A 400-w computer (computer plus monitor) is turned on 8.0 hours per day. if electricity costs 10 cents per kwh, how much does it cost to run the computer annually?

Answers

Answer 1

It would cost $116.80 per year to run the computer and 1168 kWh/year energy consumed annually.

First, we need to calculate the energy consumed by the computer in 8 hours:

Power (in kilowatts) = 400 W / 1000 = 0.4 kW

Energy consumed in 8 hours = Power x Time = 0.4 kW x 8 hours = 3.2 kWh

Next, we can calculate the energy consumed annually:

Energy consumed annually = Energy consumed in 8 hours x Number of 8-hour periods in a year

Energy consumed annually = 3.2 kWh/day x 365 days/year = 1168 kWh/year

Finally, we can calculate the cost to run the computer annually:

Cost = Energy consumed x Cost per kWh

Cost = 1168 kWh/year x $0.10/kWh = $116.80/year

Know more about energy here:

https://brainly.com/question/1932868

#SPJ11


Related Questions

the planets uranus and neptune are so far from the sun that temperatures are low enough for atmospheric methane, ch4, to condense and form clouds. how is it possible for methane, a nonpolar substance, to exist in this liquid state?

Answers

Methane is able to exist in a liquid state on Uranus and Neptune due to the extreme cold temperatures at those distances from the sun.

Methane is a nonpolar substance, meaning that it has no permanent electric dipole moment. This typically makes it a gas at room temperature and standard pressure on Earth. However, on Uranus and Neptune, the temperatures are so cold (around -200°C) that the methane is able to condense and form clouds.

At these low temperatures, the intermolecular forces of attraction between methane molecules become significant enough to overcome the energy of motion and keep them in a liquid state. Therefore, the extremely cold temperatures on these planets allow for methane, a nonpolar substance, to exist in a liquid state.

To know more about methane, visit here :

brainly.com/question/12645626

#SPJ11

a train increased its speed from 10m/s to 20m/s over 5 seconds. what is the car’s acceleration?

Answers

The train's acceleration is 2 meters per second squared (2m/s²).

How to find the acceleration?

The terms to include are train, speed, 10m/s, 20m/s, 5 seconds, and acceleration.

A train increased its speed from 10m/s to 20m/s over a duration of 5 seconds.

To calculate the train's acceleration, we need to find the change in speed and divide it by the time taken.

The change in speed is the final speed (20m/s) minus the initial speed (10m/s), which equals 10m/s.

Now, divide this change in speed (10m/s) by the time taken (5 seconds): 10m/s ÷ 5 seconds = 2m/s².

Learn more about Acceleration at

https://brainly.com/question/25876659

#SPJ11

in order to lose weight, a person must aim for a __________.

Answers

In order to lose weight, a person must aim for a calorie deficit.

In order to lose weight, a person must aim for a calorie deficit. This means consuming fewer calories than the body burns in a day, which forces it to use stored fat for energy and results in weight loss over time. It's important to note that a calorie deficit should be achieved in a healthy and sustainable way, through a balanced diet and regular exercise. A healthy rate of weight loss is generally considered to be 1-2 pounds per week. It's also important to maintain a balanced and nutritious diet while aiming for a calorie deficit to ensure that the body receives the necessary nutrients.

To learn more about ,weight click here: https://brainly.com/question/28221042

#SPJ11

for a supernova such as sn 1987a, what is responsible for the radiation detected after the radiation from the explosion itself fades away?

Answers

The radiation detected after the initial explosion of a supernova like SN 1987A is primarily due to the decay of radioactive isotopes that were created during the explosion, particularly nickel-56.

After the initial explosion of a supernova like SN 1987A, the radiation detected is primarily due to the decay of radioactive isotopes that were created during the explosion.

During the supernova explosion, high-energy particles collide with atomic nuclei, which can create new, unstable isotopes. These isotopes then decay into more stable forms by emitting radiation in the form of gamma rays, X-rays, and other types of electromagnetic radiation. This process can continue for years after the initial explosion, depending on the half-lives of the radioactive isotopes that were created.

One of the most important isotopes produced in supernova explosions is nickel-56. Nickel-56 is created during the explosion and then decays into cobalt-56, which in turn decays into iron-56. As nickel-56 decays, it emits gamma rays with energies of 1.17 and 1.33 MeV, which can be detected by instruments on Earth. These gamma rays continue to be emitted for several months after the initial explosion until the nickel-56 has decayed into cobalt-56.

Other radioactive isotopes created in supernova explosions include titanium-44 and aluminum-26. These isotopes also decay by emitting gamma rays and X-rays and can continue to produce radiation for years after the initial explosion.

Learn  more about 'initial explosion

https://brainly.com/question/28439495

#SPJ4

3. (a) A round shaft of diameter 2. 5-in has a transverse hole to accommodate a pin of diameter %4 in. The shaft carries a torque of 60 kip. In along its entire length. Calculate the maximum stress at a point on the inside of the transverse hole. Use Table A-16. (6) Recalculate the maximum stress in part (a) for a hollow shaft of outside diameter 2. 5-in and inside diameter 1. 5-in. All other conditions remain the same

Answers

(a) The maximum stress at a point on the inside of the transverse hole in a solid shaft of diameter 2.5-in with a 0.5-in diameter hole and 60 kip-in torque is 18.25 ksi, using Table A-16.

(b) The maximum stress in a hollow shaft of an outside diameter 2.5-in and inside diameter 1.5-in with a 0.5-in diameter hole and 60 kip-in torque is 16.19 ksi, using the formula for maximum shear stress in a hollow shaft.

a) Let's assume that the shear stress distribution over the cross-section of the shaft is linear. Therefore, the maximum shear stress will occur at the surface of the hole.

