The amount of heat transferred to the water by the aluminum pellets is 382.87 J
To determine the mass of water, you can use the equation:
q = m x Cs x deltaT
where q is the amount of heat transferred, m is the mass of the substance (in this case, the water), Cs is the specific heat capacity of water, and deltaT is the change in temperature.
Using the final temperature of 23.7°C and the initial temperature of 22.0°C, we get:
deltaT = 23.7°C - 22.0°C = 1.7°C
We can plug in the values for the iron and aluminum pellets:
q = (5.00 g x 0.89 J/g°C x (100.0°C - 23.7°C)) + (10.00 g x 0.45 J/g°C x (100.0°C - 23.7°C))
q = 345.67 J + 347.85 J
q = 693.52 J
Now, to find the mass of water, we can rearrange the equation and solve for m:
m = q / (Cs x deltaT)
m = 693.52 J / (4.18 J/g°C x 1.7°C)
m = 97.1 g
Therefore, the mass of water is 97.1 g. To find how much heat is transferred to the water by the aluminum pellets, we need to subtract the heat transferred by the iron pellets from the total heat transferred:
q_aluminum = q_total - q_iron
q_aluminum = 693.52 J - (10.00 g x 0.45 J/g°C x (100.0°C - 23.7°C))
q_aluminum = 693.52 J - 310.65 J
q_aluminum = 382.87 J
Therefore, the amount of heat transferred to the water by the aluminum pellets is 382.87 J.
To know more about heat formula:
https://brainly.com/question/25603269
#SPJ11
A glucose solution in water is labelled as 20%. the density of the solution is 1.20 g/ml.
what is the molarity of the solution?
help your boy out
The molarity of the glucose solution is 6.66 M.
To determine the molarity of the glucose solution, we first need to convert the percentage concentration to grams of glucose per milliliter of solution.
Since the solution is labeled as 20%, we know that there are 20 grams of glucose in 100 milliliters of solution.
We can then use the density of the solution to convert from milliliters to grams:
1.20 g/mL x 100 mL = 120 g
So, there are 120 grams of glucose in the entire solution.
Now, we can calculate the number of moles of glucose using its molar mass, which is 180.16 g/mol:
moles of glucose = mass of glucose / molar mass = 120 g / 180.16 g/mol = 0.666 moles
Finally, we can calculate the molarity of the solution:
molarity = moles of solute / volume of solution in liters
We know that the volume of the solution is 100 mL or 0.1 L:
molarity = 0.666 moles / 0.1 L = 6.66 M
Therefore, the molarity of the glucose solution is 6.66 M.
To know more about molarity refer to-
https://brainly.com/question/8732513
#SPJ11
2al + 6 hcl → 2 alcl3 + 3h2 ∆hrxn = -152 kj
how much heat energy is associated with the reaction of 35 g of aluminum with excess hydrochloric acid?
The heat energy associated with the reaction of 35g of aluminum with excess hydrochloric acid is -5,380 kJ. This is calculated by multiplying the number of moles of aluminum (0.2 mol) by the enthalpy change of the reaction (-152 kJ/mol) to give -30.4 kJ.
This is then multiplied by the mass of aluminum (35g) to give -5,380 kJ.
In this reaction, heat energy is released as a result of the formation of bonds between the aluminum and the hydrochloric acid.
This means that the enthalpy change is negative, indicating that the reaction is exothermic. The reaction can be represented by the equation 2Al + 6HCl → 2AlCl3 + 3H2, with an enthalpy change of -152 kJ/mol.
Know more about Hydrochloric acid here
https://brainly.com/question/15231576#
#SPJ11
1. For each of the following quantities, underline the zeros that are significant (sf), and determine the number of significant figures in each quantity. For (d) to (1), express each in exponential notation first. (a) 0. 0030 L (b) 0. 1044 g (c) 53,069 ml (d) 0. 00004715 m (e) 57,600 s (f) 0. 0000007160 cm (g) 57600
0.0030 L - The significant figures are "3" and "0". There are two significant figures in this quantity.
0.1044 g - The significant figures are "1", "0", "4", and "4". There are four significant figures in this quantity.
53,069 mL - All digits are significant. There are five significant figures in this quantity.
0.00004715 m - In exponential notation, this is 4.715 x 10^-5 m. The significant figures are "4", "7", "1", and "5". There are four significant figures in this quantity.
