A 3950-kg open railroad car coasts at a constant speed of 7.80 m/s on a level track Snow begins to fall vertically and fils the car at a rate of 4.20 kg/min 4 Part A Ignoring friction with the tracks, what is the speed of the car after 55.0 min?

Answers

Answer 1

A 3950-kg open railroad car coasts at a constant speed of 7.80 m/s on a level track Snow begins to fall vertically and fils the car at a rate of 4.20 kg/min , the speed of the car after 55.0 minutes would be approximately 7.366 m/s.

To determine the speed of the car after 55.0 minutes, we need to consider the conservation of momentum.

Given:

Mass of the railroad car (m1) = 3950 kg

Initial speed of the car (v1) = 7.80 m/s

Rate of snow filling the car (dm/dt) = 4.20 kg/min

Time (t) = 55.0 min

First, let's calculate the mass of the snow added during the given time:

Mass of snow added (m_snow) = (dm/dt) × t

= (4.20 kg/min) × (55.0 min)

= 231 kg

The initial momentum of the system (p1) is given by:

p1 = m1  v1

= 3950 kg × 7.80 m/s

= 30780 kg·m/s

The final mass of the system (m2) is the sum of the initial mass (m1) and the added mass of snow (m_snow):

m2 = m1 + m_snow

= 3950 kg + 231 kg

= 4181 kg

Now we can use the conservation of momentum to find the final speed (v2) of the car:

p1 = p2

m1 × v1 = m2 × v2

Substituting the known values:

30780 kg·m/s = 4181 kg × v2

Solving for v2:

v2 = 30780 kg·m/s / 4181 kg

≈ 7.366 m/s

Therefore, the speed of the car after 55.0 minutes would be approximately 7.366 m/s.

To learn more about conservation of momentum visit: https://brainly.com/question/7538238

#SPJ11


Related Questions

Topic 4: A 3.0 kg falling rock has a kinetic energy equal to 2.430 J. What is its speed? Student(s) Responsible for Posting: Ezekiel Rose

Answers

The speed of the falling rock is approximately 1.27 m/s.

The kinetic energy (KE) of an object can be calculated using the equation:

KE = (1/2)mv^2

Where:

KE = Kinetic energy

m = Mass of the object

v = Velocity of the object

In this case, the kinetic energy (KE) is given as 2.430 J, and the mass (m) of the falling rock is 3.0 kg. We can rearrange the equation to solve for the velocity (v):

2.430 J = (1/2)(3.0 kg)(v^2)

Simplifying the equation:

2.430 J = (1.5 kg)(v^2)

Now, divide both sides of the equation by 1.5 kg:

v^2 = (2.430 J) / (1.5 kg)

v^2 = 1.62 m^2/s^2

Finally, take the square root of both sides to solve for the velocity (v):

v = √(1.62 m^2/s^2)

v ≈ 1.27 m/s

Therefore, the speed of the falling rock is approximately 1.27 m/s.

To know more about speed, refer here:

https://brainly.com/question/29457979#

#SPJ11

Your answer is partially correct. You are given a number of 32 resistors, each capable of dissipating only 1.9 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 32 resistance that is capable of dissipating at least 9.2 W? Number i 211 Units No units Save for Later Attempts: 1 of 3 used Submit Answer

Answers

The minimum number of such resistors that you need to combine in series or in parallel to make a 32 resistance that is capable of dissipating at least 9.2 W are 74.

Given data: Number of resistors: 32, Power dissipated by each resistor: 1.9 W, Total power required: 9.2 W, To find: The minimum number of resistors required to form a 32 resistance capable of dissipating at least 9.2 W?
Solution: Power rating of each resistor: 1.9 W Total power that can be dissipated by 32 resistors connected in parallel:

32 × 1.9 = 60.8 W

Let n resistors be connected in parallel to make a 32 resistance that is capable of dissipating at least 9.2 W So, power dissipated when n resistors are connected in parallel:

Power = n × 1.9

If these n resistors are connected in parallel to make 32 equivalent resistance then current through them will be:

I = V/RV

I = IR32V

I = I(nR)

P = VI

P = (nR)I²

Putting the values of power (P) and resistance (32)9.2 = n × 32 × I²-----(1)

From the power rating of the resistor, we know that, I ≤ √(1.9/32)I ≤ 0.25

Substituting I = 0.25 in equation (1)

9.2 = n × 32 × (0.25)²

n = 73.6

Therefore, the minimum number of 73.6 resistors, that you need to combine in series or in parallel to make a 32 resistance that is capable of dissipating at least 9.2 W. But, as we cannot use fractional resistors, we need to round off the answer to the next highest number. So, the minimum number of resistors required is 74.

to know more about resistance visit:

brainly.com/question/30712325

#SPJ11

This time the pendulum is 2.05 m'long. Suppose you start with the pendulum hanging vertically, at rest. You then give it a push so that it starts swinging with a speed of 2.04 m/s. What maximum angle (in degrees) will it reach, with respect to the vertical, before falling back down? 18.4 degrees 34.2 degrees 30.3 degrees 26.3 degrees This time, the pendulum is 1.25 m long and has a mass of 3.75 kg. You give it a push away from vertical so that it starts swinging with a speed of 1.39 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulum s initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 22.9 degrees 33.0 degrees 28.0 degrees 19.4 degrees

Answers

In the first scenario, where the pendulum is 2.05 m long and starts swinging with a speed of 2.04 m/s, the maximum angle it will reach with respect to the vertical can be determined using the conservation of mechanical energy.

By equating the initial kinetic energy to the change in potential energy, we can calculate the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can find the maximum angle it will reach, which is approximately 18.4 degrees.

In the second scenario, with a pendulum length of 1.25 m, mass of 3.75 kg, and 1.00 Joule of initial kinetic energy lost as heat, we again consider the conservation of mechanical energy. By subtracting the energy lost as heat from the initial mechanical energy and equating it to the change in potential energy, we can find the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can determine the maximum angle it will reach, which is approximately 33.0 degrees.

In both scenarios, the conservation of mechanical energy is used to analyze the pendulum's motion. The principle of conservation states that the total mechanical energy (kinetic energy + potential energy) remains constant in the absence of external forces or energy losses. At the highest point of the pendulum's swing, all the initial kinetic energy is converted into potential energy.

