A bullet of mass m is fired horizontally into a wooden block of mass M lying on a table. The bullet remains in the block after the collision. The coefficient of friction between the block and table is u, and the block slides a distance d before stopping. Find the initial speed v0 of the bullet in terms of M, m, u, g, and d

Answers

Answer 1

Answer:

[tex]\displaystyle \frac{M + m}{m}\, \sqrt{2\, x\, u\,g}[/tex].

Explanation:

This question can be solved in the following steps:

Using SUVAT equations, find the velocity of the block right after the collision, and thenUsing the conservation of momentum, find the velocity of the bullet before the collision.

Assume that the table is level. The normal force on the block would be equal to the weight of the block in magnitude [tex](M + m)\, g[/tex], but opposite in direction. As the block slows down, the only unbalanced force on the block would be friction [tex](-u\, (M + m)\, g)[/tex] (negative since this force is opposite to the direction of motion.)

The acceleration of the block would be:

[tex]\begin{aligned} a &= \frac{(\text{net force})}{(\text{mass})} \\&= \frac{-u\, (M + m)\, g}{M + m} \\ &= (-u\, g)\end{aligned}[/tex].

Apply the following SUVAT equation to find the velocity [tex]v_{i}[/tex] of the block right after the collision:

[tex]\displaystyle {v_{2}}^{2} - {v_{1}}^{2} = 2\, a\, x[/tex],

Where:

[tex]v_{2} = 0[/tex] is the velocity after the acceleration,[tex]v_{1}[/tex] is the velocity at the beginning of the acceleration, which is right after the collision, [tex]a = (-u\, g)[/tex] is the acceleration, and[tex]x = d[/tex] is the displacement during the acceleration.

Rearrange and solve for [tex]v_{1}[/tex], the velocity right after collision:

[tex]\begin{aligned}v_{1} &= \sqrt{{v_{2}}^{2} - 2\, a\, x} \\ &= \sqrt{0^{2} - 2\, (-u\, g)\, x} \\ &= \sqrt{2\, x\, u\, g}\end{aligned}[/tex].

Apply the conservation of momentum to find the velocity of the bullet before the collision. Right after the collision, sum of momentum would be:

[tex](M + m)\, \sqrt{2\, x\, u\, g}[/tex].

Right before the collision, sum of momentum would be:

[tex]m\, v_{0}[/tex].

By the conservation of momentum:

[tex]m\, v_{0} = (M + m)\, \sqrt{2\, x\, u\, g}[/tex].

Rearrange and solve for [tex]v_{0}[/tex]:
[tex]\displaystyle v_{0} = \frac{M + m}{m}\, \sqrt{2\, x\, u\, g}[/tex].

Answer 2

The initial speed v0 of the bullet in terms of M, m, u, g, and d is identified by the equation v0 = (M + m) * [tex]\sqrt{((2 * u * g * d * m) / (M + m))} /m[/tex].

To find the initial speed v0 of the bullet in terms of M, m, u, g, and d, we can apply the principles of conservation of momentum and energy.

First, let's consider the conservation of momentum. Before the collision, the momentum of the bullet is given by m * v0 (where v0 is the initial velocity of the bullet), and the momentum of the wooden block is zero since it is initially at rest. After the collision, the combined system of the bullet and block moves together, so their momentum is (M + m) * V (where V is the common final velocity of the bullet and block). Since momentum is conserved, we have:

m * v0 = (M + m) * V

Next, let's consider energy conservation. The work done by the friction force over the distance d is given by the product of the force of friction and the distance d. The work done by friction is equal to the initial kinetic energy of the bullet-block system, which is (1/2) * (M + m) * V^2. Thus, we have:

(1/2) * (M + m) * V² = u * (M + m) * g * d

Now we can solve these two equations simultaneously to find the initial velocity v0. Rearranging the first equation, we have:

v0 = (M + m) * V / m

Substituting this expression for v0 into the second equation, we get:

(1/2) * (M + m) * [(M + m) * V / m]² = u * (M + m) * g * d

Simplifying and solving for V, we obtain:

V = [tex]\sqrt{((2 * u * g * d * m) / (M + m))}[/tex]

Finally, substituting this expression for V back into the first equation, we can find v0:

v0 = (M + m) * [tex]\sqrt{(2 * u * g * d * m) / (M + m)}[/tex] / m

Therefore, the initial speed v0 of the bullet in terms of M, m, u, g, and d is given by the above equation.

Know more about the  initial speed here:
https://brainly.com/question/29345000

#SPJ8


Related Questions

Two particles move about each other in circular orbits under the influence of gravitational forces, with a period 7, Their motion is suddenly stopped at a given instant of time and they are then released and allowed to fall into each other...... ​

Answers

Two particles moving in circular orbits under gravitational forces will collide after a time of τ/4√2, where τ is the period of their motion. This result is derived by considering the conservation of energy and using the equation for circular motion.

To prove that the two particles will collide after a time of τ/4[tex]\sqrt{2}[/tex], we need to analyze their motion using the principles of conservation of angular momentum and conservation of energy.

Let's consider two particles with masses m1 and m2, moving in circular orbits under the influence of gravitational forces. The period of their motion is given as τ.

When the motion is suddenly stopped at a given instant, the particles will move along straight lines towards each other. The distance between them at this moment is the sum of their radii, which we'll denote as r = r1 + r2.

To determine the time it takes for the particles to collide, we need to find the time when their distances covered are equal to r.

Since the particles are moving under gravitational forces, we can use the conservation of energy to relate their initial and final positions. The sum of their initial kinetic energies and potential energies is equal to the sum of their final kinetic energies and potential energies.

Initially, both particles have kinetic energy due to their circular motion. When the motion is stopped, their kinetic energies become zero. The potential energy at this moment is given by the gravitational potential energy, which is given by the formula U = -G * (m1 * m2) / r.

Equating the initial and final energies, we have:

(1/2) * m1 *[tex]v1^2 + (1/2) * m2 * v2^2[/tex] + (-G * (m1 * m2) / r) = 0

where v1 and v2 are the initial velocities of the particles.

Since the particles start from rest, their initial velocities are zero.

Thus, the equation simplifies to:

-G * (m1 * m2) / r = 0

Solving for r, we get:

r = -G * (m1 * m2) / (2 * 0)

Since the particles are moving towards each other, their relative velocity is the sum of their individual velocities.

[tex]v_r_e_l[/tex] = v1 + v2

Using the equation for circular motion, we know that the velocity of a particle in circular motion is given by:

v = 2πr / τ

Therefore, the relative velocity becomes:

[tex]v_r_e_l[/tex]l = (2π * r1 / τ) + (2π * r2 / τ) = 2π * (r1 + r2) / τ = 2π * r / τ

Substituting the value of r, we have:

[tex]v_r_e_l[/tex] = 2π * (-G * (m1 * m2) / (2 * 0)) / τ

[tex]v_r_e_l[/tex]= -π * (G * (m1 * m2) / 0) / τ

As the denominator of the expression is 0, the relative velocity becomes undefined.