57,600 s - The significant figures are "5", "7", and "6". There are three significant figures in this quantity.
0.0000007160 cm - In exponential notation, this is 7.160 x 10^-7 cm. The significant figures are "7", "1", "6", and "0". There are four significant figures in this quantity.
57600 - The significant figures are "5", "7", "6", and "0". There are three significant figures in this quantity.
Zeros at the beginning of a number are not significant, as they only indicate the decimal point's location. Trailing zeros after the decimal point are significant, as they indicate the precision of the measurement. However, trailing zeros before the decimal point are not significant, as they may be there only to indicate the scale of the number. In exponential notation, the number of significant figures is determined by the number of digits in the coefficient.
To know more about the Significant Figure, here
https://brainly.com/question/13061725
#SPJ4
How would each of the following changes alter the equilibrium position of the system used to produce methanol from carbon monoxide and hydrogen?
CO(g) + 2H2 CH3OH(g) + heat
The equilibrium position of the system used to produce methanol from carbon monoxide and hydrogen can be altered by a change in the concentration of any of the reactants or products, a change in temperature, or a change in pressure.
If the concentration of carbon monoxide or hydrogen is increased, then the equilibrium position will shift to the right, favoring the formation of methanol. Conversely, if the concentration of methanol is increased, then the equilibrium position will shift to the left, favoring the decomposition of methanol into carbon monoxide and hydrogen.
If the temperature is increased, then the equilibrium position will shift to the right, as the forward reaction is exothermic and the reverse reaction is endothermic. Conversely, if the temperature is decreased, then the equilibrium position will shift to the left.
If the pressure is increased, then the equilibrium position will shift to the side with fewer moles of gas. In this case, both the reactants and the products have the same number of moles of gas, so the pressure will have no effect on the equilibrium position.
In summary, changes in concentration, temperature, and pressure can all alter the equilibrium position of the system used to produce methanol from carbon monoxide and hydrogen. By understanding how these changes affect the system, it is possible to manipulate the equilibrium position to maximize the yield of methanol.
To know more about carbon monoxide, visit:
https://brainly.com/question/22530423#
#SPJ11
A student is holding a test tube containing 5.0 milliliters of water. A sample of NH4Cl(s) is placed
in the test tube and stirred. Describe the heat flow between the test tube and the student's hand.
Answer:
When NH4Cl(s) is added to water, it dissolves and dissociates into its constituent ions NH4+ and Cl-. This is an endothermic process, meaning it requires heat energy to occur. The NH4Cl(s) absorbs heat from the surroundings, including the water in the test tube and the student's hand holding the test tube. As a result, the test tube and the student's hand feel cooler, as some of the heat energy has been transferred to the NH4Cl(s). Therefore, the heat flows from the test tube and the student's hand to the NH4Cl(s).
Hematite and magnetite are important ore minerals of ________ found in ________. A. Zinc, hydrothermal deposits b. Iron, banded iron formation (BIF) c. Copper, secondary enrichment deposits d. Aluminum, placer deposits
Hematite and magnetite are important ore minerals of iron found in banded iron formations (BIF), option B is correct.
Iron is one of the most abundant elements in the Earth's crust and is an essential component of many industrial and technological applications. Hematite (Fe₂O₃) and magnetite (Fe₃O₄) are two of the most important iron ore minerals, both of which are found in banded iron formations (BIFs).
BIFs are sedimentary rocks that were formed billions of years ago and consist of alternating layers of iron oxides (hematite or magnetite) and silica-rich chert. These formations were formed when the Earth's oceans contained high levels of dissolved iron, which reacted with oxygen produced by photosynthetic organisms to form iron oxide minerals, option B is correct.
To learn more about Hematite follow the link:
brainly.com/question/11375983
#SPJ4
The complete question is:
Hematite and magnetite are important ore minerals of ________ found in ________.
A. Zinc, hydrothermal deposits
B. Iron, banded iron formation (BIF)
C. Copper, secondary enrichment deposits
D. Aluminum, placer deposits
The Goodyear Blimp has a volume of 5. 74 x 10e6 L. If it was also filled with hydrogen, how many moles of hydrogen would fit into the blimp?
The Goodyear Blimp filled with hydrogen can hold approximately 255,447.62 moles of hydrogen.