For the first scenario, we equate the initial kinetic energy (1/2 * m * v²) to the potential energy (m * g * h) at the highest point. Rearranging the equation allows us to solve for the maximum height (h). From the height and the length of the pendulum, we calculate the maximum angle reached using the inverse cosine function.

In the second scenario, we take into account the energy loss as heat during the upward swing. By subtracting the energy loss from the initial mechanical energy and equating it to the potential energy change, we can determine the maximum height. Again, using the height and the length of the pendulum, we find the maximum angle reached.

In summary, the length, initial speed, and energy losses determine the maximum angle reached by the pendulum. By applying the conservation of mechanical energy and using the appropriate equations, we can calculate the maximum angle for each scenario.

Learn more about kinetic energy here:
brainly.com/question/999862

#SPJ11

Suppose you have a 135-kg wooden crate resting on a wood floor. The coefficients of static and kinetic friction here are x1=0.5 and x=0.3. Randomized Variables m=135 kg 50% Part (1) What maximum force, in newtons, can you exert horizontally on the crate without moving it? 50% Part (b) If you continue to exert this force once the crate starts to slip, what will its acceleration be, in meters per square second

Answers

The maximum force that can be exerted horizontally on the crate without moving it is 735 N. The acceleration of the crate once it starts to slip is 3.07 m/s².

The maximum force that can be exerted horizontally on the crate without moving it is equal to the maximum static friction force. The maximum static friction force is equal to the coefficient of static friction times the normal force. The normal force is equal to the weight of the crate.

             F_max = μ_s N = μ_s mg

Where:

            F_max is the maximum force

            μ_s is the coefficient of static friction

            N is the normal force

           m is the mass of the crate

            g is the acceleration due to gravity

Plugging in the values, we get:

F_max = 0.5 * 135 kg * 9.8 m/s² = 735 N

Therefore, the maximum force that can be exerted horizontally on the crate without moving it is 735 N.

(b)Once the crate starts to slip, the friction force will be equal to the coefficient of kinetic friction times the normal force. The normal force is still equal to the weight of the crate.

             F_k = μ_k N = μ_k mg

     Where:

          F_k is the kinetic friction force

          μ_k is the coefficient of kinetic friction

          N is the normal force

          m is the mass of the crate

          g is the acceleration due to gravity

Plugging in the values, we get:

F_k = 0.3 * 135 kg * 9.8 m/s² = 414 N

The acceleration of the crate is equal to the net force divided by the mass of the crate.

a = F_k / m

Where:

a is the acceleration of the crate

F_k is the kinetic friction force

m is the mass of the crate

Plugging in the values, we get:

a = 414 N / 135 kg = 3.07 m/s²

Therefore, the acceleration of the crate once it starts to slip is 3.07 m/s².

To learn more about static friction click here; brainly.com/question/28356847

#SPJ11

A 120 v pontential difference sends a current of 0. 83 a though a light bulb what is the resistance of the bulb

Answers

The resistance of the light bulb can be determined using Ohm's Law, which states that the resistance (R) is equal to the ratio of the potential difference (V) across the bulb to the current (I) passing through it:

R = V / I

Given:

Potential difference (V) = 120 V

Current (I) = 0.83 A

Substituting these values into the formula:

R = 120 V / 0.83 A

R ≈ 144.58 Ω (rounded to two decimal places)

Therefore, the resistance of the light bulb is approximately 144.58 Ω.

To know more about resistance, click on the link below:

brainly.com/question/17010736

#SPJ11

Kinematics is the branch of classical mechanics concerned with the study of forces and their effects on motion. True Fatse

Answers

Kinematics is the branch of classical mechanics concerned with the study of motion, rather than the forces causing that motion. This statement is false.

Kinematics is a fundamental branch of physics that focuses specifically on describing and analyzing the motion of objects, independent of the forces acting upon them. It deals with concepts such as position, velocity, acceleration, and time.

By studying these quantities, kinematics provides a framework for understanding how objects move and how their motion can be mathematically described.  However, forces and their effects on motion are not directly addressed in kinematics.

That aspect falls under the domain of dynamics, another branch of classical mechanics that investigates the causes of motion. Therefore, kinematics is primarily concerned with the description and mathematical representation of motion, rather than forces and their effects.

Learn more about kinematics click here:

brainly.com/question/28037202

#SPJ11

The cathodic polarization curve of a nickel electrode is measured in a de-aerated acid solution. The saturated calomel electrode is used as the reference. The working electrode has a surface of 2 cm². The following results are obtained: E (V) (SCE) -0.55 I (mA) 0 -0.64 0.794 -0.69 3.05 -0.71 4.90 -0.73 8.10 Calculate the corrosion current density as well as the rate of corrosion (in mm per year) -0.77 20.0

Answers

The corrosion current density is 2.03 x 10⁻⁶ A/cm² and the rate of corrosion is 0.309 mm/year.

The Tafel slope of cathodic reaction is given as :- (dV/d log I) = 2.303 RT/αF

The value of Tafel slope is found to be:

60 mV/decade (take α=0.5 for cathodic reaction)

From the polarisation curve, it is found that Ecorr = -0.69 V vs SCE

The cathodic reaction can be written asN

i2⁺(aq) + 2e⁻ → Ni(s)

The cathodic current density (icorr) can be calculated by Tafel extrapolation, which is given as:

I = Icorr{exp[(b-a)/0.06]}

where b and a are the intercepts of Tafel lines on voltage axis and current axis, respectively.

The value of b is Ecorr and the value of a can be calculated as:

a = Ecorr - (2.303RT/αF) log Icorr

Substituting the values:

0.71 = Icorr {exp[(0.69+2.303x8.314x298)/(0.5x96485x0.06)]} ⇒ Icorr = 4.05 x 10⁻⁶ A/cm²

The corrosion current density can be found by the relationship:icorr = (Icorr)/A

Where A is the surface area of the electrode. Here, A = 2 cm²

icorr = 4.05 x 10⁻⁶ A/cm² / 2 cm² = 2.03 x 10⁻⁶ A/cm²

The rate of corrosion can be found from the relationship:

W = (icorr x T x D) / E

W = corrosion rate (g)

icorr = corrosion current density (A/cm³)

T = time (hours)

D = density (g/cm³)

E = equivalent weight of metal (g/eq)

D of Ni = 8.9 g/cm³

E of Ni = 58.7 g/eq

T = 1 year = 365 days = 8760 hours

Substituting the values, the rate of corrosion comes out to be:

W = 2.03 x 10-6 x 8760 x 8.9 / 58.7 = 0.309 mm/year

Learn more about cathode at

https://brainly.com/question/31491308

#SPJ11

A car weighing 3000 lb tows a single axle two-wheel trailer weighing 1500 lb at 60 mph. There are no brakes on the trailer, and the car, which by itself can decelerate at 0.7g, produces the entire braking force. Determine the force applied to slow the car and trailer. Determine the Deceleration of the car and the attached trailer. How far do the car and trailer travel in slowing to a stop

Answers

The force applied to slow the car and trailer is determined by multiplying the mass by the deceleration. The deceleration of the car and trailer is 22.54 ft/s^2, and the car and trailer travel approximately 3888.06 ft in slowing to a stop.