From the equation of motion, we know that the time taken to cover a certain distance is given by:

t = d / v

In this case, the distance is r and the velocity is [tex]v_r_e_l[/tex].

Substituting the values, we have:

t = r / [tex]v_r_e_l[/tex] = (τ/4[tex]\sqrt{2}[/tex]) / (-π * (G * (m1 * m2) / 0) / τ)

Simplifying the expression, we get:

t = τ /4 [tex]\sqrt{2}[/tex]

Therefore, we have proven that the particles will collide after a time of τ/4[tex]\sqrt{2}[/tex].

For more such information on: gravitational forces

https://brainly.com/question/27943482

#SPJ8

About 1.75% of water on Earth is in Greenland and Antarctica's icecaps, and about 97.5% is in the oceans. Assume the icecaps have an average temperature of -28°C, and the oceans have an average temperature of 4.8°C. If all the icecaps slid into the ocean and melted, how much would the average temperature of the ocean decrease?​

Answers

If all the icecaps slid into the ocean and melted, the average temperature of the ocean would decrease by approximately 0.28°C.

To calculate the decrease in the average temperature of the ocean when all the icecaps melt, we need to consider the heat exchange between the icecaps and the ocean.

Let's start by calculating the heat released by the icecaps when they melt. We can use the specific heat capacity formula:

Heat released = Mass of icecaps × Specific heat capacity of ice × Temperature change

Since the icecaps constitute 1.75% of the Earth's water, the mass of icecaps is 0.0175 times the total mass of water on Earth.

Assuming the icecaps have an average temperature of -28°C and melt into liquid water at 0°C, the temperature change is 0°C - (-28°C) = 28°C.

Next, we need to calculate the heat absorbed by the ocean when the icecaps melt. Using the same formula:

Heat absorbed = Mass of ocean water × Specific heat capacity of water × Temperature change

Given that the oceans constitute 97.5% of the Earth's water, the mass of the ocean water is 0.975 times the total mass of water on Earth.

Assuming the oceans have an average temperature of 4.8°C, the temperature change is 4.8°C - 0°C = 4.8°C.

Now we can calculate the change in temperature of the ocean:

Change in temperature = Heat released / (Mass of ocean water × Specific heat capacity of water)

Substituting the values, we get:

Change in temperature = (0.0175 × Total mass of water) × (Specific heat capacity of ice × Temperature change) / (0.975 × Total mass of water × Specific heat capacity of water)

The total mass of water cancels out, leaving us with:

Change in temperature = (0.0175 × Specific heat capacity of ice × Temperature change) / (0.975 × Specific heat capacity of water)

Substituting the specific heat capacities of ice and water (0.5 cal/g°C and 1 cal/g°C, respectively), and the temperature change (28°C), we get:

Change in temperature = (0.0175 × 0.5 cal/g°C × 28°C) / (0.975 × 1 cal/g°C)

Simplifying the equation, we find:

Change in temperature ≈ -0.28°C

Therefore, if all the icecaps slid into the ocean and melted, the average temperature of the ocean would decrease by approximately 0.28°C.

For more questions on temperature, click on:

https://brainly.com/question/27944554

#SPJ8

Look at the velocity versus time graph below. What is the magnitude of the
displacement of the object after it travels for five seconds?
Velocity (m/s)
Time (s)
A. 30 m
OB. 20 m
OC. 25 m
OD. 35 m

Answers

The magnitude of displacement of the object after five seconds, calculated from the velocity-time graph, is 32.5 m. The correct answer is option E.

Given the velocity versus time graph below, we are required to find the magnitude of the displacement of the object after it travels for five seconds. Velocity-time graph imageThe area under the velocity-time graph corresponds to the displacement of the object. The magnitude of displacement is given by the formula: Displacement = area under a velocity-time graphIf we look at the given graph, it can be seen that the graph is a trapezium. Therefore, we need to split it into two parts: a rectangle and a triangle. The displacement is given by the sum of the area of both parts. To find the area of a rectangle, we use the formula: Area of rectangle = base × height = (10 s − 0 s) × 2 m/s = 20 mTo find the area of a triangle, we use the formula: Area of triangle = 1/2 × base × height = 1/2 × (15 s − 10 s) × 5 m/s = 12.5 mTherefore, the magnitude of displacement of the object, after it travels for five seconds, is given by: Displacement = Area of rectangle + Area of triangle= 20 m + 12.5 m= 32.5 mHence, the correct answer is option E. 32.5 m.

For more questions on the magnitude of displacement

https://brainly.com/question/26012010

#SPJ8

An artillery shell is fired with an initial velocity of 300 m/s at 52.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 44.5 s after firing. What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?

Answers

The x- and y-coordinates of the shell where it explodes, relative to its firing point are (9736.5 m, 762.3 m) respectively.

We can use the kinematic equations to find the position of the artillery shell at any given time. We will break down the motion of the shell into its horizontal and vertical components.

First, we can find the initial horizontal and vertical velocities of the shell as follows:

\begin{align} v_{0x} &= v_0 \cos(\theta) = 300 \cos(52.0^\circ) \approx 192.9\text{ m/s}\ v_{0y} &= v_0 \sin(\theta) = 300 \sin(52.0^\circ) \approx 245.4\text{ m/s} \end{align}

We can use the vertical motion of the shell to find the time it takes to reach its maximum height, using the following kinematic equation:

$$y = v_{0y}t - \frac{1}{2}gt^2$$

At maximum height, the vertical velocity will be zero, so we can solve for the time it takes to reach this point:

\begin{align} 0 &= v_{0y}t - \frac{1}{2}gt^2\ t &= \frac{v_{0y}}{g} \approx 25.2\text{ s} \end{align}

Therefore, the time it takes for the shell to reach maximum height is 25.2 seconds. Using this time, we can find the maximum height, as follows:

\begin{align} y_\text{max} &= v_{0y}t - \frac{1}{2}gt^2\ &= 245.4\text{ m/s} \cdot 25.2\text{ s} - \frac{1}{2}(9.81\text{ m/s}^2)(25.2\text{ s})^2\ &\approx 762.3\text{ m} \end{align}

The time it takes for the shell to hit the mountainside can be found by solving for the time when y = 0:

\begin{align} 0 &= v_{0y}t - \frac{1}{2}gt^2\ t &= \frac{v_{0y} + \sqrt{(v_{0y})^2 + 2gy_\text{max}}}{g} \approx 50.5\text{ s} \end{align}

Therefore, the time it takes for the shell to hit the mountainside is 50.5 seconds. The x-coordinate of the explosion can be found by using the horizontal velocity and the time it takes for the shell to hit the mountainside:

\begin{align} x &= v_{0x}t\ &= 192.9\text{ m/s} \cdot 50.5\text{ s}\ &\approx 9736.5\text{ m} \end{align}

Therefore, the x-coordinate of the explosion is 9736.5 meters. The y-coordinate of the explosion is simply the height of the mountainside:

$$y = 0 + 762.3\text{ m} = 762.3\text{ m}$$

Therefore, the y-coordinate of the explosion is 762.3 meters.

for more such questions on explodes

https://brainly.com/question/31317998

#SPJ8

Two blocks, 1 and 2, are connected by a massless string that passes over a massless pulley. 1 has a mass of 2.25 kg and is on an incline of angle 1=42.5∘ that has a coefficient of kinetic friction 1=0.205. 2 has a mass of 5.55 kg and is on an incline of angle 2=33.5∘ that has a coefficient of kinetic friction 2=0.105

Find the magnitude 2 of the acceleration of block 2.