To find the number of moles of hydrogen that would fit into the blimp, we first need to calculate the mass of hydrogen that the blimp can hold.
The molar mass of hydrogen is 2.016 g/mol.
To calculate the mass of hydrogen that the blimp can hold, we multiply the volume of the blimp (5.74 x 10^6 L) by the density of hydrogen at standard temperature and pressure (STP), which is 0.0899 g/L:
Mass of hydrogen = volume of blimp x density of hydrogen at STP
Mass of hydrogen = 5.74 x 10^6 L x 0.0899 g/L
Mass of hydrogen = 515,026 g
Now, we can calculate the number of moles of hydrogen by dividing the mass of hydrogen by its molar mass:
Number of moles of hydrogen = mass of hydrogen / molar mass of hydrogen
Number of moles of hydrogen = 515,026 g / 2.016 g/mol
Number of moles of hydrogen = 255,447.62 mol
So, approximately 255,447.62 moles of hydrogen would fit into the Goodyear Blimp under standard temperature and pressure conditions.
Learn more about moles at https://brainly.com/question/29367909
#SPJ11
Explain with words how the parent nucleus changes in alpha decay?
A 65 L gas cylinder containing gas at a pressure of 3. 6 x10^3 kPa and a temperature of 10°C springs a leak in a room at SATP. If the room has a volume of 108 m^3, will the gas displace all of the air in the room? ( 1m3 = 1000 L)
The volume of the gas in the cylinder is less than the volume of the room, the gas will not displace all the air in the room.
To determine whether the gas will displace all the air in the room, we need to compare the volume of the gas in the cylinder to the volume of the room.
First, we need to convert the volume of the gas cylinder from liters to cubic meters:
V_cylinder = 65 L = 0.065 m^3
Next, we can use the ideal gas law to calculate the number of moles of gas in the cylinder:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.
Rearranging this equation,
n = PV/RT
where P, V, and T are the initial conditions of the gas in the cylinder.
n = (3.6 × 10^3 kPa)(0.065 m^3)/(8.31 J/(mol K) × 283 K) ≈ 0.89 mol
Next, we can use the volume of one mole of gas at SATP (i.e., 24.8 L/mol) to calculate the volume of gas that was initially in the cylinder:
V_initial = n × 24.8 L/mol ≈ 22.1 L
Since the volume of the gas in the cylinder is less than the volume of the room, the gas will not displace all the air in the room.
To know more about volume of the gas refer here:
https://brainly.com/question/1984369
#SPJ11
Dalton's Law and the Ideal Gas Law
At what pressure will 4. 80 moles of fluorine gas have a volume of 60. 0 liters and a temperature of 298 K?
The pressure of the fluorine gas under these conditions is approximately 2.01 atmospheres.
To answer your question, we will use the Ideal Gas Law equation:
PV = nRT
Where:
P = pressure
V = volume (60.0 liters)
n = number of moles (4.80 moles)
R = gas constant (0.0821 L atm / K mol)
T = temperature (298 K)
We need to find the pressure (P). Rearrange the equation for P:
P = nRT / V
Now plug in the given values:
P = (4.80 moles * 0.0821 L atm / K mol * 298 K) / 60.0 liters
P ≈ 2.01 atm
So, the pressure of the fluorine gas under these conditions is approximately 2.01 atmospheres.
To learn more about temperature, refer below:
https://brainly.com/question/11464844
#SPJ11
During a laboratory activity, a student places 21.0 mL of hydrochloric acid solution, HC1(ag),
of unknown concentration into a flask. The solution is titrated with 0.125 M NaOH(ag) until the
acid is exactly neutralized. The volume of NaH(ag) added is 18.5 milliliters. During this
laboratory activity, appropriate safety equipment is used and safety procedures are followed.
The presence of the ions in the HCl would make the solution to conduct electricity.
Why does HCl solution conduct electricity?Because it separates into ions (H+ and Cl-) when hydrochloric acid is dissolved in water, HCl (hydrochloric acid) solution conducts electricity. The electric charge of the H+ and Cl- ions allows them to travel and convey current across the solution.
The dissociation constant (Ka) of HCl describes how much of the compound separates into ions depending on the concentration of the solution. A higher HCl concentration will produce more ions, which will increase conductivity.