To determine the force applied to slow the car and trailer, we can use Newton's second law of motion. The force can be calculated by multiplying the mass of the car and trailer by the deceleration.
The combined weight of the car and trailer is 3000 lb + 1500 lb = 4500 lb.
Converting this to mass, we get 4500 lb / 32.2 ft/s^2 = 139.75 slugs (approximately).
Using the given deceleration of 0.7g, where g = 32.2 ft/s^2, we can calculate the deceleration as follows:
Deceleration = 0.7 * 32.2 ft/s^2 = 22.54 ft/s^2 (approximately).

To determine the distance traveled, we can use the equation of motion:
Distance = (Initial velocity^2 - Final velocity^2) / (2 * Deceleration).
Since the car and trailer come to a stop, the final velocity is 0 mph, which is equivalent to 0 ft/s. The initial velocity is 60 mph, which is equivalent to 88 ft/s.
Plugging these values into the equation, we have:
Distance = (88^2 - 0^2) / (2 * 22.54) = 3888.06 ft (approximately).

To know more about force visit:-

https://brainly.com/question/13191643

#SPJ11

3. A wheel rotates from rest with constant 1 rad/s2 acceleration. After first 5s of rotation the wheel has rotated through 12.5 rad. What is the angular velocity of the wheel at the end of that 5s? How long will it take the wheel to rotate through next 50 rad? 4. A car 1 of mass M=100 kg collides with a car 2 (m=500 kg) moving with velocity v=3m/s in the same direction as car 1. During the collision they couple and move with speed V=5m/s. Calculate the velocity of the car 1 before the collision. What fraction of the initial kinetic energy was lost during the collision?

Answers

It will take the wheel 5.384 seconds to rotate through the next 50 rad. The collision resulted in a loss of approximately 50.82% of the initial kinetic energy.

3. We can use the following kinematic formula for rotational motion:

θ = ωi*t + 1/2*α*t², where: θ = final angular displacement, ωi = initial angular velocity, t = time elapsed, α = angular acceleration

From rest, the initial angular velocity is 0. Thus, the formula becomes:

θ = 1/2*α*t²12.5 = 1/2*1*t²Solving for t, we get:t = 5 seconds

Therefore, the angular velocity at the end of that 5 seconds can be found using the following formula:

ωf = ωi + α*tωf = 0 + 1*5ωf = 5 rad/s

To find the time required for the wheel to rotate through the next 50 rad, we can use the following formula:

θ = ωi*t + 1/2*α*t²50 = 5t + 1/2*1*t²50 = 5t + 1/2*t²

Multiplying both sides by 2, we get:100 = 10t + t²Simplifying the equation:

t² + 10t - 100 = 0Using the quadratic formula, we get:t = 5.384 seconds (rounded off to three significant figures)

Therefore, it will take the wheel 5.384 seconds to rotate through the next 50 rad.

4. To solve this problem, we can use the law of conservation of momentum. According to the principle of conservation of momentum, the total momentum before the collision is conserved and remains equal to the total momentum after the collision.

M₁v₁ + m₂v₂ = (M₁ + m₂)V100v₁ + 500(3) = 600(5)100v₁ = 1500 - 1500100v₁ = 1350v₁ = 13.5 m/s

The velocity of car 1 before the collision is 13.5 m/s.

The initial total kinetic energy of the system can be determined by calculating the sum of the kinetic energies of the individual objects involved.

K1i = 1/2*M₁*v₁² + 1/2*m₂*v₂²K1i = 1/2*100*(13.5)² + 1/2*500*(3)²K1i = 15,262.5 J

The final total kinetic energy of the system can be determined by calculating the kinetic energy of the system after the collision has occurred.

K1f = 1/2*(M₁ + m₂)*V²K1f = 1/2*600*(5)²K1f = 7,500 J

The fraction of initial kinetic energy lost during the collision is:

K1lost/K1i = (K1i - K1f)/K1iK1lost/K1i = (15,262.5 - 7,500)/15,262.5K1lost/K1i = 0.5082 or 50.82%

Therefore, the collision resulted in a loss of approximately 50.82% of the initial kinetic energy.

Learn more about kinetic energy at: https://brainly.com/question/8101588

#SPJ11

In solving problems in which two objects are joined by rope, what assumptions do we make about the mass of the rope and the forces the rope exerts on each end?

Answers

When two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite.

When solving problems where two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite. This is known as the assumption of massless, frictionless ropes.

In other words, the rope's mass is usually assumed to be zero because the mass of the rope is very less compared to the mass of the two objects that are connected by the rope. It is also assumed that the rope is frictionless, which means that no friction acts between the rope and the objects connected by the rope. Furthermore, it is assumed that the tension in the rope is constant throughout the rope. The forces that the rope exerts on each end of the object are equal in magnitude but opposite in direction, which is the reason why they balance each other.

Learn more about mass https://brainly.com/question/86444

#SPJ11

6. A golf cart of 330Kg of mass moves horizontally and without
friction at 5m/s when
a 70Kg person originally at rest gets on the golf cart. What will
be the final speed
of the cart with the person?

Answers

The final speed of the golf cart with the person will be 4.26 m/s  

Mass of golf cart = 330 kgMass of person = 70 kgTotal mass of the system, m = 330 + 70 = 400 kgInitial velocity of the golf cart, u = 5 m/sFinal velocity of the golf cart with the person, v = ?,

As per the law of conservation of momentum: Initial momentum of the system, p1 = m × u = 400 × 5 = 2000 kg m/sNow, the person gets on the golf cart. Hence, the system now becomes of 400 + 70 = 470 kg of mass.Let the final velocity of the system be v'.Then, the final momentum of the system will be: p2 = m × v' = 470 × v' kg m/sNow, as per the law of conservation of momentum:p1 = p2⇒ 2000 = 470 × v'⇒ v' = 2000/470 m/s⇒ v' = 4.26 m/s.

