitution. (Use symbolic notation and fractions where needed. Use C for the arbitrary constant. Absorb into C as much as possible.) 61 +C To 6 dl ( + 1)32 (+1) Incorrec

Answers

I apologize, but there seems to be a typo in the question as there is no function or variable provided for the integral. Can you please provide the correct question or any missing information?

Once I have that, I can assist you in evaluating the integral using substitution and including the terms "integrals", "substitution", "symbolic", and "notation" in my answer.

It seems like your question got cut off, but I understand you want to evaluate an integral using substitution and need to include specific terms in the answer. To provide a helpful answer, please provide the complete integral you'd like me to evaluate.

Learn more about variables here:- brainly.com/question/17344045

#SPJ11

The region bounded by the curve y = 2/(1 + e−x), the x- and y-axes, and the line x = 10 is rotated about the x-axis. Use Simpson's Rule with n = 10 to estimate the volume of the resulting solid. (Round your answer to the nearest integer

Answers

The estimated volume of the solid is 99 cubic units (rounded to the nearest integer).

To use Simpson's Rule with n = 10, we need to divide the interval [0, 10] into 10 equal subintervals. The width of each subinterval is:

h = (10 - 0)/10 = 1

We can then use Simpson's Rule to approximate the volume of the solid:

V ≈ (1/3)[f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + 2f(6) + 4f(7) + 2f(8) + 4f(9) + f(10)]

where f(x) = πy(x)²

We can use the given formula for y(x) to compute the values of f(x) for each subinterval:

f(0) = π(2/(1 + [tex]e^0[/tex]))² ≈ 3.1416

f(1) = π(2/(1 + [tex]e^-1[/tex]))² ≈ 2.6616

f(2) = π(2/(1 + [tex]e^-2[/tex]))² ≈ 2.4605

f(3) = π(2/(1 + [tex]e^-3[/tex]))² ≈ 2.4885

f(4) = π(2/(1 + [tex]e^-4[/tex]))² ≈ 2.6669

f(5) = π(2/(1 +[tex]e^-5[/tex]))² ≈ 2.9996

f(6) = π(2/(1 + [tex]e^-6[/tex]))² ≈ 3.4851

f(7) = π(2/(1 + [tex]e^-7[/tex]))² ≈ 4.1612

f(8) = π(2/(1 + [tex]e^-8[/tex])² ≈ 5.1216

f(9) = π(2/(1 + [tex]e^-9[/tex]))² ≈ 6.4069

f(10) = π(2/(1 + [tex]e^-10[/tex]))² ≈ 8.0779

Substituting these values into the formula for V and using a calculator, we get:

V ≈ 99

Therefore, the estimated volume of the solid is 99 cubic units (rounded to the nearest integer).

Learn more about estimated volume,

https://brainly.com/question/28642530

#SPJ4

Other Questions
be sure to answer all parts. a metal ion uses d2sp3 orbitals when forming a complex. what is its coordination number and the shape of the complex? What value is stored in 010000008 on a big-endian machine? What value is stored in 010000008 on a little-endian machine? pierre, a headwaiter, received tips totaling $2,000 in december 2018. on january 5, 2019, pierre reported this tip income to his employer in the required written statement. at what amount, and in which year, should this tip income be included in pierre's gross income? according to the text, the higher the _________, the more likely a person is to divorce. Enzyme-rich pancreatic juice contains all of the following except ____.A. lipaseB trypsinC. pepsinD. nucleaseE. amylase what musical element establishes the groove in ""thank you (falettinme be mice elf agin)""? oxygen has a percent composition of _________ in sulfur trioxide (so3). algebraic problem (show your work, on back of sheet - 3 pts.) 4) assume capm is correct (the market is the tangency portfolio), and all securities are priced correctly. fill in the blanks. security expected variance standard correlation beta returns deviation (wrt market) market 0.08 0.30 risk-free 0.04 0.0 stock d 0.40 1.0 stock e 1.10 0.40 stock f 0.20 0.50 the condition that has generally been called hermaphroditism is now often termed being _____. is there a magnetic force on the loop? if so, in which direction? select the correct answer and explanation. hint: recall that a current loop is a magnetic dipole. is there a magnetic force on the loop? if so, in which direction? select the correct answer and explanation. hint: recall that a current loop is a magnetic dipole. the magnetic field at the site of the coil may be resolved into a vertical and a horizontal component. however, they don't cause any force so there is no magnetic force on the loop. the magnetic field at the site of the coil may be resolved into a vertical and a horizontal component. the current is clockwise. as the induced current interacts with the magnetic field of the approaching magnet, the vertical component of the magnetic field results in force that tries to collapse the coil, and the horizontal component of the magnetic field results in force that pushes the coil vertically downward. the magnetic field at the site of the coil may be resolved into a vertical and a horizontal component. the current is clockwise, and forces caused by the vertical and horizontal components compensate each other. so there is no magnetic force on the loop. the magnetic field at the site of the coil may be resolved into a vertical and a horizontal component. the current is clockwise. as the induced current interacts with the magnetic field of the approaching magnet, the vertical component of the magnetic field results in a force that tries to collapse the coil, and the horizontal component of the magnetic field results in force that pushes the coil vertically upward. request answer rofessor tabarrok believes that education is mostly about signaling, which means he thinks it is mostly about: evaluating the use of money is possible through computation of: a) internal rate of return. b) present value analysis. c) unadjusted rate of return. d) payback period. e) all of these are correct a patient who has a pft scheduled is going to have his/her ________ tested. The electric field strength is 4.90104 V/m inside a parallel-plate capacitor with a 1.70 mm spacing. A proton is released from rest at the positive plate. What is the proton's speed when it reaches the negative plate? Please give answer in m/s and show all work! Analysis and synthesis of data in kwa zulu natal assisting customers with back-ordered items-your customer ordered a teal dress that will not be available until late next month. a similar green dress is in stock now. what do you do? At design flow and speed, the mean velocity triangles for the second stage of a high-pressure ratio axial compressor are as shown in the figure below. (a) What is the total pressure ratio of this stage if the stage efficiency is 0.85 and the inlet temperature is 300 K? (b) During starting, the axial velocity rises to 60 m/s and no more after the rotor has reached design speed. To prevent stalling in the first stages, variable stator angles are to be employed. How far and in what direction must the stator upstream of this stage be rotated to bring B, to the design value when V, is only 60 m/s? 30 w U V = 140 m/s 12 = 240 m/s W, = 240 m/s W2 = 140 m/s The joint probability function of two discrete random variables X and Y is given by f(x; y) =c(2x + y), where x and y can assume all integers such that 0 x 2; 0 y 3, and f(x; y) = 0 otherwise.(a) Find the value of the constant c. Give your answer to three decimal places.(b) Find P(X=0,Y=3). Give your answer to three decimal places.(c) Find P(X 0,Y 1). Give your answer to three decimal places.(d) X and Y are independent random variables.A - trueB - can't be determinedC - false A bank pays 7% interest on 3-year certificates of deposit. What is the value of a $500 certificate after one year? Give your answer to the nearest cent. HURRY I GIVE BRAINLIST plsss dont just put a link as a answer a farmer wants to plant corn so that there are $36,000$ plants per acre in the field shown. how many seeds does the farmer need?