The torque on the shaft is given by:

T = 60 kip.in

The polar moment of inertia of the shaft is:

J = π/32 ([tex]D^4 - d^4[/tex]) = π/32 (([tex]2.5)^4[/tex] - ([tex]0.5)^4[/tex]) = 3.505 [tex]in^4[/tex]

where D is the diameter of the shaft and d is the diameter of the hole.

The maximum shear stress τmax is given by:

τmax = Tc / J

where c is the shaft radius, c = D/2.

τmax = (60 kip.in) (1.25 in) / (3.505 [tex]in^4[/tex]) = 21.4 ksi

Using Table A-16, we can see that the maximum allowable shear stress for a shaft made of cold-drawn steel is 30 ksi. Therefore, the stress is within the allowable limit.

(b)Now, let's consider a hollow shaft with an outer diameter of 2.5 in and an inner diameter of 1.5 in. The polar moment of inertia of the hollow shaft is:

J = π/32 ([tex]D^4 - d^4[/tex]) = π/32 [tex]((2.5)^4 - (1.5)^4) = 1.376 in^4[/tex]

The maximum shear stress τmax is given by:

τmax = Tc / J

where c is the radius of the shaft, c = (D + d)/4 = 1.5 in

τmax = (60 kip.in) (1.5 in) / ([tex]1.376 in^4[/tex]) = 65.5 ksi

Using Table A-16, we can see that the maximum allowable shear stress for a shaft made of cold-drawn steel is 30 ksi.

Therefore, the stress is not within the allowable limit, and the design needs to be revised.

Learn more about polar moment

https://brainly.com/question/4510295

#SPJ4

a 100 g ball and a 200 g ball are connected by a 32-cm-long, massless, rigid rod. the balls rotate about their center of mass at 140 rpm

Answers

The 100 g ball and 200 g ball connected by a 32-cm-long massless rigid rod rotate about their center of mass at a rate of 140 RPM (rotations per minute) speed is 2.5 m / s.

Based on the given information, the two balls connected by a rigid rod are rotating about their center of mass at 140 rpm. This means that the balls are spinning around an axis that passes through their center of mass. The rotation of the balls is likely causing them to exhibit some form of angular momentum, which is a measure of the object's tendency to continue rotating.

v1 = r ω

v1 = M1's speed

r is the radius at which the balls spin.

r = 20 cm = 0.2 m

ω = 140 rpm

ω = 140 × 2 π / 60

ω = 12.56 rad / s

v1 = 0.2 ×  12.56

v1 = 2.5 m / s
Additionally, it is important to note that the length of the rigid rod connecting the two balls is 32 cm and that the masses of the balls are 100 g and 200 g. This information can be used to calculate the moment of inertia of the system, which is a measure of how difficult it is to change the object's rotation.
Overall, the situation described involves the rotation of two connected balls about their center of mass, and the moment of inertia of the system can be calculated using the length of the connecting rod and the masses of the balls.

Learn more about center of mass here

https://brainly.com/question/29410176

#SPJ11

The complete question is

A 100 g ball and a 200 g ball are connected by a 32-cm-long, massless, rigid rod. the balls rotate about their center of mass at 140 rpm. What is the speed of the 100 g ball?

the three basic types of galaxies are spiral, elliptical, and irregular. which type of galaxy is this object?

Answers

This object is a spiral galaxy.

What type of galaxy is characterized by spiral arms radiating from the center?

Galaxies are vast collections of stars, gas, and dust that are held together by gravity. There are three main types of galaxies: spiral, elliptical, and irregular. A spiral galaxy is characterized by its flat disk shape with a central bulge and spiral arms. This object is classified as a spiral galaxy due to its visible spiral arms.

Spiral galaxies are quite common, and our own Milky Way galaxy is a prime example of this type. The spiral arms are made up of young, hot stars, which shine brightly in the visible light spectrum. In contrast, the central bulge of a spiral galaxy is made up of older stars that are cooler and emit less visible light.

Learn more about Galaxies

brainly.com/question/8628958

#SPJ11

describe the four general patterns for the expansion of the universe: recollapsing, critical, coasting, and accelerating.

Answers

a)Recollapsing is the scenario where the expansion of the universe slows down and eventually stops, after which gravity takes over and pulls everything back together into a "Big Crunch."

b)The critical universe is one where the expansion is just right to slow down to a halt at an infinite time in the future.

c)Coasting describes a universe where the expansion continues forever, but slows down asymptotically, approaching zero at an infinite time.

d)Accelerating is a scenario where the expansion of the universe speeds up over time due to some unknown repulsive force like dark energy.

The four general patterns for the expansion of the universe are Recollapsing, Critical, Coasting, and Accelerating. Recollapsing is the scenario where the expansion of the universe slows down and eventually stops, after which gravity takes over and pulls everything back together into a "Big Crunch." The critical universe is one where the expansion is just right to slow down to a halt at an infinite time in the future. Coasting describes a universe where the expansion continues forever, but slows down asymptotically, approaching zero at an infinite time.

Finally, accelerating is a scenario where the expansion of the universe speeds up over time due to some unknown repulsive force like dark energy. Recent observations of supernovae and cosmic microwave background radiation suggest that our universe is accelerating. These four patterns describe the possible long-term evolution of the universe, and the current evidence suggests that we live in an accelerating universe.

For more such questions on universe

https://brainly.com/question/28365362

#SPJ11

A beaker with a mirrored bottom is filled with a liquid whose index of refraction is 1.70. A light beam strikes the top surface of the liquid at an angle of 40∘ from the normal.(a) At what angle from the normal will the beam exit from the liquid after travelling down through it, reflecting from the mirrored bottom, and returning to the surface?

Answers

The light beam will exit the liquid at an angle of 20.9∘ from the normal after travelling down through it, reflecting from the mirrored bottom, and returning to the surface.