Therefore, the final velocity of the golf cart with the person will be 4.26 m/s. (rounded off to 2 decimal places).Hence, the final speed of the golf cart with the person will be 4.26 m/s (approximately).

Learn more on momentum here:

brainly.com/question/24030570

#SPJ11

Each of the statments below may or may not be true. Enter the letters corresponding to all the true statements. (Give ALL correct answers, i.e., B, AC, BCD...) In the two-slit experiment, yl, the distance from the central maximum from the first bright spot ... A) decreases if the screen is moved away from the slits. B) doesn't depend on the slit separation. C) is always an integer multiple of the wavelength of the light. D) does not depend on the frequency of the light. E) is larger for blue light than for violet light.

Answers

The true statements from the given options are: B) Doesn't depend on the slit separation C) Is always an integer multiple of the wavelength of the light. D) Does not depend on the frequency of the light.

A) The distance yl from the central maximum to the first bright spot, known as the fringe width or the distance between adjacent bright fringes, is determined by the slit separation. Therefore, statement A is false. B) The distance yl is independent of the slit separation. It is solely determined by the wavelength of the light used in the experiment. As long as the wavelength remains constant, the distance yl will also remain constant. Hence, statement B is true. C) The distance yl between adjacent bright fringes is always an integer multiple of the wavelength of the light. This is due to the interference pattern created by the two slits, where constructive interference occurs at these specific distances. Therefore, statement C is true. D) The distance yl does not depend on the frequency of the light. The fringe separation is solely determined by the wavelength, not the frequency. As long as the wavelength remains constant, the distance yl remains the same. Hence, statement D is true. E) The statement about the comparison of yl for blue light and violet light is not provided in the given options, so we cannot determine its truth or falsity based on the given information. In summary, the true statements are B) Doesn't depend on the slit separation, C) Is always an integer multiple of the wavelength of the light, and D) Does not depend on the frequency of the light.

To learn more about frequency , click here : https://brainly.com/question/29739263

#SPJ11

a.) A solenoid is constructed from 5,000 turns of wire onto a form length of 6.28 cm and a diameter of 4.513 cm. The solenoid is connected to a battery so that the current increases from 0 A to 4.00 mA in a time of 8.00 ms. Calculate B inside the coil at 8.00 microseconds, in microTeslas.
b.) What is the inductance of the solenoid, in henrys?
c.) What is the absolute value of EMF induced in the inductor, in mV?
d.) What is the maximum energy stored in the inductor, in microJuoles?
e.) Determine the energy density inside the inductor, in mJ/m^3
I.) Insert an iron core with Km = 1000 into the bore of the solenoid, competely filling it. Calculate the new self-inductance (L) in henrys.
II.) How much energy is stored in inductor, in mJ?
III.) Insert the coil without iron into another coil of length 6.28 cm and diameter of 9.026 cm with 2,500 turns. Calculate the mutual inductance (M) between the 2 coils, in henrys.
IV.) If the inner solenoid is connected to a battery so that the current increases from 0 A to 4.00 mA in a time of 8.00 ms. Calculate the absolute value of the voltage (V) induced in secondary coil at a time of 8.00 ms, in mV.

Answers

a.) Formula used is, μ0 = 4π × 10-7 Tm/A. The current passing through the solenoid at 8 microseconds (μs) = 4.00 mA. Hence, μ = NI = (5000 × 4.00 × 10-3)A. Using the formula, μ = μ0n2A, we can write B as:μ = μ0n2πr2lB = μ/nA = (μ0 × (5000 × 4.00 × 10-3))/ (5 × 10-3 × π × (2.2565 × 10-2)2)B = 0.7540T

b.) The inductance (L) of the solenoid is given by the formula, L = μ02n2Al.

The area of the cross-section of the solenoid is given as A = πr2L, where r is the radius. Hence, we can substitute the value of A in the formula for inductance and get:L = (μ0nr2)2 πl = (μ0n2πr2l)/4π2L = (μ0 × (5000)2 × π × (2.2565 × 10-2)2 × 6.28 × 10-2)/(4 × π2)L = 1.635 × 10-3 Hc.) EMF induced in the inductor is given by the formula, EMF = L × dI/dt. Here, dI is the change in current and dt is the time it takes to change.

The current in the solenoid at 8 microseconds = 4.00 mA and at 0 microseconds (initial current) = 0A. Hence, dI = 4.00 mA - 0A = 4.00 mA. Also, dt = 8.00 μs. Therefore, EMF = L × (dI/dt) = (1.635 × 10-3)H × [(4.00 × 10-3)/(8.00 × 10-6)]EMF = 817.5 mVd.) The maximum energy stored in an inductor is given by the formula, Em = ½ LI2. The current flowing through the solenoid at 8 microseconds = 4.00 mA.

Hence, I = 4.00 mA. Therefore, Em = ½ × (1.635 × 10-3) × (4.00 × 10-3)2Em = 13.12 μJ.e.) Energy density (u) inside the inductor is given by the formula, u = (B2/2μ0). Hence, u = (0.7540)2/(2 × 4π × 10-7)u = 0.2837 mJ/m3I.) For a solenoid with an iron core, the formula for inductance (L) is, L = (μμ0n2A)/l = KmL0, where Km is the relative permeability of the iron core and L0 is the inductance of the solenoid without the core.

Here, Km = 1000. Hence, L = KmL0 = 1000 × 1.635 × 10-3L = 1.635 HII.) The energy stored in an inductor is given by the formula, E = ½ LI2. Hence, E = ½ × (1.635) × (4.00 × 10-3)2E = 13.12 mJIII.) Mutual inductance (M) between two coils is given by the formula, M = (μμ0n1n2A)/l.

Here, n1 and n2 are the number of turns in each coil. The area of cross-section of the coil is given by A = πr2L, where r is the radius of the coil and L is the length. Hence, A = π × (4.513/2)2 × 6.28 × 10-2 = 1.006 × 10-3 m2. Thus, M = (μμ0n1n2A)/l = (4π × 10-7 × 2500 × 5000 × 1.006 × 10-3)/(6.28 × 10-2)M = 1.595 × 10-3 HIV.) The voltage (V) induced in a coil is given by the formula, V = M × (dI/dt).