Learn more about HCl:https://brainly.com/question/9004990
#SPJ1
Reactions of lithium with various oxidizing
agents have been examined for use in batteries. A particularly well studied case is that of the lithium-sulfur battery. What is the
potential that is possible for a battery that
operates on the reaction of Li(s) with S(s)?
The individual reduction potentials are given
here:
Li+ + eâ â Li E⦠= â3. 05 V
S + 2 eâ â S2â E⦠= â0. 48 V
Answer in units of V
The result is negative, this means the reaction is not spontaneous under standard conditions. In other words, a lithium-sulfur battery cannot be constructed under standard conditions.
To calculate the potential for the reaction of Li(s) with S(s), we need to use the reduction potentials and the Nernst equation:
Ecell = Ereduction(cathode) - Ereduction(anode)
where Ereduction is the reduction potential, cathode is the reduction half-reaction occurring at the cathode (where reduction occurs) and anode is the oxidation half-reaction occurring at the anode (where oxidation occurs).
In this case, Li(s) is the anode and S(s) is the cathode. So, we need to flip the sign of the reduction potential for the anode:
Ecell = E(S2-/S) - (-E(Li+/Li))
Ecell = 0.48 V - 3.05 V
Ecell = -2.57 V
To know more about lithium-sulfur battery refer to-
https://brainly.com/question/31104871
#SPJ11
If an 18 m solution was diluted to a 6.5 m solution that
had a new volume of 3.25 l, how many l of the original
solution were added?
To make a 6.5 m solution with a volume of 3.25 L from an 18 m solution, we need to add 1.14 L of the original solution.
To calculate the volume of the original solution added, we can use the equation:
C1V1 = C2V2
where C1 is the initial concentration, V1 is the volume of the initial solution added, C2 is the final concentration, and V2 is the final volume of the diluted solution.
Plugging in the given values, we get:
(18 M) V1 = (6.5 M) (3.25 L)
Solving for V1, we get:
V1 = (6.5 M) (3.25 L) / (18 M)
V1 = 1.1389 L or approximately 1.14 L
Therefore, about 1.14 L of the original solution was added to make the 6.5 m solution with a volume of 3.25 L.
To know more about the original solution refer here :
https://brainly.com/question/29850404#
#SPJ11
whats the volume of dry hydrogen gas at standard astrospheric pressure
The volume of dry hydrogen gas at standard atmospheric pressure (which is typically defined as 1 atm or 101.325 kPa) depends on the number of moles of hydrogen gas present. The ideal gas law, PV = nRT, relates the pressure (P), volume (V), number of moles (n), and temperature (T) of an ideal gas. Assuming standard temperature and pressure (0°C and 1 atm), one mole of any ideal gas occupies a volume of 22.4 L. Therefore, to find the volume of dry hydrogen gas at standard atmospheric pressure, we need to know how many moles of hydrogen gas we have.
For example, if we have 1 mole of dry hydrogen gas at standard atmospheric pressure, the volume would be 22.4 L. If we have 0.5 moles of dry hydrogen gas, the volume would be 11.2 L. And so on.
According to the law of conservation of mass, the total mass of the products of a chemical reaction should equal the total mass of the reactants. In our reaction on a balance, however, the mass went down, from 253. 0 g to 250. 2 grams. Using the given chemical equation, explain what caused the apparent loss of mass
The apparent loss of mass from 253.0 g to 250.2 g can be attributed to the involvement of a gas in the chemical reaction, either as a product or a reactant. This gas escapes the system during the reaction, causing a decrease in the observed mass, but the law of conservation of mass still holds true as the total mass is conserved in the reaction.
According to the law of conservation of mass, the total mass of the products of a chemical reaction should equal the total mass of the reactants. In your reaction, the mass went down from 253.0 g to 250.2 g, which seems to contradict this law. However, the apparent loss of mass can be explained by the involvement of a gas in the reaction.
Here's a step-by-step explanation:
1. Identify the given chemical equation. This will help in determining if a gas is produced or consumed in the reaction.
2. Examine the reactants and products to see if any of them are gases. Gases can escape the system during the reaction, causing a decrease in the observed mass.
3. If a gas is produced, this explains the apparent loss of mass. The mass of the gas is not being accounted for on the balance because it has escaped into the atmosphere.
4. If a gas is consumed, it may have been initially present in the system and was not measured in the initial mass. Once it is consumed, the mass of the system would appear to decrease.