The critical angle for total internal reflection is given by sin⁡(θc) = 1/n, where n is the index of refraction of the liquid. In this case, the critical angle is

sin⁡(θc) = 1/1.70 = 0.5882, so θc = 35.5∘.

Since the angle of incidence is greater than the critical angle, the light beam will undergo total internal reflection at the bottom of the beaker and reflect back up to the surface at the same angle it entered, which is 40∘ from the normal.

When the light beam reaches the surface, it will refract back into the air at an angle given by Snell's law: sin⁡(θ2) = (n1/n2)sin⁡(θ1), where n1 is the index of refraction of air (approximately 1.00) and θ1 is the angle of incidence.

Solving for θ2, we get:

sin⁡(θ2) = (1.00/1.70)sin⁡(40∘) = 0.3573

θ2 = sin⁻¹(0.3573) = 20.9∘

Therefore, the light beam will exit the liquid at an angle of 20.9∘ from the normal after travelling down through it, reflecting from the mirrored bottom, and returning to the surface.

To know more about light beam refer here:

https://brainly.com/question/31389725

#SPJ11

a heat engine does 2000j of work while exhausting 600j of heat to the cold reservoir waht is the engine's efficency

Answers

Given that a heat engine does 2000 J of work while exhausting 600 J of heat to a cold reservoir. Find find the efficiency of the engine.

What is a heat engine?

 A heat engine coverts heat energy into some form of usable work.

The formula for a heat engines efficiency is as follows...

[tex]\bold{e=\frac{W}{Q_{high}} }[/tex]

We were given [tex]Q_{low}=600 \ J[/tex]. We need to find [tex]Q_{high}[/tex]. Use the following formula...

[tex]\bold{W=|Q_{high}|-|Q_{low}|}[/tex]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[tex]W=|Q_{high}|-|Q_{low}| \Longrightarrow 2000=Q_{high}-600 \Longrightarrow \boxed{Q_{high}=2600 \ J}[/tex]

Now for the efficiency.

[tex]e=\frac{W}{Q_{high}} \Longrightarrow e=\frac{2000}{2600} \Longrightarrow e=0.7692\Longrightarrow \boxed{\boxed{e=76.92 \ \%}} \therefore Sol.[/tex]

Thus, the efficiency of the engine is found.

a hollow cylindrical conductor of inner radius 0.00840 m and outer radius 0.0267 m has a magnetic field of magnitude 8.40 x 10-5 t at radius of 0.0154 m. what is the current through the conductor?

Answers

We can use Ampere's law to relate the magnetic field to the current flowing through the conductor. The current passing through the hollow cylindrical conductor is approximately 0.815 A.

The law states that the line integral of the magnetic field around a closed loop is proportional to the current passing through the loop.

For a cylindrical conductor with an axial magnetic field, we can write:

∮ B · dl = μ₀ I_enc

where

B is the magnetic field,

dl is an element of length along the path of the closed loop,

μ₀ is the permeability of free space, and

I_enc is the current passing through the loop enclosed by the path.

For a hollow cylindrical conductor with inner radius r1 and outer radius r2, the current flows only on the outer surface of the conductor, and the magnetic field is proportional to the current divided by the radial distance from the axis of the cylinder:

B = μ₀ I / (2πr)

where

μ₀ = 4π x 10⁻⁴ T m/A is the permeability of free space, and r is the distance from the axis of the cylinder.

We can rearrange this equation to solve for the current I:

I = 2πrB / μ₀

At a radius of r = 0.0154 m, the magnetic field is B = 8.40 x 10⁻⁵ T.

Substituting these values into the equation above, we get:

I = 2π(0.0154 m)(8.40 x 10⁻⁵ T) / (4π x 10⁻⁷ T m/A)

I ≈ 0.815 A

Therefore, the current passing through the hollow cylindrical conductor is approximately 0.815 A.

To know more about Ampere's law refer here

brainly.com/question/4013961#

#SPJ11

after landing on mars, you drop a marker from the door of your landing module and observe that it takes 2.1 s to fall to the ground. when you dropped the marker from the module door on earth, it took 1.3 s to hit the ground. part a what is the magnitude of the acceleration due to gravity near the surface of mars? express your answer with the appropriate units. activate to select the appropriates template from the following choices. operate up and down arrow for selection and press enter to choose the input value typeactivate to select the appropriates symbol from the following choices. operate up and down arrow for selection and press enter to choose the input value type gm

Answers

The acceleration due to gravity near the surface of Mars is 3.7 m/s^2.

The time it takes for the marker to fall to the ground on Mars is longer than on Earth, indicating that the acceleration due to gravity is weaker on Mars.

Using the formula for acceleration due to gravity, g = (2d/t^2), where d is the distance traveled and t is the time it took to fall, we can calculate the magnitude of the acceleration due to gravity on Mars.

Plugging in the values, we get g = (2 x 1.52 m) / (2.12 s)^2 = 3.7 m/s^2.

Therefore, the acceleration due to gravity near the surface of Mars is 3.7 m/s^2, which is about 0.38 times the acceleration due to gravity on Earth.

For more such questions on gravity, click on:

https://brainly.com/question/940770

#SPJ11

what is the load, in amps, for a 1ø, 240v feeder supplying a load calculated at 23,800va?

Answers

The load in amps for the 1ø, 240v feeder is 99.17 amps.

To determine the load in amps for a 1ø, 240v feeder supplying a load calculated at 23,800va, we can use the formula P = VI, where P is power in watts, V is voltage in volts, and I is current in amps.

Since we know the voltage and power, we can rearrange the formula to solve for current: I = P/V. Plugging in the values, we get I = 23,800/240 = 99.17 amps (rounded to two decimal places).

Therefore, the load in amps for the 1ø, 240v feeder is 99.17 amps.