Here, dI is the change in current and dt is the time it takes to change. The current flowing through the inner solenoid at 8 microseconds (μs) = 4.00 mA. Hence, I = 4.00 mA. Therefore, dI/dt = (4.00 × 10-3)/(8.00 × 10-6). Also, M = 1.595 × 10-3 H. Thus, V = M × (dI/dt) = 1.595 × 10-3 × [(4.00 × 10-3)/(8.00 × 10-6)]V = 798.5 mV (rounded off to 3 decimal places)Therefore, a.) B inside the coil at 8.00 microseconds (μs) = 0.7540 μTb.)

The inductance of the solenoid, L = 1.635 mHc.) The absolute value of EMF induced in the inductor, EMF = 817.5 mVd.) The maximum energy stored in the inductor, Em = 13.12 μJe.)

The energy density inside the inductor, u = 0.2837 mJ/m3I.) The new self-inductance (L) of the solenoid with an iron core is, L = 1.635 HII.) The energy stored in inductor with an iron core, E = 13.12 mJIII.)

The mutual inductance (M) between the two coils is, M = 1.595 × 10-3 HIV.) The absolute value of voltage induced in secondary coil at a time of 8.00 ms, V = 798.5 mV (rounded off to 3 decimal places).

To know more about current visit :

https://brainly.com/question/32059694

#SPJ11

Question 6 ( 5 points) In the figure below all the resistors have resistance 58 Ohms and all the capacitors have capacitance 21 F. Calculate the time constant of the circuit (in s).

Answers

The time constant of the circuit in seconds is 1218 s,

The capacitive reactance and resistance of each capacitor and resistor in the circuit respectively can be calculated using the following equations; capacitive reactance of a capacitor

= Xc =1/2πfC Ohms

Resistance is a measure of an electrical circuit's resistance to current flow. Resistance is measured in ohms, which is represented by the Greek letter omega (). Ohms are named after German physicist Georg Simon Ohm (1784-1854), who researched the link between voltage, current, and resistance.

where f = frequency and C = capacitance and resistors resistance, R = 58 ohms.

The time constant (τ) of the circuit can be calculated as follows;

τ = R × C,  where R = resistance and C = capacitance.

The time constant of the circuit in seconds is given by τ = R × C = 58 ohms × 21 F = 1218 s

To learn about resistance here:

https://brainly.com/question/30901006

#SPJ11

A 14.0 kg gold mass rests on the bottom of a pool. (The density of gold is 19.3 ✕ 103 kg/m3 and the density of water is 1.00 ✕ 103 kg/m3.)
(a)
What is the volume of the gold (in m3)?
m3
(b)
What buoyant force acts on the gold (in N)? (Enter the magnitude.)
N
(c)
Find the gold's weight (in N). (Enter the magnitude.)
N
(d)
What is the normal force acting on the gold (in N)? (Enter the magnitude.)
N

Answers

(a) The volume of the gold is 0.000725 m³.(b) The buoyant force acting on the gold is 7.11 N.(c) The weight of the gold is 137 N.(d) The normal force acting on the gold is 137 N.

(a) The formula for density is ρ = m/V, where ρ is the density, m is the mass, and V is the volume. Rearranging the formula to solve for V gives V = m/ρ. So, the volume of the gold is: V = m/ρ

= 14.0 kg / 19.3 × 10³ kg/m³

= 0.000725 m³ (rounded to 3 significant figures)

(b) The buoyant force is given by the formula Fb = ρVg, where Fb is the buoyant force, ρ is the density of water, V is the volume of the displaced water, and g is the acceleration due to gravity. The volume of the displaced water is equal to the volume of the gold, since that is the amount of water that is displaced by the gold when it is submerged in the pool. So, the buoyant force is: Fb = ρVg

= 1.00 × 10³ kg/m³ × 0.000725 m³ × 9.81 m/s²

= 7.11 N (rounded to 2 significant figures)

(c) The weight of the gold is given by the formula w = mg, where w is the weight, m is the mass, and g is the acceleration due to gravity. So, the weight of the gold is: w = mg = 14.0 kg × 9.81 m/s²

= 137 N (rounded to 3 significant figures)

(d) The normal force is equal in magnitude to the weight of the gold, since the gold is at rest on the bottom of the pool.

So, the normal force is: Fn = w = 137 N (rounded to 3 significant figures)

(a) The volume of the gold is 0.000725 m³.(b) The buoyant force acting on the gold is 7.11 N.(c) The weight of the gold is 137 N.(d) The normal force acting on the gold is 137 N.

To know more about buoyant force, refer

https://brainly.com/question/11884584

#SPJ11

(18.) A rotor completes 50.0 revolutions in 3.25 s. Find its angular speed (a) in rev/s. (b) in rpm. (C) in rad/s. 19. A flywheel rotates at 1050rpm. (a) How long (in s) does it take to complete ofe revolution? (b) How many revolutions does it complete in 5.00 s ? (20) A wheel rotates at 36.0rad/s. (a) How long (in s) does it take to complete ont revolution?(b) How many revolutions does it complete in 8.00 s ? 21. A shaft of radius 8.50 cm rotates 7.00rad/s. Find its angular displacement (in rad) in 1.20 s. 22. A wheel of radius 0.240 m turns at 4.00rev/s. Find its angular displacement (in rev) in 13.0 s. Q3. A pendulum of length 1.50 m swings through an arc of 5.0 ∘ . Find the length of the arc through which the pendulum swings. (44) An airplane circles an airport twice while 5.00mi from the control tower. Find the length of the arc through which the plane travels. 25. A wheel of radius 27.0 cm has an angular speed of 47.0rpm. Find the lineat speed (in m/s ) of a point on its rim. (29. A belt is placed around a pulley that is 30.0 cm in diameter and rotating at 275rpm. Find the linear speed (in m/s ) of the belt. (Assume no belt slippage on the pulley.) 27. A flywheel of radius 25.0 cm is rotating at 655rpm. (a) Express its angular speed in rad/s. (b) Find its angular displacement (in rad) in 3.00 min. (c) Find the linear distance traveled (in cm ) by a point on the rim in one complete revolution. (d) Find the linear distance traveled (in m ) by a point on the rim in 3.00 min. (e) Find the linear speed (in m/s ) of a point on the rim. 28. An airplane propeller with blades 2.00 m long is rotating at 1150rpm.(a) Express its angular speed in rad/s. (b) Find its angular displacement in 4.00 s. (C) Find the linear speed (in m/s ) of a point on the end of the blade. (d) Find the linear speed (in m/s) of a point 1.00 m from the end of the blade. 29. An automobile is traveling at 60.0 km/h. Its tires have a radius of 33.0 cm. (a) Find the angular speed of the tires (in rad/s ). (b) Find the angular displacement of the tires in 30.0 s. (c) Find the linear distance traveled by a point on the tread in 30.0 s. (d) Find the linear distance traveled by the automobile in 30.0 s. 30. Find the angular speed (in rad/s ) of the following hands on a clock. (a) Second hand (b) Minute hand (c) Hour hand 31. A bicycle wheel of diameter 30.0 in. rotates twice each second. Find the linear velocity of a point on the wheel. 32. A point on the rim of a flywheel with radius 1.50ft has a linear velocity of 30.0ft/s. Find the time for it to complete 4πrad.