In summary, the apparent loss of mass from 253.0 g to 250.2 g can be attributed to the involvement of a gas in the chemical reaction, either as a product or a reactant.
To know more about law of conservation of mass :
https://brainly.com/question/13600416
#SPJ11
Food web
wolf
rabbit
deer
plants
i
a student drew a basic food web of a forest ecosystem.
part a: describe what the arrows represent in the food web
part b: explain why the ecosystem supports fewer wolves than deer
Part a: The arrows in the food web represent the flow of energy and nutrients.
Part b: Ecosystem supports fewer wolves than deer because wolves are at a higher trophic level in food chain.
Part a: The movement of nutrients and energy from one organism to another is depicted by arrows in food chain. They specifically point to the direction of matter and energy transfer when one organism feeds another.
Part b: Due to wolves' higher trophic level in food chain, the ecology can only support a smaller population of them than deer. Due to energy loss from heat and metabolism, the amount of energy available at each level of the food chain diminishes as it progresses up the chain.
To know more about trophic level, here
brainly.com/question/13267084
#SPJ4
which of these atoms has the most stable nuclei? Ra
Po
Rn
Au
Answer:
Rn has the most stable nucleus
Rn (Radon) has the most stable nuclei due to its closer proximity to the magic number 126.
Option (3) is correct.
The stability of a nucleus depends on the arrangement of protons and neutrons within it. Certain numbers of protons and neutrons result in more stable nuclei. These numbers are known as magic numbers, and they correspond to complete nuclear shells.
Among the given atoms:
Ra (Radium) has 88 protons and a varying number of neutrons.
Po (Polonium) has 84 protons and a varying number of neutrons.
Rn (Radon) has 86 protons and a varying number of neutrons.
Au (Gold) has 79 protons and a varying number of neutrons.
Radon (Rn) has the most stable nuclei because it is closer to the magic number 126 for neutrons. Elements with magic numbers of protons or neutrons tend to have more stable configurations, making Rn the most stable among the options provided.
To learn more about Rn (Radon) here
https://brainly.com/question/28919596
#SPJ2
Algae produce oxygen. Tiny animals that live in the water eat the algae. Small fish eat the tiny animals, absorb oxygen with their gills, and give off carbon dioxide as waste. Plants use the carbon dioxide to grow.
Which of the following would happen if the algae disappeared?
Plants would lose some of the carbon dioxide they need to grow.
The tiny animals would not have enough food.
Fish would not have enough oxygen.
If the algae disappeared, the tiny animals would not have enough food.
Which of the following would happen if the algae disappeared?Small fish that eat the tiny animals would also run out of food, which might lead to a drop in their number. As a result, less oxygen would be accessible for other organisms and the amount of oxygen the fish produce would decrease.
However, since the plants may still obtain their carbon dioxide from other sources, the loss of the algae would not have a direct impact on them.
Learn more about algae:https://brainly.com/question/4289110
#SPJ1
Was the solubility of kno3 affected by the higher water temperature in the same way the solubility of nh4cl was? explain.
The solubility of KNO3 increases with higher water temperatures, while the solubility of NH4Cl decreases as temperature rises.
The solubility of a substance in a solvent depends on several factors, including temperature, pressure, and the chemical properties of the substances involved. In the case of KNO3 and NH4Cl, their solubility is affected differently by temperature. KNO3 becomes more soluble as temperature increases, while NH4Cl becomes less soluble. This is because KNO3 has a weaker attraction to water molecules compared to NH4Cl, which results in a gradual increase in its solubility with temperature. On the other hand, NH4Cl has a stronger attraction to water molecules, and as temperature rises, the increased thermal energy causes the water molecules to move faster and disrupt the intermolecular forces that hold NH4Cl together, leading to a decrease in its solubility. Therefore, it is important to consider the unique properties and interactions of each compound with the solvent when predicting how changes in temperature will affect their solubility.
Know more about Solubility here:
https://brainly.com/question/31464655
#SPJ11
-in your own words explain the steps involved to write the name (Sodium Chloride) of a chemical formula let’s include at least three steps and use your notes)?
-In your own words explain the steps involved to write the chemical formula (NaCl) from the name (must
include at least 3 steps and use your notes).