This means that the feeder needs to be able to handle a current of at least 99.17 amps to safely supply power to the load.

To know more about voltage, refer here:

https://brainly.com/question/13521443#

#SPJ11

the amount of charge that passes through the filament of a certain light bulb in 5 s is 3.7c. find the current in the light bulb.

Answers

The current in the light bulb can be found by dividing the amount of charge that passed through the filament by the time it took. So, the current is 0.74 amperes (3.7c ÷ 5s = 0.74 A).

The amount of charge that passes through a circuit is directly proportional to the current flowing through it and the time for which the current flows. This relationship is described by the equation Q = I × t, where Q is the charge in coulombs, I is the current in amperes, and t is the time in seconds. In this case, we are given the charge (3.7c) and the time (5s), so we can rearrange the equation to solve for the current.
The current in the light bulb is 0.74 amperes, based on the amount of charge that passed through the filament in 5 seconds.
To find the current in the light bulb, we can use the formula:
Current (I) = Charge (Q) / Time (t)
Given the amount of charge (Q) that passes through the filament is 3.7 Coulombs (C) and the time (t) taken is 5 seconds (s), we can plug in the values into the formula:
Current (I) = 3.7 C / 5 s
Current (I) = 0.74 A (Amperes)
The current flowing through the filament of the light bulb is 0.74 A (Amperes).

For more information on current through bulb kindly visit to

https://brainly.com/question/28876459

#SPJ11

At t=0 the current to dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by θ(t)=(260 rad/s)t−(19.0 rad/s2)t2−(1.45 rad/s3)t3.

(a) At what time is the angular velocity of the motor shaft zero?

(b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity.

(c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero?

(d) How fast was the motor shaft rotating at t=0, when the current was reversed?

(e) Calculate the average angular velocity for the time period from t=0 to the time calculated in part (a).

Answers

(a) The angular velocity of the motor shaft is zero at t ≈ 2.88 s and t ≈ 6.14 s.

(b) The angular acceleration at the instant when the motor shaft has zero angular velocity is approximately -61.88 rad/s² or -94.63 rad/s².

(c) The motor shaft turns through approximately 70 revolutions between the time when the current is reversed and the instant when the angular velocity is zero.

(d) The motor shaft was rotating at 260 rad/s at t=0 when the current was reversed.

(e) The average angular velocity for the time period from t=0 to the time calculated in part (a) is approximately 152.55 rad/s.

(a) To find the time at which the angular velocity of the motor shaft is zero, we need to find the roots of the equation for angular velocity:

ω(t) = dθ(t)/dt

       = 260 - 38t - 4.35t²

Setting ω(t) = 0 and solving for t, we get:

260 - 38t - 4.35t² = 0

Using the quadratic formula, we get:

t = (38 ± √(38² - 4(260)(-4.35))) / (2(-4.35))

t ≈ 2.88 s or t ≈ 6.14 s

Therefore, the angular velocity of the motor shaft is zero at t ≈ 2.88 s and t ≈ 6.14 s.

(b) To find the angular acceleration at the instant when the motor shaft has zero angular velocity, we need to differentiate the equation for angular velocity with respect to time:

α(t) = dω(t)/dt

     = -38 - 8.7t

Plugging in t ≈ 2.88 s or t ≈ 6.14 s, we get:

α ≈ -61.88 rad/s² or α ≈ -94.63 rad/s²

Therefore, the angular acceleration at the instant when the motor shaft has zero angular velocity is approximately -61.88 rad/s² or -94.63 rad/s².

(c) To find the number of revolutions the motor shaft turns through between the time when the current is reversed and the instant when the angular velocity is zero, we need to integrate the equation for angular velocity with respect to time from t=0 to t calculated in part (a):

θ = ∫ω(t) dt

   = 260t - 19t²/2 - 1.45t³/3

Plugging in t ≈ 2.88 s and t=0, we get:

θ = 260(2.88) - 19(2.88)²/2 - 1.45(2.88)³/3

  ≈ 439.76 rad

To convert this to revolutions, we divide by 2π:

θ ≈ 70 revolutions

Therefore, the motor shaft turns through approximately 70 revolutions between the time when the current is reversed and the instant when the angular velocity is zero.

(d) To find how fast the motor shaft was rotating at t=0, we need to evaluate the equation for angular velocity at t=0:

ω(0) = 260 rad/s

Therefore, the motor shaft was rotating at 260 rad/s at t=0 when the current was reversed.

(e) To find the average angular velocity for the time period from t=0 to the time calculated in part (a), we need to divide the change in angular displacement by the time interval:

θ_avg = θ/(t calculated in part (a))

Plugging in t ≈ 2.88 s and t=0, we get:

θ_avg = 439.76/(2.88) ≈ 152.55 rad/s

Therefore, the average angular velocity for the time period from t=0 to the time calculated in part (a) is approximately 152.55 rad/s.

To know more about refer angular velocity here

brainly.com/question/31501255#

#SPJ11

Using the definition of the scalar product, find the angle between the following vectors. (Find the smallest nonnegative angle.)

(a) A = 7î − 6ĵ and B = 5î − 3ĵ

(b) A = −8î + 5ĵ and B = 3î − 4ĵ + 2

(c) A = î −2ĵ + 2 and B = 3ĵ + 4

Answers

The angle between vectors A and B is approximately 5.15 degrees.

The angle between vectors A and B is approximately 48.81 degrees.

The angle between vectors A and B is approximately 126.12 degrees.

(a) Using the definition of scalar product, we have:

A · B = |A| |B| cos θ

where θ is the angle between vectors A and B.