Answers

18. (a) The angular speed in revolutions per second is 50.0 rev / 3.25 s = 15.38 rev/s.

  (b) The angular speed in revolutions per minute is 50.0 rev / 3.25 s × 60 s/min = 923.08 rpm.

  (c) The angular speed in radians per second is 50.0 rev / 3.25 s × 2π rad/rev = 96.25 rad/s.

19. (a) To complete one revolution, the time taken is 60 s / 1050 rpm = 0.0571 s.

  (b) In 5.00 s, the number of revolutions completed is 5.00 s × 1050 rpm / 60 s = 87.5 rev.

20. (a) To complete one revolution, the time taken is 2π rad / 36.0 rad/s = 0.1745 s.

  (b) In 8.00 s, the number of revolutions completed is 8.00 s × 36.0 rad/s / (2π rad) = 18.00 rev.

21. The angular displacement in radians is given by angular speed (ω) multiplied by time (t):

  Angular displacement = ω × t = 7.00 rad/s × 1.20 s = 8.40 rad.

22. The angular displacement in revolutions is given by angular speed (ω) multiplied by time (t):

  Angular displacement = ω × t = 4.00 rev/s × 13.0 s = 52.0 rev.

23. The length of the arc through which the pendulum swings is given by the formula:

  Arc length = (θ/360°) × 2π × radius,

  where θ is the angle in degrees and radius is the length of the pendulum.

  Arc length = (5.0°/360°) × 2π × 1.50 m = 0.131 m.

24. The length of the arc through which the airplane travels is equal to the circumference of the circle it makes:

  Arc length = 2π × radius = 2π × 5.00 mi = 31.42 mi.

25. The linear speed of a point on the rim of the wheel is given by the formula:

  Linear speed = angular speed (ω) × radius.

  Linear speed = 27.0 cm × 47.0 rpm × (2π rad/1 min) × (1 min/60 s) = 7.02 m/s.

26. The linear speed of the belt is equal to the linear speed of the pulley, which is given by the formula:

  Linear speed = angular speed (ω) × radius.

  Linear speed = 30.0 cm × 275 rpm × (2π rad/1 min) × (1 min/60 s) = 143.75 m/s.

27. (a) The angular speed in rad/s is equal to the angular speed in rpm multiplied by (2π rad/1 min):

  Angular speed = 655 rpm × (2π rad/1 min) = 6877.98 rad/s.

  (b) The angular displacement in radians is equal to the angular speed multiplied by time in minutes:

  Angular displacement = 6877.98 rad/s × 3.00 min = 20633.94 rad.

  (c) The linear distance traveled by a point on the rim in one complete revolution is equal to the circumference of the circle:

  Linear distance = 2π v radius = 2 π × 25.0 cm = 157.08 cm.

  (d) The linear distance traveled by a point on the rim in 3.00 min is equal to the linear speed multiplied by time:

  Linear distance = 143.75 m/s × 3.00 min = 431.25 m.

  (e) The linear speed of a point on the rim is equal to the angular speed multiplied by the radius:

  Linear speed = 6877.98 rad/s × 0.25 m = 1719.50 m/s.

28. (a) The angular speed in rad/s is equal to the angular speed in rpm multiplied by (2π rad/1 min):

  Angular speed = 1150 rpm × (2π rad/1 min) = 12094.40 rad/s.

  (b) The angular displacement in radians is equal to the angular speed multiplied by time in seconds:

  Angular displacement = 12094.40 rad/s × 4.00 s = 48377.60 rad.

  (c) The linear speed of a point on the end of the blade is equal to the angular speed multiplied by the radius:

  Linear speed = 12094.40 rad/s × 2.00 m = 24188.80 m/s.

  (d) The linear speed of a point 1.00 m from the end of the blade is equal to the angular speed multiplied by the radius:

  Linear speed = 12094.40 rad/s × 1.00 m = 12094.40 m/s.

29. (a) The angular speed of the tires in rad/s is equal to the linear speed divided by the radius:

  Angular speed = 60.0 km/h × (1000 m/1 km) / (3600 s/1 h) / (33.0 cm/100 m) = 0.0303 rad/s.

  (b) The angular displacement of the tires in radians is equal to the angular speed multiplied by time in seconds:

  Angular displacement = 0.0303 rad/s × 30.0 s = 0.909 rad.

  (c) The linear distance traveled by a point on the tread in 30.0 s is equal to the linear speed multiplied by time:

  Linear distance = 60.0 km/h × (1000 m/1 km) / (3600 s/1 h) × 30.0 s = 500.0 m.

  (d) The linear distance traveled by the automobile in 30.0 s is equal to the linear speed multiplied by time:

  Linear distance = 60.0 km/h × (1000 m/1 km) / (3600 s/1 h) × 30.0 s = 500.0 m.

30. The angular speed of the clock hands is as follows:

  (a) The second hand completes one revolution in 60 s, so its angular speed is 2π rad/60 s.

  (b) The minute hand completes one revolution in 60 min, so its angular speed is 2π rad/60 min.

  (c) The hour hand completes one revolution in 12 hours, so its angular speed is 2π rad/12 hours.

31. The linear velocity of a point on the wheel is given by the formula:

  Linear velocity = angular velocity (ω) × radius.

  Linear velocity = 2π × (15.0 in./2) × (2 rev/s)

= 60π in/s.

32. The time to complete 4π radians is given by the formula:

  Time = (4π rad) / (angular velocity) = (4π rad) / (30.0 ft/s / 1.50 ft)

= 2.52 s.