To write the name "Sodium Chloride" from a chemical formula, follow these steps:
1. Identify the elements present in the formula: In this case, the formula is "NaCl," which contains the elements Sodium (Na) and Chlorine (Cl).
2. Write the name of the metal (cation) first: In this case, the metal is Sodium (Na). So, the first part of the name is "Sodium."
3. Write the name of the non-metal (anion) with the suffix "-ide": The non-metal is Chlorine (Cl), so the name changes to "Chloride."
4. Combine the names of the metal and non-metal: The final name is "Sodium Chloride."
To write the chemical formula "NaCl" from the name "Sodium Chloride," follow these steps:
1. Identify the elements from the name: In this case, the name is "Sodium Chloride," which contains the elements Sodium (Na) and Chlorine (Cl).
2. Determine the charges of the elements: Sodium has a +1 charge as a cation, and Chlorine has a -1 charge as an anion.
3. Balance the charges to form a neutral compound: Since the charges are +1 and -1, they balance out, and you don't need to add any subscripts.
4. Write the chemical formula using the element symbols: Combine the symbols to form the formula "NaCl."
To know more about Sodium Chloride :
https://brainly.com/question/1559859
#SPJ11
What type of reaction is A + B + 210 ) >>> C
The reaction A + B + 210 → C can be categorized as a combination reaction.
In a combination reaction, two or more reactants (A and B in this case) combine to form a single product (C). The number 210 could be a typo or an irrelevant part of the equation, as it does not fit the standard chemical notation.
Based on the information you provided, the reaction can still be categorized as a combination reaction. In a combination reaction, two or more reactants combine to form a single product.
In this case, reactants A and B react together to produce product C. However, without further information or a corrected equation, it is not possible to provide specific details about the reaction or the substances involved.
If you have any additional information or a revised equation, please provide it, and I would be happy to assist you further.
To learn more about reactants, refer below:
https://brainly.com/question/13005466
#SPJ11
Calculate the volume of 3. 00 M H2SO4 required to prepare 200. ML of 0. 200 N H2SO4. (Assume the acid is to be completely neutralized. )
Approximately 13.3 mL of 3.00 M H₂SO₄ is required to prepare 200. mL of 0.200 N H₂SO₄.
To calculate the volume of 3.00 M H₂SO₄ required to prepare 200. mL of 0.200 N H₂SO₄, we can use the formula for molarity:
Molarity (M) = moles of solute / volume of solution in liters
We can rearrange this formula to solve for volume:
Volume (in liters) = moles of solute / molarity
First, let's calculate the moles of H₂SO₄ in 200. mL of 0.200 N solution:
0.200 N = 0.200 mol/L
Moles of H₂SO₄ = 0.200 mol/L x 0.200 L = 0.0400 mol
Next, we can use this value and the concentration of the 3.00 M H₂SO₄ to calculate the volume of the concentrated acid needed:
Volume = moles of solute / molarity
Volume = 0.0400 mol / 3.00 mol/L
Volume = 0.0133 L or 13.3 mL
So, to make 200 mL of 0.200 N H₂SO₄ , roughly 13.3 mL of 3.00 M H₂SO₄ is required.
To know more about the Volume, here
https://brainly.com/question/31482457
#SPJ4
During a synthesis reaction, 3. 2 grams of magnesium reacted with 12. 0 grams of oxygen. What is the maximum amount of magnesium oxide that can be produce during the reaction
The maximum amount of magnesium oxide that can be produced during the synthesis reaction between 3.2 grams of magnesium and 12.0 grams of oxygen is 14.4 grams.
This is because the amount of product produced in a synthesis reaction is limited by the amount of the reactant with the lowest mass. In this case, the reactant with the lowest mass is the 3.2 grams of magnesium, so the maximum amount of magnesium oxide that can be produced is 3.2 grams of magnesium multiplied by the mole ratio of magnesium oxide to magnesium, which is 1:1, resulting in 3.2 grams of magnesium oxide.
Therefore, the maximum amount of magnesium oxide that can be produced during the reaction is 14.4 grams (3.2 grams of magnesium multiplied by 4.5 grams of oxygen, which is the mole ratio for magnesium oxide to oxygen).
This is due to the Law of Conservation of Mass, which states that mass is neither created nor destroyed during a chemical reaction, only rearranged.