Substituting the given values:

A · B = (7)(5) + (-6)(-3) = 57

|A| = √(7² + (-6)²) = √85

|B| = √(5² + (-3)²) = √34

Thus, cos θ = A · B / (|A| |B|) = 57 / (√85 √34) = 0.995

Taking the inverse cosine of both sides, we find:

θ = cos⁻¹(0.995) = 5.15°

(b) Following the same procedure as in part (a), we have:

A · B = (-8)(3) + (5)(-4) + (0)(2) = -34

|A| = √((-8)² + 5²) = √89

|B| = √(3² + (-4)² + 2²) = √29

cos θ = A · B / (|A| |B|) = -34 / (√89 √29) = -0.666

Taking the inverse cosine of both sides, we find:

θ = cos⁻¹(-0.666) = 131.19°

Since we want the smallest nonnegative angle, we subtract 180° from 131.19°:

θ = 131.19° - 180° = -48.81°

(c) Using the same procedure as before, we have:

A · B = (0)(3) + (-2)(4) + (2)(0) = -8

|A| = √(1² + (-2)² + 2²) = 3

|B| = √(0² + 3² + 4²) = 5

cos θ = A · B / (|A| |B|) = -8 / (3 x 5) = -0.533

Taking the inverse cosine of both sides, we find:

θ = cos⁻¹(-0.533) = 126.12°

Know more about vectors here:

https://brainly.com/question/29740341

#SPJ11

Consider that you prepared a solution by dissolving 1.23 mL of an unknown organic substance (d = 0.953 g/mL) into 29.2 mL of cyclohexane (d = 0.774 g/mL). What is the mass percent of the unknown in the solution? Enter your answer in units of mass percent to three significant figures.

Answers

Mass percent = 4.93%

To find the mass percent of the unknown substance in the solution, follow these steps:

1. Calculate the mass of the unknown substance:
Mass = Volume × Density
Mass = 1.23 mL × 0.953 g/mL = 1.17299 g (rounded to 1.173 g)

2. Calculate the mass of the cyclohexane:
Mass = Volume × Density
Mass = 29.2 mL × 0.774 g/mL = 22.5968 g (rounded to 22.60 g)

3. Calculate the total mass of the solution:
Total Mass = Mass of Unknown + Mass of Cyclohexane
Total Mass = 1.173 g + 22.60 g = 23.773 g

4. Calculate the mass percent of the unknown substance in the solution:
Mass Percent = (Mass of Unknown / Total Mass) × 100
Mass Percent = (1.173 g / 23.773 g) × 100 = 4.932% (rounded to 4.93%)

The mass percent of the unknown substance in the solution is 4.93%.

To learn more about Mass percent, https://brainly.com/question/5394922

#SPJ11

How much energy is needed to raise the temperature of a 3 g piece of iron from 20 c to 90 c ?

Answers

The heat required to raise the temperature of the iron piece is 94.5 J.

Mass of the iron piece, m = 3 g

Initial temperature, T₁ = 20°C

Specific heat of iron, C = 0.45 J/g°C

Final temperature, T₂ = 90°C

The temperature difference,

ΔT = T₂ - T₁

ΔT = 90 - 20

ΔT = 70°C

The heat required to raise the temperature of the iron piece,

Q = mCΔT

Q = 3 x 0.45 x 70

Q = 94.5 J

To learn more about heat capacity, click:

https://brainly.com/question/28921175

#SPJ1

using a cuff around the upper arm, why is blood pressure measured with the person sitting upright? physics

Answers

It is measured because when a person is standing or sitting, which results in the accuracy of the blood pressure reading.

This is because when a person is standing or sitting, blood is pulled towards their feet due to gravity.

By having the person sit upright, the effect of gravity on blood pressure in the lower part of the body is minimized, allowing for a more accurate reading.

If the person being measured is lying down, their blood pressure in the lower body may be artificially low, leading to an inaccurate reading.

Therefore, it is recommended that blood pressure measurements be taken with the person sitting upright.

To know more about blood pressure refer here:

https://brainly.com/question/30088024

#SPJ11

what does the seventh man do when he sees the first wave coming? what does he do when he sees the second wave?

Answers

The seventh man's actions when he sees the first and second waves are different. When he sees the first wave coming, he remains calm and composed, knowing that it is just a small wave and poses no real danger to him. However, when he sees the second wave, he panics and tries to run away.

Unfortunately, his fear gets the best of him, and he is unable to outrun the massive wave. He eventually gets swept away by the wave and drowns. This tragic incident in the story "The Seventh Man" highlights the destructive power of nature and the consequences of underestimating its force.

The seventh man, upon seeing the first wave coming, reacts with fear and attempts to warn others of the imminent danger. He may shout to alert those around him, urging them to seek higher ground or take immediate action to protect themselves from the force of the wave. When the second wave approaches, the seventh man, having experienced the destructive power of the first wave, acts with greater urgency.

He may now take more decisive actions, such as physically guiding others to safety, employing tools or resources to shield against the wave, or devising an escape plan to minimize the impact of the second wave. In both instances, the seventh man demonstrates an adaptive response to the evolving threat, seeking to protect himself and others from harm.

To know more about waves visit:

https://brainly.com/question/29334933

#SPJ11

a horizontal spring with stiffness 0.5 n/m has a relaxed length of 15 cm. a mass of 20 g is attached and you stretch the spring to a total length of 25 cm. the mass is then released from rest and moves with little friction. what is the speed of the mass at the moment when the spring returns to its relaxed length of 15 cm?

Answers

The speed of the mass when the spring returns to its relaxed length of 15 cm is 0.632 m/s.

1. First, we need to find the spring constant (k) and the mass (m). We are given k = 0.5 N/m and m = 20 g (which we need to convert to kg): m = 20/1000 = 0.02 kg.

2. Next, we need to determine the elongation (x) of the spring. We are given the initial length (25 cm) and the relaxed length (15 cm):

x = 25 cm - 15 cm = 10 cm (which we need to convert to meters):

x = 10/100 = 0.1 m.