Read more on Kinematics here: https://brainly.com/question/26407594

#SPJ11

The binding energy for a particular metal is 0.576eV. What is the longest wavelength (in nm ) of light that can eject an electron from the metal's surface?.

Answers

When photons with energy more significant than the work function of a metal are exposed to a metal's surface, photoelectric emission occurs.  longest wavelength of light that can eject an electron from the surface of a metal is 215 nm.

When light of a particular frequency is shone on a metal, the energy of each photon is transferred to the metal's electrons. As a result, electrons in the metal can overcome their bond's strength and leave the surface if they receive a sufficiently significant amount of energy. The wavelength (λ) of light that can eject electrons from a metal surface is determined by the metal's work function.

The maximum kinetic energy (Ek) of electrons emitted from a metal surface is determined by the difference between the energy of a photon (E) and the work function of a metal (Φ).The maximum kinetic energy of an electron is determined by the equation given below:Ek = E – Φwhere

E = Energy of the photonΦ = Work function of the metalTherefore, the longest wavelength of light that can eject an electron from the surface of a metal is determined by the following equation:λ = hc/EWhereh = Planck's constantc = Velocity of light E = Energy required to eject an electronλ = hc/ΦThe equation for the maximum kinetic energy of an electron isEk = hc/λ – Φ

Binding energy (Φ) for a particular metal = 0.576 eVThe velocity of light (c) = 3.00 x 10^8 m/sPlanck's constant (h) = 6.63 x [tex]10^{-34}[/tex]J/s We can use the formula below to convert electron-volts (eV) to joules (J).1 eV = 1.602 x [tex]10^{-19}[/tex] JΦ = 0.576 eV x 1.602 x [tex]10^{-19}[/tex]  J/eVΦ = 9.22 x [tex]10^{-20}[/tex] Jλ = hc/Φ= (6.63 x  [tex]10^{-34}[/tex]  J/s) (3.00 x 10^8 m/s) / (9.22 x 10^-20 J)= 2.15 x [tex]10^{-7}[/tex] m= 215 nm

Therefore, the longest wavelength of light that can eject an electron from the surface of a metal is 215 nm.

Know more about photoelectric here:

https://brainly.com/question/30697279

#SPJ11

Question 3) Infrared light with a wavelength of 1271nm in the air is to be contained inside of a glass vessel (n=1.51) that contains air (n=1.000). There is a coating on the internal surface of the glass that is intended to produce a strong reflection back into the vessel. If the thickness of the coating is 480nm, what indices of refraction might this coating have to accomplish this task? Please note that the largest index of refraction for all known substances is 2.42.

Answers

To determine the indices of refraction needed for the coating on the internal surface of the glass vessel to produce strong reflection, we can utilize the concept of thin-film interference.

When light passes through different media, such as from air to glass, it can reflect off the boundaries between them.

For constructive interference and maximum reflection, the phase shift upon reflection must be an odd multiple of half the wavelength.

Given an infrared wavelength of 1271 nm in air and a glass vessel with an index of refraction of 1.51, we can calculate the wavelength of light in the glass as λ_glass = λ_air / n_glass = 1271 nm / 1.51 = 841 nm.

To produce strong reflection, the total distance traveled by the light in the coating and glass should be equal to an odd multiple of half the wavelength in the coating (480 nm) and glass (841 nm). Thus, we can set up an equation:

2n_coating * d_coating + 2n_glass * d_glass = (2m + 1) * λ_coating / 2

where n_coating and n_glass are the indices of refraction for the coating and glass, respectively, d_coating is the thickness of the coating, d_glass is the thickness of the glass vessel, λ_coating is the wavelength of light in the coating, and m is an integer.

Since we need to find the maximum possible index of refraction for the coating, we can assume the minimum value for n_glass, which is 1.51.

Solving the equation, we get:

2n_coating * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

Considering the maximum index of refraction for all known substances is 2.42, we can substitute this value for n_coating:

2 * 2.42 * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

Simplifying the equation, we find:

242 * 480 nm + 2 * 1.51 * d_glass = (2m + 1) * 841 nm / 2

For more such questions on strong reflection

https://brainly.com/question/14113791

#SPJ8

Steve builds a bicycle with big wheels to ride around. When its done, he measures the mass of the bike to be 63.2-kg with no one sitting on it. He measures the distance between the wheels and finds the distance between the center of the front and rear tires to be 4.30 m. He places a scale under each tire and calculates the center of mass is at a point 1.28 m behind the center of the front tire. What do the scales under each tire read? front wheel ___N rear wheel___ N

Answers

The scale under the front wheel reads 392.8 N, and the scale under the rear wheel reads 647.2 N.

To determine the readings on the scales under each tire, we need to consider the distribution of weight and the location of the center of mass. The total weight of the bicycle is 63.2 kg.

Given that the center of mass is located 1.28 m behind the center of the front tire, we can assume that the weight is evenly distributed between the front and rear tires. This means that the weight on each tire is half of the total weight.

To calculate the scale readings, we can use the principle of equilibrium. The sum of the forces acting on the bicycle must be zero. Since there are only two scales, the vertical forces exerted by the scales must balance the weight on the tires.

The scale under the front wheel will read half of the total weight, which is (63.2 kg / 2) * 9.8 m/s^2 = 311.6 N. The scale under the rear wheel will also read half of the total weight, which is (63.2 kg / 2) * 9.8 m/s^2 = 514.8 N.

Therefore, the scale under the front wheel reads 311.6 N, and the scale under the rear wheel reads 514.8 N.

Learn more about scale

brainly.com/question/32457165

#SPJ11

How many moles of acetic acid would you need to add to 2.00 l of water to make a solution with a ph of 2.25?

Answers

Approximately 0.005623 moles of acetic acid would be needed to achieve a solution with a pH of 2.25 in 2.00 liters of water.

To determine the number of moles of acetic acid needed to achieve a pH of 2.25 in a solution, we first need to understand the relationship between pH, concentration, and dissociation of the acid.

Acetic acid (CH3COOH) is a weak acid that partially dissociates in water. The dissociation can be represented by the equation: CH3COOH ⇌ CH3COO- + H+

The pH of a solution is a measure of its acidity and is defined as the negative logarithm (base 10) of the concentration of hydrogen ions (H+). The pH scale ranges from 0 to 14, where a pH of 7 is considered neutral, below 7 is acidic, and above 7 is basic.