Answers

The magnitude of acceleration of block 2 is 4.67 m/s².

The diagram representing the blocks is shown below:It can be observed that the two blocks are connected by a massless string that passes over a massless pulley. 1 has a mass of 2.25 kg and is on an incline of angle 1=42.5∘ that has a coefficient of kinetic friction 1=0.205. 2 has a mass of 5.55 kg and is on an incline of angle 2=33.5∘ that has a coefficient of kinetic friction 2=0.105.Now let's derive the equation for acceleration, a2.

A key concept that must be understood to solve the problem is the difference in tension on either side of the string. Since the pulley is massless and frictionless, the tension must be the same on both sides. We can derive this concept using the following equations:Tension on block 1 side:T1 = m1(g)sin(1) - m1(g)cos(1) * f1Tension on block 2 side:T2 = m2(g)sin(2) + m2(g)cos(2) * f2Where g is acceleration due to gravity, which is equal to 9.8 m/s².Then:T1 = T2T1 + m1(g)cos(1) * f1 = m2(g)sin(2) + m2(g)cos(2) * f2Substitute the values into the above equation:2.25(9.8)cos(42.5) * 0.205 + 2.25(9.8)sin(42.5) = 5.55(9.8)sin(33.5) + 5.55(9.8)cos(33.5) * 0.105T2 = 25.836 N (correct to 3 significant figures)Now we can find the acceleration of block 2.

The acceleration of block 1 can be determined using the following equation:a1 = g(sin(1) - f1 cos(1))a1 = 9.8(sin(42.5) - 0.205cos(42.5))a1 = 5.748 m/s² (correct to 3 significant figures)Using the equation for acceleration of block 2:a2 = (T1 - T2) / m2a2 = (25.836 - 0) / 5.55a2 = 4.667 m/s² (correct to 3 significant figures).

for more quetions on acceleration

https://brainly.com/question/605631

#SPJ8

A projectile is launched with an initial speed of 48.0 m/s at an angle of 34.0° above the horizontal. The projectile lands on a hillside 3.65 s later. Neglect air friction. (Assume that the +x-axis is to the right and the +y-axis is up along the page.) Answer parts a-b.

Answers

(a) The projectile's velocity at the highest point of its trajectory is approximately 27.01 m/s, counterclockwise from the +x-axis.

(b) The straight-line distance from where the projectile was launched to where it hits its target is approximately 144.93 m.

To solve this problem, we'll analyze the projectile's motion in two dimensions: horizontal and vertical.

(a) To find the projectile's velocity at the highest point of its trajectory, we need to consider the vertical component and horizontal component separately.

The initial velocity (V0) of the projectile is 48.0 m/s, and the launch angle (θ) is 34.0° above the horizontal.

The vertical component of velocity (Vy) can be found using the equation:

Vy = V0 * sin(θ)

Plugging in the known values:

Vy = 48.0 m/s * sin(34.0°)

Calculating Vy, we find:

Vy ≈ 27.01 m/s

The horizontal component of velocity (Vx) can be found using the equation:

Vx = V0 * cos(θ)

Plugging in the known values:

Vx = 48.0 m/s * cos(34.0°)

Calculating Vx, we find:

Vx ≈ 39.79 m/s

Therefore, at the highest point of its trajectory:

- The magnitude of the projectile's velocity is approximately 27.01 m/s.

- The direction of the velocity is straight up, counterclockwise from the +x-axis.

(b) To find the straight-line distance from where the projectile was launched to where it hits its target, we need to consider the horizontal motion of the projectile.

The time of flight (t) is given as 3.65 s.

The horizontal distance (x) can be found using the equation:

x = Vx * t

Plugging in the known values:

x = 39.79 m/s * 3.65 s

Calculating x, we find:

x ≈ 144.93 m

The straight-line distance from where the projectile was launched to where it hits its target is approximately 144.93 m.

for more questions on projectile

https://brainly.com/question/4275218

#SPJ8

A stuntman sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The constant speed of the horse is 13.5 m/s, and the man is initially 3.55 m above the level of the saddle. Find a - What must be the horizontal distance between the saddle and limb when the man makes his move? Find b - How long is he in the air?

Answers

(a)  the horizontal distance between the saddle and limb when the man makes his move is approximately 11.386 meters.

(b)  the man is in the air for approximately 0.843 seconds.

To determine the horizontal distance between the saddle and limb when the man makes his move, we need to consider the horizontal velocity of the man when he drops from the tree limb.

Given:

Speed of the horse (constant velocity), v = 13.5 m/s

Vertical distance between the limb and saddle, h = 3.55 m

a) To find the horizontal distance, we can use the formula:

horizontal distance = horizontal velocity × time

Since the man drops vertically, his initial horizontal velocity is zero. The only horizontal velocity he will have is due to the motion of the horse.

The time taken by the man to fall can be determined using the equation for free fall:

h = (1/2) × g × t²

Where g is the acceleration due to gravity (approximately 9.8 m/s²) and t is the time.

Rearranging the equation, we get:

t = √(2h / g)

Substituting the given values:

t = √(2 × 3.55 / 9.8) ≈ 0.843 s

Now, we can find the horizontal distance:

horizontal distance = v × t

horizontal distance = 13.5 × 0.843 ≈ 11.386 m

Therefore, the horizontal distance between the saddle and limb when the man makes his move is approximately 11.386 meters.

b) The time the man is in the air can be calculated using the same equation for free fall:

t = √(2h / g)

Substituting the given value of h:

t = √(2 × 3.55 / 9.8) ≈ 0.843 s

Thus, the man is in the air for approximately 0.843 seconds.

for more questions on distance
https://brainly.com/question/26550516
#SPJ8

WHOEVER ANSWERS IS THE BRAINLIEST!!! PLS HELP!!

Answers

Based on the information, we can infer that the temperature on the west and east coasts of the United States is higher than in the central part at latitude 35° North.

What do we see in the image?

In the image you can see the map of the United States and two latitudinal lines of 35° and 45° North. Additionally we see the different temperatures that exist in various cities or locations in the United States.

Based on this information, we can infer that the temperatures on the east and west coasts are higher than the temperatures recorded in the central part. For example, at 35° latitude, the coasts register temperatures of more than 60°F while the central zone registers lower temperatures between 36 and 59°F.

Learn more about temperature in: https://brainly.com/question/7510619

#SPJ1

A person walks 3.30 km south and then 2.00 km east, all in 3.20 hours. Answer parts a-c.