Know more about Synthesis reaction here
https://brainly.com/question/16987748#
#SPJ11
Question 4 of 10
Which of these actions increases enthalpy in the air molecules of the Earth's
atmosphere?
A. Carbon dioxide being taken in by plants during photosynthesis
B. Trees being planted in the rain forests
C. People breathing in oxygen
D. The air being heated by the sun
SUBMIT
D, The air being heated by the sun.
Enthalpy is a measure of the internal energy of a system, including the potential and kinetic energy of its molecules. When the air is heated by the sun, the molecules in the air gain kinetic energy, which increases their enthalpy. This is because temperature is directly proportional to the kinetic energy of the molecules.
The other options listed, such as carbon dioxide being taken in by plants during photosynthesis, trees being planted in the rain forests, and people breathing in oxygen, do not directly increase the enthalpy of air molecules in the Earth's atmosphere. These processes may have other effects on the atmosphere, such as removing carbon dioxide or releasing oxygen, but they do not directly affect the internal energy or enthalpy of air molecules.
In summary, the correct answer to the question is D, the air being heated by the sun, as this process directly increases the enthalpy of air molecules in the Earth's atmosphere.
Know more about Enthalpy here:
https://brainly.com/question/16720480
#SPJ11
Certain amounts of the hypothetical substances A2 and B are mixed in a 3. 00 liter container at 300. K. When equilibrium is established for the reaction the following amounts are present: 0. 200 mol of A2, 0. 400 mol of B, 0. 200 mol of D, and 0. 100 mol of E. What is Kp, the equilibrium constant in terms of partial pressures, for this reaction
To find the equilibrium constant in terms of partial pressures, we need to first write the balanced equation for the reaction and then determine the partial pressures of the gases at equilibrium.
Assuming the hypothetical reaction is:
A2 (g) + 2B (g) ⇌ 2C (g) + D (g) + E (g)
At equilibrium, the number of moles of each substance can be used to calculate the partial pressures using the ideal gas law:
PA2 = nA2 * RT / V = 0.200 mol * 0.0821 L·atm/(mol·K) * 300 K / 3.00 L = 4.10 atm
PB = nB * RT / V = 0.400 mol * 0.0821 L·atm/(mol·K) * 300 K / 3.00 L = 8.20 atm
PC = nC * RT / V = (0.200 mol / 2) * 0.0821 L·atm/(mol·K) * 300 K / 3.00 L = 2.05 atm
PD = 0.100 mol * 0.0821 L·atm/(mol·K) * 300 K / 3.00 L = 2.05 atm
PE = 0.200 mol * 0.0821 L·atm/(mol·K) * 300 K / 3.00 L = 4.10 atm
Kp can be calculated as the product of the partial pressures of the products, raised to their stoichiometric coefficients, divided by the product of the partial pressures of the reactants, raised to their stoichiometric coefficients:
Kp = (PC)^2 * (PD) * (PE) / (PA2) * (PB)^2
Kp = (2.05 atm)^2 * (2.05 atm) * (4.10 atm) / (4.10 atm) * (8.20 atm)^2
Kp = 0.0452 atm
Therefore, the equilibrium constant in terms of partial pressures (Kp) for this reaction is 0.0452 atm.
To know more about equilibrium refer here
https://brainly.com/question/14281439#
#SPJ11
Identify the limiting reactant and determine the mass of CO2 that can be produced from the reaction of 25. 0 g of C3H8 with 75. 0 g of O2 according to the following equation:
C3H8 + 5 O2 ---> 3 CO2 + 4 H2O
Help immediately PLEASE!!!
Oxygen (O₂) is the limiting reactant, and the maximum mass of CO₂ that can be produced is 61.6 g.
To determine the limiting reactant and the amount of CO₂ produced, we need to perform a stoichiometric calculation using the balanced chemical equation;
C₃H₈ + 5O₂ → 3CO₂ + 4HO
First, we need to determine which reactant is limiting by calculating the amount of CO₂ that can be produced from each reactant and comparing them. We assume that both reactants are completely consumed in the reaction.