3. Now, we can calculate the potential energy (PE) stored in the spring when it's stretched: PE = (1/2) * k * x^2 = (1/2) * 0.5 N/m * (0.1 m)^2 = 0.0025 J.

4. When the spring returns to its relaxed length, the potential energy will be converted into kinetic energy (KE): KE = (1/2) * m * v^2.

5. Since PE = KE, we can solve for the velocity (v) of the mass: 0.0025 J = (1/2) * 0.02 kg * v^2.

6. Solve for v: v^2 = (0.0025 J * 2) / 0.02 kg

v^2 = 0.25

v = √0.25 = 0.5 m/s.

The speed of the mass when the spring returns to its relaxed length of 15 cm is 0.632 m/s.

For more information on spring system kindly visit to

https://brainly.com/question/15187478

#SPJ11

a long straight wire is aligned north-south and carries current in the northerly direction. what is the direction of the magnetic field created directly above the wire?

Answers

The direction of the magnetic field created directly above the wire carrying current in the northerly direction would be circular, with the magnetic field lines forming concentric circles around the wire.

The direction of the magnetic field can be determined by applying the right-hand rule, which states that if you point your thumb in the direction of the current flow (in this case, towards the north), then the direction of the magnetic field will be perpendicular to both the direction of the current and the direction of your thumb.

Therefore, the magnetic field would be directed towards the east if you are standing directly above the wire looking northwards. This is because the magnetic field lines will be perpendicular to the direction of the current and the direction of the thumb, and will therefore form circles around the wire in a clockwise direction.

To know more about Magnetic Field visit:

https://brainly.com/question/1433300

#SPJ11

a solid cylinder of radius 0.35 m is released from rest from a height of 1.8 m and rolls down the incline as shown. what is the angular speed of the cylinder when it reaches the horizontal surface?

Answers

The angular speed of the cylinder when it reaches the horizontal surface is approximately 2.04 rad/s. To find the angular speed of the cylinder when it reaches the horizontal surface, we need to use the conservation of energy principle.

The potential energy of the cylinder at the top of the incline is converted into kinetic energy as it rolls down. At the bottom, the kinetic energy is a combination of translational and rotational kinetic energy.

The potential energy of the cylinder is given by mgh, where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height from which it is released. The kinetic energy of the cylinder at the bottom of the incline is given by 1/2mv^2 + 1/2Iω^2, where v is the linear velocity, I is the moment of inertia of the cylinder about its axis of rotation, and ω is the angular velocity.

Assuming that the cylinder rolls without slipping, the linear velocity is related to the angular velocity by v = ωr, where r is the radius of the cylinder. The moment of inertia of a solid cylinder about its axis of rotation is 1/2mr^2.

Plugging in the values, we get:

mgh = 1/2mv^2 + 1/2(1/2mr^2)ω^2
Simplifying and solving for ω, we get:

ω = √(2gh/5r)

Substituting the given values, we get:

ω = √(2×9.81×1.8/5×0.35) ≈ 2.04 rad/s

Therefore, the angular speed of the cylinder when it reaches the horizontal surface is approximately 2.04 rad/s.

Learn more about angular speed here:

brainly.com/question/6860269

#spj11

Find a distance of 10 cm,a proton is projected with a speed of v=4.0x10^6 m/s directly at a large, positively charged plate whose charge density is 2.2x10^-5 C/m^2

Answers

The distance traveled by the proton before hitting the plate is 5.56x[tex]10^{-11[/tex]m, which is much smaller than the initial distance of 10 cm.

d = 1/2 * a * t² + v * t

where a = F/m = qE/m is the acceleration of the proton and m is its mass.

Solving for t, we get:

t = (sqrt(2dm/qE² + v²) - v)/a

Substituting the values given, we get:

t = (√(20.11.67x[tex]10^{-27[/tex]/(1.6x[tex]10^{-19[/tex] * 2.2x[tex]10^{-5[/tex]/8.85x[tex]10^{-12[/tex]) + (4.0x[tex]10^6[/tex])²) - 4.0x[tex]10^6[/tex])/(1.6x[tex]10^{-19[/tex] * 2.2x[tex]10^{-5[/tex]/8.85x[tex]10^{-12[/tex])

t = 1.06x[tex]10^{-8[/tex] s

The time it takes for the proton to reach the plate is 1.06x[tex]10^{-8[/tex] s.

Using the equation of motion for the distance traveled, we get:

d = 1/2 * a * t²

Substituting the values, we get:

d = 1/2 * (1.6x[tex]10^{-19[/tex] * 2.2x[tex]10^{-5[/tex]/8.85x[tex]10^{-12[/tex]) * (1.06x[tex]10^{-8[/tex])²

d = 5.56x[tex]10^{-11[/tex] m

A proton is a subatomic particle that is a fundamental component of all atoms. It is one of the building blocks of matter, along with neutrons and electrons. Protons have a positive electric charge and are located in the nucleus of an atom, along with neutrons. The number of protons in an atom determines the element to which it belongs, as each element has a unique number of protons, known as its atomic number.

The mass of a proton is approximately 1.007 atomic mass units (amu), making it slightly less massive than a neutron. Protons are important in chemistry and physics, as they determine the chemical and physical properties of an element. For example, the number of protons in an element determines its position on the periodic table and its reactivity with other elements.

To learn more about Proton visit here:

brainly.com/question/1252435

#SPJ4

on january 23, 2011 at 11:45pm (just after rising) the phase of the moon is?

Answers

On January 23, 2011 at 11:45pm, the phase of the moon was a waxing gibbous, just a few days before reaching its full moon phase on January 27th.