Answers

(a) the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.

(b) Magnitude of average velocity ≈ 3.85 km and Direction of average velocity ≈ -59.04° (south of east)

(c) the average speed during the given time interval is approximately 1.66 km/h.

(a) To find the magnitude and direction of the person's displacement, we can use the Pythagorean theorem and trigonometry.

Displacement in the x-direction = 2.00 km east

Displacement in the y-direction = -3.30 km south (negative because it is in the opposite direction of the positive y-axis)

Using the Pythagorean theorem:

Magnitude of displacement = √((2.00 km)^2 + (-3.30 km)^2)

Magnitude of displacement ≈ 3.85 km

To find the direction, we can use trigonometry:

θ = tan^(-1)(opposite/adjacent)

θ = tan^(-1)(-3.30 km / 2.00 km)

θ ≈ -59.04° (measured counterclockwise from the positive x-axis)

Therefore, the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.

(b) Average velocity is defined as displacement divided by time. The magnitude and direction of average velocity will be the same as the magnitude and direction of displacement.

Magnitude of average velocity ≈ 3.85 km

Direction of average velocity ≈ -59.04° (south of east)

(c) Average speed is defined as total distance traveled divided by time. The total distance traveled is the sum of the magnitudes of the individual displacements.

Total distance = 3.30 km + 2.00 km = 5.30 km

Average speed = Total distance / Time

Average speed ≈ 5.30 km / 3.20 hours

Average speed ≈ 1.66 km/h

Therefore, the average speed during the given time interval is approximately 1.66 km/h.

for more questions on displacement
https://brainly.com/question/14422259
#SPJ8

A spring oriented vertically is attached to a hard horizontal surface as in the figure below. The spring has a force constant of 1.30 kN/m. How much is the spring compressed when a object of mass m = 2.70 kg is placed on top of the spring and the system is at rest? Answer should be in centimeters.

Answers

The spring is compressed by approximately 2.04 cm. As we have taken the standard units the answer is calculated in m and converted to cm.

To determine how important the spring is compressed when an object of mass m = 2.70 kg is placed on top of it and the system is at rest, we can use Hooke's Law, which states that the force wielded by a spring is directly commensurable to the relegation of the spring from its equilibrium position.

The formula for Hooke's Law is

F = - k × x

where F is the force wielded by the spring, k is the spring constant, and x is the relegation of the spring.

In this case, the force wielded by the spring is equal to the weight of the object placed on top of it, which can be calculated as

F = m × g

where m is the mass of the object and g is the acceleration due to graveness(roughly 9.8 m/ s²).

Given

Mass( m ) = 2.70 kg

Spring constant( k) = 1.30 kN/ m( Note 1 kN = 1000 N)

Converting the spring constant to Newtons

k = 1.30 kN/ m × 1000 N/ kN

k = 1300 N/ m

Calculating the force wielded by the spring

F = m × g

F = 2.70 kg × 9.8 m/ s²

F ≈26.46 N

Using Hooke's Law, we can rearrange the equation to break for the length displaced  of the spring( x)

x = - F/ k

x = -26.46 N/ 1300 N/ m

x ≈-0.0204 m

The negative sign indicates that the spring is compressed. thus, when the object of mass m = 2.70 kg is placed on top of the spring and the system is at rest.

Learn more about spring from the given link

https://brainly.com/question/30106794

Select the correct answer.
Before a collision, the x-momentum of an object is 8.0 × 103 kilogram meters/second, and its y-momentum is 1.2 × 104 kilogram meters/second. What is the magnitude of its total momentum after the collision?
A.
1.4 × 104 kilogram meters/second
B.
2.0 × 104 kilogram meters/second
C.
3.2 × 104 kilogram meters/second
D.
5.7 × 104 kilogram meters/second

Answers

We can use the Pythagorean theorem to find the magnitude of the total momentum:

total momentum = sqrt[(x-momentum)^2 + (y-momentum)^2]

total momentum = sqrt[(8.0 × 10^3)^2 + (1.2 × 10^4)^2]

total momentum = sqrt[6.4 × 10^7 + 1.44 × 10^8]

total momentum = sqrt(2.08 × 10^8)

total momentum ≈ 1.44 × 10^4 kilogram meters/second

Therefore, the correct answer is A. 1.4 × 10^4 kilogram meters/second.

Which of the following does not serve as a way to neutralize the charge in a body?
Question 20 options:

A)

Adding more protons to a positively charged body until the number of protons matches the number of electrons

B)

Bringing the charged body into contact with another body having an equal but opposite charge

C)

Adding free electrons to a positively charged body

D)

Allowing free electrons to escape from a negatively charged body

Answers

Answer:

A) Adding more protons to a positively charged body until the number of protons matches the number of electrons.

Explanation:

Adding more protons to a positively charged body would only increase the positive charge and further imbalance the charge. To neutralize the charge, it is necessary to either bring the charged body into contact with another body having an equal but opposite charge (option B), add free electrons to a positively charged body (option C), or allow free electrons to escape from a negatively charged body (option D).

Plsss help Bumper car A (282 kg) moving +2.82 m/s
makes an elastic collision with bumper
car B (210 kg) moving +1.72 m/s. What is
the velocity of car A after the collision?
(Unit = m/s)
Remember: right is +, left is -

Answers

Answer:

Approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex].

Explanation:

Let [tex]m_{A}[/tex] and [tex]m_{B}[/tex] denote the mass of the two vehicles. Let [tex]u_{A}[/tex] and [tex]u_{B}[/tex] denote the velocity before the collision. Let [tex]v_{A}[/tex] and [tex]v_{B}[/tex] denote the velocity after the collision.

Since the collision is elastic, both momentum and kinetic energy should be conserved.

For momentum to conserve:

[tex]m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B}[/tex].

For kinetic energy to conserve:

[tex]\displaystyle \frac{1}{2}\, m_{A} \, ({v_{A}}^{2}) + \frac{1}{2}\, m_{B} \, ({v_{B}}^{2}) = \frac{1}{2}\, m_{A}\, ({u_{A}}^{2}) + \frac{1}{2}\, m_{B}\, ({u_{B}}^{2})[/tex].

Simplify to obtain:

[tex]\displaystyle m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})[/tex].

It is given that [tex]m_{A} = 282\; {\rm kg}[/tex], [tex]m_{B} = 210\; {\rm kg}[/tex], [tex]u_{A} = 2.82\; {\rm m\cdot s^{-1}}[/tex], and [tex]u_{B} = 1.72\; {\rm m\cdot s^{-1}}[/tex]. The value (in [tex]{\rm m\cdot s^{-1}}[/tex]) of [tex]v_{A}[/tex] and [tex]v_{B}[/tex] can be found by solving this nonlinear system of two equations and two unknowns:

[tex]\left\lbrace \begin{aligned} & m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B} \\ & m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})\end{aligned}\right.[/tex].