For C₃H₈;
Molar mass of C₃H₈ = 44.1 g/mol
Moles of C₃H₈ = 25.0 g / 44.1 g/mol = 0.567 mol
Moles of CO₂ produced = 0.567 mol x (3 mol CO₂ / 1 mol C₃H₈) = 1.70 mol
Mass of CO₂ produced = 1.70 mol x 44.01 g/mol = 74.8 g
For O₂ ;
Molar mass of O₂ = 32.0 g/mol
Moles of O₂ = 75.0 g / 32.0 g/mol = 2.34 mol
Moles of CO₂ produced = 2.34 mol x (3 mol CO₂ / 5 mol O₂ ) = 1.40 mol
Mass of CO₂ produced = 1.40 mol x 44.01 g/mol
= 61.6 g
Since O₂ produces less CO₂ than C₃H₈, it is the limiting reactant.
Therefore, the maximum mass of CO₂ that can be produced is 61.6 g.
To know more about limiting reactant here
https://brainly.com/question/19654705
#SPJ4
When 21.44 moles of si react with 17.62 moles of n2 how many moles of si3n4 are formed
A total of 11.48 moles of Si₃N₄ are formed.
To determine the moles of Si₃N₄ formed, we need to identify the limiting reactant. The balanced chemical equation is:
3Si + 2N₂ → Si₃N₄
First, find the mole ratio of Si to N₂ in the reaction:
Si: (21.44 moles Si) / 3 = 7.146
N₂: (17.62 moles N₂) / 2 = 8.810
Since the Si mole ratio is lower (7.146), Si is the limiting reactant. To calculate moles of Si₃N₄ formed, use the mole ratio from the balanced equation:
Moles of Si₃N₄ = (7.146 moles Si) * (1 mole Si₃N₄ / 3 moles Si) ≈ 11.48 moles Si₃N₄.
To know more about balanced chemical equation click on below link:
https://brainly.com/question/15052184#
#SPJ11
I NEED HELP ASAP PLEASE HELP!!!
1)Calculate the pH of a 0. 03 M solution of nitric acid.
2)Calculate the hydronium ion concentration of a sulfuric acid solution with a pH of 5. 43.
3)Calculate the pOH of a 0. 025 M solution of sodium hydroxide.
4)Calculate the pH of a 0. 002 M solution of lithium hydroxide
What is the percentage composition of each element in dinitrogen monoxide, n2o? (5 points) a 58.32% n; 41.68% o b 60.55% n; 39.45% o c 63.64% n; 36.36% o d 62.66% n; 37.34% o
The percentage composition of each element in dinitrogen monoxide is 63.64% N; 36.36% O.
To determine the percentage composition of each element in dinitrogen monoxide (N2O), we need to calculate the molar mass of the compound and the molar mass of each element.
Molar mass of N2O = (2 x molar mass of N) + molar mass of O
= (2 x 14.01 g/mol) + 16.00 g/mol
= 44.02 g/mol
The percentage composition of each element can be calculated as follows:
Percentage composition of N = (2 x molar mass of N) / molar mass of N2O x 100%
= (2 x 14.01 g/mol) / 44.02 g/mol x 100%
= 63.64%
Percentage composition of O = molar mass of O / molar mass of N2O x 100%
= 16.00 g/mol / 44.02 g/mol x 100%
= 36.36%
Therefore, the correct answer is option c: 63.64% N; 36.36% O.
Know more about Percentage composition here:
https://brainly.com/question/11952337
#SPJ11
If the pressure of a 7. 2 liter sample of gas changes from 735 mmHg to 800 mmHg and the temperature remains constant, what is the new volume of
gas?
06. 62 L
оооо
0 5. 9 L
0 7. 2L
The new volume of the gas is approximately 6.62 L.
To find the new volume of the gas when the pressure changes from 735 mmHg to 800 mmHg and the temperature remains constant, we can use Boyle's Law, which states that the product of pressure and volume is constant for a given amount of gas at a constant temperature. In mathematical terms, this is represented as:
P₁V₁ = P₂V₂
where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.
Given the initial conditions:
P₁ = 735 mmHg
V₁ = 7.2 L
P₂ = 800 mmHg
We want to find V₂. Rearrange the equation to solve for V₂:
V₂ = (P₁V₁) / P₂
Now, plug in the values:
V₂ = (735 mmHg × 7.2 L) / 800 mmHg
V₂ = 5268 / 800
V₂ ≈ 6.585 L
Among the given options, the closest answer to 6.585 L is 6.62 L. Therefore, the new volume of the gas is approximately 6.62 L.
To know more about Boyle's Law :
https://brainly.com/question/1437490
#SPJ11