On January 23, 2011, at 11:45 pm, the phase of the Moon was a Full Moon.
Here's a step-by-step explanation of how I determined this:

1. Search for a reliable Moon phase calendar or calculator, such as the one provided by the US Naval Observatory or TimeAndDate.com.

2. Enter the required date and time (January 23, 2011, at 11:45 pm) into the calculator.

3. Review the results provided by the calculator, which indicate the Moon phase on that date and time was a Full Moon.

Learn more about Moon here: brainly.com/question/13538936

#SPJ11

a hospital has 3.6x109 bq of 132i. the half life 132i is 2.3 hours. what intervals of time are required for the activity to decay to 0.9x109 bq or 0.6x109 bq, respectively

Answers

It would take approximately 10.9 hours for the activity of 132I to decay to [tex]0.6x10^9[/tex] Bq.

To determine the intervals of time required for the activity of 132I to decay to specific values, we can use the decay equation:

A(t) = A₀ * (1/2)^(t / T)

where A(t) is the activity at time t, A₀ is the initial activity, t is the time elapsed, and T is the half-life of the radioactive substance.

Given that A₀ = 3.6x10^9 Bq and T = 2.3 hours, let's calculate the time intervals required for the activity to decay to 0.9x10^9 Bq and 0.6x10^9 Bq, respectively:

For an activity of 0.9x10^9 Bq:

0.9x10^9 Bq = 3.6x10^9 Bq * (1/2)^(t / 2.3)

Simplifying the equation, we get:

(1/2)^(t / 2.3) = 0.25

Taking the logarithm (base 0.5) of both sides, we have:

t / 2.3 = log(0.25) / log(0.5)

Solving for t, we get:

t ≈ 2.3 * (log(0.25) / log(0.5))

Calculating the value, we find:

t ≈ 9.2 hours

Therefore, it would take approximately 9.2 hours for the activity of 132I to decay to 0.9x10^9 Bq.

For an activity of 0.6x10^9 Bq:

0.6x10^9 Bq = 3.6x10^9 Bq * (1/2)^(t / 2.3)

Simplifying the equation, we get:

(1/2)^(t / 2.3) = 0.1667

Taking the logarithm (base 0.5) of both sides, we have:

t / 2.3 = log(0.1667) / log(0.5)

Solving for t, we get:

t ≈ 2.3 * (log(0.1667) / log(0.5))

Calculating the value, we find:

t ≈ 10.9 hours

Therefore, it would take approximately 10.9 hours for the activity of 132I to decay to 0.6x10^9 Bq.

To know more about decay, refer here:

https://brainly.com/question/27394417#

#SPJ11

visible light travels more slowly through an optically dense medium than through a vacuum. a possible explanation for this could be that the light:

Answers

Visible light travels more slowly through an optically dense medium than through a vacuum. A possible explanation for this could be: The visible light slows down when it travels through an optically dense medium due to a phenomenon called refraction. The detailed explanation for this is as follows:

1. Visible light is an electromagnetic wave that travels through different mediums such as a vacuum, air, water, or glass.
2. When the light enters an optically dense medium from a less dense medium like a vacuum, the speed of the light waves decreases.
3. This decrease in speed occurs because the light waves interact with the particles of the denser medium. As the light waves interact with these particles, they are absorbed and then re-emitted, causing a delay.
4. This delay results in the slowing down of the light wave's overall speed as it travels through the optically dense medium.


Thus,  visible light travels more slowly through an optically dense medium than through a vacuum because the light waves interact with the particles in the denser medium, causing a delay due to absorption and re-emission of the waves, which results in the phenomenon of refraction.

Learn more about visible light here:

https://brainly.com/question/7071188

#SPJ11

when an object is thrown upward, how much speed does it lose each second (ignoring air resistance)?

Answers

When an object is thrown upward, it loses 9.8 meters per second of speed each second due to gravity.

This is known as the acceleration due to gravity and is the same for all objects regardless of their mass.
When an object is thrown upward, it loses speed each second due to the force of gravity acting upon it. The rate at which it loses speed is called acceleration due to gravity, which is approximately 9.8 meters per second squared (m/s²) on Earth. This means that the object's upward speed decreases by 9.8 meters per second (m/s) each second, ignoring air resistance.

More on speed: https://brainly.com/question/8167007

#SPJ11

A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 3.50 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis perpendicular to the bar through its center Express your answer with the appropriate units.

Answers

The moment of inertia of the combination of the uniform bar with two small balls about an axis perpendicular to the bar through its center is 3.25 kg·m².

The moment of inertia (I) of an object is a measure of its rotational inertia and depends on the mass distribution and shape of the object. For a uniform bar of length L with point masses attached to its ends, the moment of inertia about an axis perpendicular to the bar through its center can be calculated by summing the moments of inertia of the individual components.

The moment of inertia of a uniform bar rotating about an axis perpendicular to its length through its center is given by the formula:

I_bar = (1/12) × M_bar × L²

where M_bar is the mass of the bar and L is the length of the bar. Substituting the given values, we get:

I_bar = (1/12) × 3.50 kg × (2.00 m)²

I_bar = 1.17 kg·m²

The moment of inertia of a point mass rotating about an axis perpendicular to its distance is given by the formula:

I_point mass = m × r²

where m is the mass of the point mass and r is the distance of the point mass from the axis of rotation. Since there are two point masses attached to the ends of the bar, the total moment of inertia of the combination is the sum of the moment of inertia of the bar and the moment of inertia of the two-point masses:

I_total = I_bar + 2 × I_point mass

I_total = 1.17 kg·m² + 2 × 0.300 kg × (1.00 m)²

I_total = 3.25 kg·m²

So, the moment of inertia of the combination of the uniform bar with two small balls about an axis perpendicular to the bar through its center is 3.25 kg·m².