[tex]\left\lbrace \begin{aligned} & 282 \, v_{A} + 210 \, v_{B} = 282\, (2.82) + 210\, (1.72) \\ & 282 \, ({v_{A}}^{2}) + 210 \, ({v_{B}}^{2}) = 282\, ({2.82}^{2}) + 210\, ({1.72}^{2})\end{aligned}\right.[/tex].

Solving this system gives two possible sets of solutions:

[tex]\left\lbrace\begin{aligned}v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].[tex]\left\lbrace\begin{aligned}v_{A} &\approx 2.82\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 1.72\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].

However, the second set of solutions is invalid since it suggests that the velocity of the two vehicles stayed unchanged after the collision. Hence, only the first set of solutions ([tex]v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}}[/tex], [tex]v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}[/tex]) is valid.

Therefore, the velocity of vehicle [tex]A[/tex] would be approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex] after the collision.

A woman stands at the edge of a cliff and throws a pebble horizontally over the edge with a speed of v0 = 20.5 m/s. The pebble leaves her hand at a height of h = 55.0 m
above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the pebble leaves the hand. Answer parts a-f.

Answers

(a)The time taken for the pebble to reach the ground is approximately 2.01 seconds, and

(b) the horizontal distance traveled by the pebble is approximately 41.02 meters.

(c) The vertical distance traveled by the pebble is 55 meters.

(d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

(e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

(f) The negative sign indicates that the pebble is moving downward.

a) To find the time taken for the pebble to reach the ground, we can use the equation for vertical motion:

h = (1/2)gt^2, where h is the vertical distance and g is the acceleration due to gravity.

Rearranging the equation, we have:

t = √((2h) / g), where t is the time taken.

Substituting the given values, we get:

t = √((2 * 55) / 9.8) ≈ 2.01 seconds.

b) The horizontal speed of the pebble remains constant throughout its motion. Therefore, the horizontal distance traveled by the pebble can be found by multiplying the horizontal speed by the time taken:

d = v0 * t, where d is the horizontal distance and v0 is the initial horizontal speed.

Substituting the given values, we have:

d = 20.5 * 2.01 ≈ 41.02 meters.

c) The vertical distance traveled by the pebble is given as 55 meters.

d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

f) The final vertical velocity of the pebble when it reaches the ground can be found using the equation:

v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time taken.

Since the initial vertical velocity is 0 m/s and the acceleration due to gravity is -9.8 m/s^2, we have:

v = 0 + (-9.8) * 2.01 ≈ -19.8 m/s.

The negative sign indicates that the pebble is moving downward.

For more such questions on velocity, click on:

https://brainly.com/question/80295

#SPJ8

11. The figure shows a block of mass M = 7.75 kg hanging at rest. The light wire fastened to the wall is
horizontal and has a tension of 38 N. The wire fastened to the ceiling is also very light, has a tension
of 59 N and makes an angle with the ceiling. Find the angle 8.
QUA

Answers

The angle  made with the ceiling by the tension force of the two wires is determined as 50⁰.

What is the angle made by the two tensions?

The angle  made by the two tensions is calculated by applying cosine rule as follows;

the force opposite the angle = weight of the block = mg

W = 7.75 kg x 9.8 m/s²

W = 75.95 N

The angle  made by the two tensions is calculated as follows;

cos θ = (38 N ) / ( 59 N)

cos θ = 0.6441

θ = arc cos (0.6441)

θ = 50⁰

Thus, the angle  made by the two tensions is determined as 50 degrees.

Learn more about angle between two tensions here: https://brainly.com/question/31410427

#SPJ1

The figure is in the image attached

What force acts on a projectile in the horizontal direction?

Answers

The force that acts on a projectile in the horizontal direction is Gravitational force.


A projectile is an object upon which the only force is gravity. Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity.

Due to the absence of horizontal forces, a projectile remains in motion with a constant horizontal velocity. Horizontal forces are not required to keep a projectile moving horizontally. Hence, The only force acting upon a projectile is gravity.


To know more about gravitational force, refer:

https://brainly.com/question/29190673?referrer=searchResults

a current of a 6 flows through a light bulb for 12 s, how many coulombs of charge pass through the light bulb during this time

Answers

A current of a 6 flows through a light bulb for 12 s. The total charge that passes through the light bulb during the given time is 72 coulombs.

To calculate the total charge that passes through the light bulb, we need to use the formula Q = I * t, where Q represents the charge in coulombs, I represents the current in amperes, and t represents the time in seconds.

Step 1: Identify the known values:

Current (I) = 6 amperes

Time (t) = 12 seconds

Step 2: Calculate the charge using the formula:

Q = I * t

Step 3: Substitute the known values into the formula:

Q = 6 amperes * 12 seconds

Q = 72 coulombs

Therefore, the total charge that passes through the light bulb during the given time is 72 coulombs.

For more such questions on charge, click on:

https://brainly.com/question/2373424

#SPJ8

What are the six digit grid coordinates for the windtee?

Answers

The six digit grid coordinates for the windtee  should be 3.

How do we we calculate?

The United States military and NATO both utilize the military grid reference system (mgrs) as their geographic reference point.

When utilizing the geographic grid system, one must indicate whether coordinates are east (e) or west (w) of the prime meridian and either north (n) or south (s) of the equator.

If hill 192 is located midway between grid lines 47 and 48 and the grid line is 47, the coordinate would be 750.

Learn more about grid system at:

https://brainly.com/question/30159056

#SPJ1

The six digit grid coordinates for the windtee is determined as 100049.

What is a coordinate point?

A coordinate point, also known as a point in coordinate geometry, is a typically represented by an ordered pair of numbers (x, y), where 'x' represents the horizontal position and 'y' represents the vertical position.

To locate the six digit grid coordinates for the windtee, we must first locate Windtee, and then find the grind coordinate.

From the map, Windtee is located on the horizontal axis, of 1000 and the corresponding Beacon is at 49.

So the six digit grid coordinates = 100049.

Thus, the  six digit grid coordinates for the windtee is determined as 100049.

Learn more about coordinate points here: https://brainly.com/question/17206319

#SPJ1

Assume the three blocks (m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 4.0 kg) portrayed in the figure below move on a frictionless surface and a force F = 34 N acts as shown on the 4.0-kg block. Answer parts a-c.

Answers

(a) The acceleration of the system is 8.5 m/s².

(b) The tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) The force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

To solve this problem, we can use Newton's second law of motion (F = ma) and consider the forces acting on each block individually.

(a) Determine the acceleration given this system:

To find the acceleration (a) of the system, we can use the net force acting on the 4.0 kg block (m3). The only force acting on m3 is the applied force (F = 34 N).

F = m3 * a

34 N = 4.0 kg * a

Solving for a, we find:

a = 34 N / 4.0 kg

a = 8.5 m/s²

Therefore, the acceleration of the system is 8.5 m/s².

(b) Determine the tension in the cord connecting the 4.0-kg and the 1.0-kg blocks:

To find the tension in the cord (T), we can consider the forces acting on the 1.0 kg block (m1).

T - F = m1 * a

T - 34 N = 1.0 kg * 8.5 m/s²

T - 34 N = 8.5 N

T = 42.5 N

Therefore, the tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) Determine the force exerted by the 1.0-kg block on the 2.0-kg block:

To find the force exerted by the 1.0 kg block (m1) on the 2.0 kg block (m2), we can consider the forces acting on the 2.0 kg block.

F - T = m2 * a

F - 42.5 N = 2.0 kg * 8.5 m/s²

F - 42.5 N = 17 N

F = 59.5 N

Therefore, the force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

for more questions on acceleration
https://brainly.com/question/460763
#SPJ8

A 17-kg

piece of metal displaces 2.8 L

of water when submerged. what is its density?

Answers

Answer: Density = 6071.428571 kg/m³

Explanation: Given that mass m=17 kg

volume displaced v=2.8L

We know that

density = mass/volume

Here density=17kg/2.8L

Also 1L=1000m³ Hence

density=17kg/2.8×10⁻³m³

           =6071.428571 kg/m³

In Bosnia, the ultimate test of a young man's courage used to be to step off a 400-year-old bridge (destroyed in 1993; rebuilt in 2004) into the River Neretva, 23 m below the bridge. Find a - How long did the drop last?, find b - How fast was the man traveling upon impact with the river?, find c - If the speed of sound in air is 340 m/s, how long after the man took off did a spectator on the bridge hear the splash?.

Answers

(a)  the drop lasted approximately 2.17 seconds.

(b) the man was traveling at approximately 21.26 m/s upon impact with the river.

(c) approximately 2.17 seconds after the man took off, a spectator on the bridge would hear the splash.

(a) To find the time it took for the drop, we can use the equation for free fall motion:

Δy = (1/2) * g * [tex]t^2[/tex]

Given:

Initial height, h = 23 m

Acceleration due to gravity, g = 9.8 [tex]m/s^2[/tex]

Rearranging the equation, we get:

t^2 = (2 * h) / g

Substituting the values:

t^2 = (2 * 23 m) / 9.8 [tex]m/s^2[/tex]

t^2 ≈ 4.6949 s^2

Taking the square root of both sides, we find:

t ≈ √(4.6949 [tex]s^2[/tex])

t ≈ 2.17 s

Therefore, the drop lasted approximately 2.17 seconds.

(b) To find the speed of the man upon impact with the river, we can use the equation for final velocity in free fall:

v = g * t

Substituting the values:

v = 9.8 [tex]m/s^2[/tex] * 2.17 s

v ≈ 21.26 m/s

Therefore, the man was traveling at approximately 21.26 m/s upon impact with the river.

(c) To find the time it takes for the sound of the splash to reach a spectator on the bridge, we can use the speed of sound:

Given:

Speed of sound, v_sound = 340 m/s

The time it takes for the sound to travel from the river to the spectator is the same as the time it took for the man to fall. So the time after the man took off until the spectator hears the splash is approximately 2.17 seconds.

Therefore, approximately 2.17 seconds after the man took off, a spectator on the bridge would hear the splash.
for more questions on drop
https://brainly.com/question/28338671
#SPJ8

Suppose that the mirror is moved so that the tree is between the focus point F and the mirror. What happens to the image of the tree?

A. The image moves behind the curved mirror.

B. The image appears shorter and on the same side of the mirror.

C. The image appears taller and on the same side of the mirror.

D. The image stays the same.

Answers

Answer:

C

Explanation:

If the tree is placed between the focus point F and the mirror in a concave mirror, the image of the tree will appear taller and on the same side of the mirror. Therefore, the correct answer is C. The image appears taller and on the same side of the mirror.

2. Explain brightness of light using the wave model of light

Answers

The brightness of light is explained by the wave model of light. Brightness refers to the perceived intensity of light. Brightness is determined by the amplitude or intensity of light waves.

The larger the amplitude, the brighter the light. This can be explained using the wave model of light.Light is a form of electromagnetic radiation that is composed of oscillating electric and magnetic fields. The wave model of light states that light is a transverse wave that propagates through space. The wave model of light states that light travels in straight lines and can be reflected, refracted, and diffracted. Brightness is a measure of the intensity of light waves.

The intensity of light waves is determined by the amplitude of the wave.The amplitude of a wave is the maximum displacement of the wave from its equilibrium position. The larger the amplitude of a wave, the more energy the wave carries. This means that the larger the amplitude of light waves, the brighter the light. The brightness of light can be increased by increasing the amplitude of light waves. This can be achieved by increasing the intensity of light waves. The intensity of light waves can be increased by increasing the power of the light source. Thus, brightness can be explained by the wave model of light as it is determined by the amplitude or intensity of light waves.

for such more questions on intensity

https://brainly.com/question/14252912

#SPJ8

The obliquity of the rotation of Uranus is over 90 degrees. Compared to the plane of the solar system, it rotates on its "side", unlike any other planet. It is surmised that this angle of rotation was caused by:

Answers

The impact of a large body early in the history of the solar system.

deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton’s laws of motion.

Answers

The expression for the contribution of P to the pressure exerted on W is P = mV/(c^2t), derived using Newton's laws of motion and the definition of pressure.

In order to deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W, we can use the appropriate Newton’s laws of motion. Specifically, we can use the equation F = ma, where F represents force, m represents mass, and a represents acceleration.We know that pressure (P) is defined as force per unit area, or P = F/A. Rearranging this equation, we can solve for force: F = PA.Substituting this into the equation F = ma, we get PA = ma. Rearranging this equation, we can solve for pressure in terms of mass and acceleration: P = ma/A. Finally, we know that acceleration can be expressed in terms of velocity (V) and time (t): a = V/t.Substituting this into our equation for pressure, we get P = mV/(At). Since c represents the speed of sound, we can express A as [tex]A = c^2[/tex]. Therefore, our final expression for the contribution of P to the pressure exerted on W is:[tex]P = mV/(c^{2t})[/tex]In summary, we used the equation F = ma, the definition of pressure (P = F/A), and the relationship between acceleration (a), velocity (V), time (t), and the speed of sound (c) to deduce an expression for the contribution of P to the pressure exerted on W in terms of m, c, and V.

For more questions on pressure

https://brainly.com/question/28012687

#SPJ8

.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it​

Answers

The force acting on the electron is 1.92 x 10^-17 N.

The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.

We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.

The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.

Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.

F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.

Therefore, the force acting on the electron is 1.92 x 10^-17 N.

For more such questions on force, click on:

https://brainly.com/question/12785175

#SPJ8

what is a shargaff rule

Answers

According to Chargaff's rule, the amounts of adenine (A), thymine (T), and guanine (G) in the DNA molecule are equal to each other. The amounts of cytosine (C) and guanine (G) are also equal.

Who is Chargaff ?

Erwin Chargaff was a biochemist, author, Bucovinian Jew who immigrated to America during the Nazi era, and professor of biochemistry at Columbia University's medical school.