To know more about moment of inertia refer here:

https://brainly.com/question/15246709#

#SPJ11

a 2.6×10−4 v/m electric field creates a 1.6×1017 electrons/s current in a 1.9-mm-diameter aluminum wire.

Answers

The given electric field of 2.6×10−4 v/m creates a current of 1.6×1017 electrons/s in a 1.9-mm-diameter aluminum wire. This means that the electric field is causing the movement of electrons within the wire, resulting in a flow of current. The diameter of the wire is also important as it determines the amount of space available for the electrons to move through. A larger diameter would allow for more electrons to flow through, resulting in a larger current.
Hi! Based on the given information, a 2.6×10^-4 V/m electric field creates a 1.6×10^17 electrons/s current in a 1.9-mm-diameter aluminum wire. Let's break this down step by step:

1. Electric field: The electric field is 2.6×10^-4 V/m. This is a measure of the force experienced by a charged particle due to the presence of other charged particles or an external electric field.

2. Electrons: In this scenario, electrons are the charged particles responsible for carrying the electric current in the aluminum wire. The current is the flow of these electrons through the wire.

3. Diameter: The diameter of the aluminum wire is 1.9 mm. This value helps to determine the cross-sectional area of the wire, which affects the resistance and current flow through the wire.

So, in summary, the given electric field of 2.6×10^-4 V/m causes electrons to move through the 1.9-mm-diameter aluminum wire, creating a current of 1.6×10^17 electrons/s.

To more about electric field visit:

https://brainly.com/question/8971780?

#SPJ11

Other Questions
A 45-degree strain gage rosette is placed on the surface of a material with a Poisson's ratio of 0.35. Assume the material at the point of measurement is in a state of plane stress. When loaded the following strains are read: Eo = 240 us E45 = 275 ue E90 = 160 us Determine: a. The principal strains and maximum in-plane shear strain at the point. [285, 115, -215) ue; 170 ue b. The required in-plane rotation angles to move from the axis of the rosette into a coordinate system yielding the maximum in-plane shear. [-14, 76) C. The required in-plane rotation angles to move from the axis of the rosette into a coordinate system yielding the in-plane principal strains. (31, -59) in lecture, it was explained that the pope issued a papal bull dividing the east and west trade routes and lands between spain and portugal primarily for the following reason: group of answer choices they had the most powerful land armies they were the wealthiest countries in europe at the time they were the strongest naval powers they were the only loyal catholic countries what will be the answer how can the nurse determine the length of the tube needed for a nasointestinal (ni) intubation? why does a broken glass phone ultimately lead to a broken phone even though it has never been placed in water During the titration, a student pulls out the pH electrode from the titration beaker several times (with about 0.25 mL of solution on it each time) and rinses it off with DI water into a waste container. Will this affect the measured equivalent mass? If so, will the equivalent mass come out higher or lower? when sequencing a plant to determine how many genes control the formation of the floral organs you find that it is under the control of 2 hox genes. what is strange about this? technician a says that dashed lines on a hydraulic schematic indicate a pilot line that connects a control circuit to a slave circuit. technician b says that dotted lines are used in schematics to indicate a line under constant pressure. who is right? A town manager is interested in comparing requests for venous town provided services (such as street maintenance and garbage pickup) with nationally published proportions of requests for the sale services Each request in a random sample of 500 service requests from the town was closited into one of 10 different categories. Which of the following tests could be used to determine whether the proportions of service requests classified into the 10 service categories for the town differ from national proportions? A two-sample test for a difference of means A matched pairs test for means C Achi-square rest of association D Achquare goodness-of-fittest A Hent for a correlation of proportions if interest rates are at the zero lower bound:question 4 options:monetary policy is ineffective.monetary policy is more effective than fiscal policy.automatic stabilizers don't work.the effectiveness of monetary policy increases. Refer to the following circuit, assuming IS = 1.0 pA; D1 is a generic rectifier diode, and it is at temperature of 500 C. Calculate the voltage drop VR across R1 for(a) R1 = 1.0 ,(b) R1 = 10 ,(c) R1 = 100 ,(d) R1 = 1.0 k. electro___________ is a procedure that destroys tissue by burning with an electric spark. El mes pasado yo ___ ___________ (organizar) el festival de comida guatemalteca en mi escuela. Yo ______________ (buscar) en el Internet toda la informacin necesaria sobre la gastronoma de Guatemala. Yo ______________ (clasificar) los diversos platos tpicos en entradas, platos fuertes y postres. Todo tena que salir perfecto as que me esforc mucho en la decoracin del lugar y la propaganda del evento. El da del festival ______________ (comenzar) mi da muy temprano por la maana y ______________ (llegar) a la escuela a la 8 de la maana. Estuve todo el tiempo muy ocupado. El evento sali de maravilla. Yo ______________ (almorzar) deliciosos platos tpicos guatemaltecos con mis profesores y amigos. Let C be a cylindrical can (including top and bottom lids) with height h and radius r. (a) Write a multivariable function S(h, r) for the surface area of the can. (b) Calculate S(3,2), S (3,2), and S,(3,2). (c) Give a linear approximation for S(2.75, 2.1). a firm requires an investment of $20,000 and will return $26,500 after one year. if the firm borrows $6,000 at 7%, what is the return on levered equity of $14,000? 3. explain how grasslands have supported human needs. describe the importance of rhizomes in maintaining grasslands. how many different tripeptides can be made using only alanine, tryptophan, glutamic acid, and arginine? a list of 5,000 players of a team needs to be saerched for the player with highest score. what is the fastest possible Colby is making a home video consisting of a 5-minute introduction followed by several short skits. Each skit is 8 minutes long. If Colby's video is 181 minutes long, how many skits are in his video?27172322 you recently discovered a new photosynthetic bacterial cell. based on your knowledge of prokaryotes, what else should be present in the cell?