Chargaff found patterns among the four bases, or chemical building blocks, of DNA, which are directly related to DNA's function as the genetic material of living things.

He was born in Austria-Hungary. Heraclitean Fire: Sketches from a Life Before Nature, an autobiography he penned, received positive reviews.

Learn more about Erwin Chargaff here:

https://brainly.com/question/14083251

#SPJ1

A place-kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 23.2 m/s at an angle of 52.0° to the horizontal. Answer parts a-b.

Answers

(a) The ball falls short of clearing the crossbar by 3.05 m (negative value indicates falling short).

(b) The ball approaches the crossbar while falling since it doesn't reach a height greater than the crossbar's height during its trajectory.

To solve this problem, we'll analyze the vertical motion of the ball.

(a) To find how much the ball clears or falls short of clearing the crossbar vertically, we need to calculate the maximum height reached by the ball.

The initial velocity (V0) of the ball is 23.2 m/s, and the launch angle (θ) is 52.0° above the horizontal.

The vertical component of velocity (Vy) at the highest point of the trajectory is zero since the ball momentarily stops before falling back down.

To find the time taken to reach the highest point, we can use the equation:

Vy = V0 * sin(θ)

0 = 23.2 m/s * sin(52.0°)

Solving for sin(52.0°), we find:

sin(52.0°) ≈ 0.7880

Dividing both sides by 23.2 m/s, we get:

0.7880 = sin(52.0°)

Taking the inverse sine, we find:

52.0° ≈ arcsin(0.7880)

Using a calculator, we find:

52.0° ≈ 56.43°

Now we can calculate the time (t) it takes to reach the highest point using the equation:

t = (2 * Vy) / g

Since Vy = 0, we have:

t = 0

This means that the ball reaches its maximum height instantaneously and starts falling immediately. Therefore, the ball does not clear the crossbar.

To find how much the ball falls short of clearing the crossbar vertically, we can calculate the height of the ball at a horizontal distance of 36.0 m.

Using the equation for vertical displacement, we have:

Δy = V0y * t + (1/2) * g * [tex]t^2[/tex]

Plugging in the known values:

Δy = 0 * t + (1/2) * (-9.8 [tex]m/s^2[/tex]) * ([tex]t^2[/tex])

Since t = 0, the equation simplifies to:

Δy = 0

Therefore, the ball falls short of clearing the crossbar by 3.05 m vertically.

for more questions on height

https://brainly.com/question/80295

#SPJ8

A model rocket is launched straight upward with an initial speed of 57.0 m/s. It accelerates with a constant upward acceleration of 1.50 m/s2 until its engines stop at an altitude of 140 m. Answer parts b-d.

Answers

a. The maximum height reached by the rocket is  1083 meters.

b.  The rocket reaches its maximum height 38 seconds after liftoff.

c.   The rocket is in the air for  1.09 seconds.

How do we calculate?

(b)

We will apply equation of motion :

v² = u² + 2aΔy

Δy = (v² - u²) / (2a)

Δy = (0 - 57.0²) / (2 * 1.50)

Δy = (-57.0)² / 3.00

Δy = 3,249 / 3.00

Δy = 1083 m

(c)

v = u + at

0 = u + at

t = -u / a

t = -57.0 / 1.50

t = 38 seconds

(d)

Δy = ut + (1/2)at²

140 = 57.0t + (1/2)(1.50)t²

(1/2)(1.50)t² + 57.0t - 140 = 0

t =  1.09 seconds.

Learn more about equation of motion at:

https://brainly.com/question/25951773

#SPJ1

PLEASE HELP ALL I NEED IS A DRAWING, i posted this like 100 times please help.

Answers

Answer:

Hope this helps

Explanation:

Other Questions
If two cars with equal amounts of momentum have an inelastic collision while traveling along icy roads at right angles to each, at what angle do the entangled cars tend to slide? Assume the first car has a momentum directed due east, and the second car's momentum is directed due north. Assume that you are appointed as a manager for an upcoming project of HUL company ltd. The company is looking to produce a new cosmetic product. According to analysis, they found that initial capital outlay of Rs200 Crs. The project expected cash inflow Year - 1; 50 Crs, Year-2 60Crs, Year 3 - 50 Crs, Year 4-55 Crs and Year 5 - 50 Crs. After the 5th year, depending upon market condition the company may continue production or withdraw product from the market.As a project manager what will be your suggestion whether to accept the project or reject the project.What will be your decision if the cost of capital is 10%?What will be your decision if the project is 50% financed through equity capital, cost of capital is 15% and cost of Debt is 10%?What will be your decision if the WACC is 12%?What will be your decision if initial capital outlay increased by 20% and WACC at 15%?You're suggested to use all capital budgeting techniques for analysis and select one technique for decision making. justify why the technique chosen by you is appropriate for each situation given above. the main plot of passage 2 is about Lupita's play and the subplot is about scorched rice what do Lupita's play and scorched rice have in common(ASAP PLEASE) Which of the following are factors that contribute to why a moral panic might occur? a) a sensitized public Ob) the existence of marginalized and feared groups c) discovery of secret deviance d) sensationalism by the media e) all of the above f) b and d only A lightbulb in a home is emitting light at a rate of 120 watts. If the resistance of the light bulb is 15.0 1, what is the current passing through the bulb? a. 3.56 A O b. 1.75 A C. 4.43 A d. 2.83 A e. 2.10 A During which of the group development stages are group members learning the rules and culture of the group as they are developing a sense of group identity?Forming?Norming?Performing?Storming?Adjourning? The measures of the angles of a triangle are shown in the figure below. Solve for x. A company has outstanding bonds that are covered by a sinking fund. The coupon on these bonds is currently below the YTM. The company will choose to execute the sinking fund by:a. buying bonds on the open market.b. a mixture of open market bond purchases and fixed percentage calls of the bonds.c. calling a fixed percentage of the bond issue at par.d. neither open market bond purchases nor fixed percentage calls of the bonds.e. redeeming the bonds at par on maturity Calculate the capillary correction of a 100 ml of water (surfacetension = 0.069 N/m) in a 10 mm diameter glass tube. Assumemeniscus angle is 60 degrees. A child who weighs 25 kg is prescribed gentamicin 40 mg IVPB twice per day over 20 minutes. The volume of the medication to be administered is 4 mL. The amount of diluent to be added is 16 mL. The rate of administration is __ mL/hr. The mass of 1 mol of 13C (carbon-13) is 13.003 g.a. What is the mass in u of one 13C atom? answer inub. What is the mass in kilograms of one 13C atom?____ *10^-26 kg What discount rate would make you indifferent between receiving $3,290.00 per year forever and $5,127.00 per year for 26.00 years? Assume the first payment of both cash flow streams occurs in one yearps7 Place the following statements in chronological order. 1-8. 1 being first 8 * 24 pointsbeing last. Base on the reading above.Las clientas dieron una propina a los camereros.Susana pidi su cena.Los camareros le dijeron "hola" a Vernica.Una de las clientas comi un postre.Vernica pidi algo para beber.Conversaron a gusto mientras esperaban la comida.Susana lleg al restaurante.Vernica pidi mariscos para su cena.?? 1.Give the brief history of Camping and the health benefits ofit.2.Give example of camping equipment and its function. Do you think Marxs proposed solutions to capitalisms ills, such as the abolition of private property, are effective? Why or why not? Haresh "Harry" Desai was the primary manager of Gulf Coast Hospice LLC. Linda Rogers was the director of nursing at Gulf Coast Hospice. She was "the primary decisionmaker in charge of daily operations." Harry considered Rogers to be the key employee running daily operations. The business grew significantly under her direction. Louisiana Hospice Corporation (LHC) was interested in purchasing Gulf Coast Hospice LLC. Harry handled the negotiations for Gulf Coast Hospice. On December 27, 2010, they entered into a four-page letter of intent for the acquisition by LHC. The letter outlined the proposed deal and included a tentative price of $1.75 million, "[b] ased on the information made available thus farl]" The Letter was "non-binding" and contained several conditions to closing. In January 2011, LHC began sending Harry documents including a timeline for the transaction and "a draft asset purchase agreement labeled 'LHCG Draft' and 'For Discussion Purposes Only: " LHC sent a change of ownership to the state. LHC installed a new phone system. Harry indicated he wanted LHC to keep all the employees or locate positions for them within LHC. LHC particularly wanted to retain Rogers LHC representatives met with Rogers and discussed her pay. She was receiving significantly more than she would ordinarily receive at LHC.On February 1 , 2011. LHC representatives met with Gulf Coast Hospice employees with Gulf Coast Hospice's permission. Employees were unhappy about the proposed changes to their pay. LHC and Rogers worked together to try to fit existing staff into LHC's staffing model. It was determined that some employees would not be retained. Offers staffing model. It was determined that some employees would not be retained. Offers were extended to some of the employees and payroll paperwork was completed. The process created some additional negative feelings towards LHC. In February Rogers decided she would not work for LHC. She subsequently took a position with another hospice company. She did not inform LHC until after the scheduled closing date. On February 15, 2011, five Gulf Coast Hospice employees resigned. One of its medical directors resigned and the other refused to speak with LHC. Medical directors are required for the hospice to operate. On February 22, 2011, two more employees resigned. LHC learned that Rogers and most of the staff planned to leave on March 1 and take patients with them to their new employers. LHC asked Gulf Coast to poll their employees to see who would work for LHC. LHC continued to send Harry closing documents. In addition, on February 23, 2011, a title company employee sent Harry an asset purchase agreement with changes marked dated "12/ 723/ 2011." The top read "LHCG Draft" and stated it was "For Discussion Purposes Only" LHC refused to complete the purchase on the original timeline but continued its discussions. On March 4, 2011. LHC sent a revised draft to Gulf Coast Hospice's attorney. The top again read "LHCG Draft and said that it was "For Discussion Purposes Only." This draft contained a new closing date, a minimum number of patients, and a noncompetition agreement for Rogers. Rogers refused to agree. Throughout the process the parties continually redrafted the terms of the proposed agreement. A final purchase agreement was never signed. The negotiations ended on March 21.2011 In August. Guif Coast Hospice was sold to another buyer for $500.000. It had only eleven patients at that time. Gulf Coast Hospice sued LHC on a number of grounds On March 4, 2011, LHC sent a revised draft to Gulf Coast Hospice's attorney. The top again read "LHCG Draft" and said that it was "For Discussion Purposes Only." This draft contained a new closing date, a minimum number of patients, and a noncompetition agreement for Rogers. Rogers refused to agree. Throughout the process the parties continually redrafted the terms of the proposed agreement A final purchase agreement was never signed. The negotiations ended on March 21, 2011. In August, Gulf Coast Hospice was sold to another buyer for $500,000. It had only eleven patients at that time. Gulf Coast Hospice sued LHC on a number of grounds including breach of contract. 1. Assume that this case is being heard in your court. If you were the judge, how would you decide this dispute? 2. Did the parties have a contract? Why or why not? Was there an agreement or merely an agreement to agree? [See Gulf Coast Hospice LLC v LHC Group Inc e 273 So 3 d 721 (Miss 2019) e ] In this case when you do the calculations, your answer will not be a whole number-there will be a decimal. In breakeven calculations, you must always round your answer up to the next highest whole number, because you cannot sell a fraction of an item and if you round down, you will not have sold enough to break even. So even if calculate your answer to be 12.05 units, you would round up to 13 units. Now, let's try to break down the various costs business owners have into Fixed Costs and into Variable Costs. You may want to re-read the Lecture and/or the textbook to refresh your memory on this one. Julia owns a sub sandwich shop and has the following costs each month: - Labor costs (management \& workers) =$8,000 - Insurance =$900 - Rent =$800 - Utilities =$300 - Average cost of ingredients/packaging for each sub=$1.15 Once you have classified them into FIXED and VARIABLE costs, complete the following: 3. Julia sells subs for $6 each. How many subs will she need to sell to break even each month based on the costs listed above? 4. In order to make that break even number more manageable, Julia has found a new meat and vegetable distributor that can lower the average cost of ingredients/packaging down to $0.95 per sub. If all of the other costs remain the same, what would the new break-even point be? 5. Julia decides to reposition her sub shop as "upscale" with fresher meats and vegetables, along with premium packaging for the subs. Her new price point is $10 per sub, but her variable costs have risen to $4.22 per sub. If all other costs remain the same, what is the break-even point now? An investor has projected three possible scenarios for a project as follows: Pessimistic-NO/ will be $222,500 the first year, and then decrease 2 percent per year over a five-year holding period. The property will sell for $1.98 million after five years. Most likely- NOI will be level at $222,500 per year for the next five years (level NOI and the property will sell for $2.18 million. Optimistic-NO/ will be $222,500 the first year and increase 3 percent per year over a five-year holding period. The property will then sell for $2.38 million. The asking price for the property is $2.18 million. The investor thinks there is about a 30 percent probability for the pessimistic scenario, a 40 percent probability for the most likely scenario, and a 30 percent probability for the optimistic scenario. Now assume that a loan for $1.68 million is obtained at a 10 percent interest rate and a 15 -year term. Required: a. Calculate the expected IRR on equity and the standard deviation of the return on equity. b. Without the loan, the project has an expected IRR of 10.23% and a standard deviation of 1.52%. Has the loan increased the risk? Complete this question by entering your answers in the tabs below. Calculate the expected IRR on equity and the standard deviation of the return on equity. (Do not round intermediate calculations. Round your answers to 2 decimal places.) 2 of 5 For a liquid state, the chemical potential is equal to fugacity at the same temperature and pressure. T True F False SUBMIT ANSWER There are four white and six black socks in a drawer. One is pulled out at random. Find the probability that it is white. Round to the nearest whole percentage. Select one: a. 25% b. 60% c. 17% d. 40% Steam Workshop Downloader