In the case of acetic acid, we need to calculate the concentration of H+ ions that corresponds to a pH of 2.25. The concentration can be determined using the formula:

[H+] = 10^(-pH)

[H+] = 10^(-2.25)

Once we have the concentration of H+ ions, we can assume that the concentration of acetic acid (CH3COOH) will be equal to the concentration of the H+ ions, as the acid partially dissociates.

Now, to calculate the number of moles of acetic acid needed, we multiply the concentration (in moles per liter) by the volume of the solution. In this case, the volume is given as 2.00 liters.

Number of moles of acetic acid = Concentration (in moles/L) * Volume (in liters)

Substitute the concentration of H+ ions into the equation and calculate the number of moles of acetic acid.

To learn more about pH, Click here: brainly.com/question/2288405?

#SPJ11

Compact fluorescent (CFL) bulbs provide about four times as much visible light for a given amount of energy use. For example, a 14-watt CFL bulb provides about the same amount of visible light as a 60-watt incandescent bulb. LED lights are even more efficient at turning electrical energy into visible light. Does that mean they are both a lot hotter? Go online and research how fluorescent and compact fluorescent bulbs work. Describe how their operations and their spectra differ from those of incandescent light bulbs. Be sure to record your research sources.

Answers

Fluorescent,compact fluorescent bulbs operate differently from incandescent bulbs,resulting in differences in spectra,heat production. Both bulbs are more energy-efficient than incandescent bulbs.

Fluorescent bulbs work by passing an electric current through a gas-filled tube, which contains mercury vapor. The electrical current excites the mercury atoms, causing them to emit ultraviolet (UV) light. This UV light then interacts with a phosphor coating on the inside of the tube, causing it to fluoresce and emit visible light. The spectrum of fluorescent bulbs is characterized by distinct emission lines due to the specific wavelengths of light emitted by the excited phosphors. Incandescent bulbs work by passing an electric current through a filament, usually made of tungsten, which heats up and emits light as a result of its high temperature.

While fluorescent and CFL bulbs are more energy-efficient and produce less heat compared to incandescent bulbs, LED (light-emitting diode) lights are even more efficient. LED lights operate by passing an electric current through a semiconductor material, which emits light directly without the need for a filament or gas. LED lights convert a higher percentage of electrical energy into visible light, resulting in greater efficiency and minimal heat production.

Sources:

Energy.gov. (n.d.). How Fluorescent Lamps Work. Retrieved from https://www.energy.gov/energysaver/save-electricity-and-fuel/lighting-choices-save-you-money/how-energy-efficient-light-bulbs

Energy.gov. (n.d.). How Compact Fluorescent Lamps Work. Retrieved from https://www.energy.gov/energysaver/save-electricity-and-fuel/lighting-choices-save-you-money/how-energy-efficient-light-bulbs

Energy.gov. (n.d.). How Light Emitting Diodes Work. Retrieved from https://www.energy.gov/energysaver/save-electricity-and-fuel/lighting-choices-save-you-money/how-energy-efficient-light-bulbs

To learn more about compact fluorescent bulbs click here : brainly.com/question/31212425

#SPJ11

An emf is induced in a wire by changing the current in a nearby wire.
True
False

Answers

The statement "An emf is induced in a wire by changing the current in a nearby wire" is true.

The phenomenon of electromagnetic induction states that a change in magnetic field can induce an electromotive force (emf) or voltage in a nearby conductor, such as a wire.

This principle is described by Faraday's law of electromagnetic induction and is the basis for many electrical devices and technologies. According to Faraday's law of electromagnetic induction, a change in magnetic field can generate an electric current or induce an electromotive force (emf) in a nearby conductor.

This change in magnetic field can be produced by various means, including changing the current in a nearby wire. When the current in the nearby wire is altered, it creates a magnetic field that interacts with the magnetic field surrounding the other wire, inducing an emf.

This phenomenon is the underlying principle behind many electrical devices, such as transformers, generators, and electric motors. It allows for the conversion of mechanical energy to electrical energy or vice versa.

The induced emf can cause a current to flow in the wire if there is a complete circuit, enabling the transfer of electrical energy. Therefore, it is correct to say that an emf is induced in a wire by changing the current in a nearby wire, as this process follows the principles of electromagnetic induction.

Learn more about current here; brainly.com/question/9682654

#SPJ11

10. (10 points total) An object is placed 6 cm to the left of a converging lens. Its image forms 12 cm to the right of the lens. a) (3 points) What is focal length of the lens? b) (3 points) What is the magnification? c) (2 points) is the image upright, or inverted? (Please explain or show work.) d) (2 points) is the image real or virtilal? (Please explain or show work)

Answers

a) The focal length of the lens is 12 cm

b) The magnification is -2.

c) The magnification is negative (-2), meaning that the image is inverted.

d) Since the image distance is positive (12 cm to the right of the lens), it shows that the image is real.

How to determine the focal length of the lens?

a) To evaluate the focal length of the lens, we shall use the lens formula:

1/f = 1/[tex]d_{0}[/tex] + 1/[tex]d_{i}[/tex]

where:

f = the focal length of the lens

d₀ = object distance

[tex]d_{i}[/tex] = image distance

Given:

d₀ = −6cm (since the object is 6 cm to the left of the lens),

[tex]d_{i}[/tex] = 12cm (the image forms is 12 cm to the right of the lens).

Putting the values:

1/f = 1/-6 + 1/12

We simplify:

1/f = 2/12 - 1/6

1/f = 1/12

Take the reciprocal of both sides:

f = 12cm

Therefore, the focal length of the lens is 12 cm.

b) The magnification (m) can be determined using the formula:

m = [tex]d_{i}[/tex] / [tex]d_{o}[/tex]

where:

[tex]d_{i}[/tex] = the object distance

[tex]d_{o}[/tex] = the image distance

Given:

[tex]d_{i}[/tex] = −6cm (object is 6 cm to the left of the lens),

[tex]d_{o}[/tex] = 2cm (since the image forms 12 cm to the right of the lens).

Plugging in the values:

m = -12/-6

m = -2

So, the magnification is -2.

c) The sign of the magnification tells us if the image is upright or inverted. In this situation, since the magnification is negative (-2), the image is inverted.

d) We shall put into account the sign of the image distance to determine if the image is real or virtual.

Here, the image distance is positive (12 cm to the right of the lens), indicating that the image is real.

Learn more about image distance at brainly.com/question/12629638

#SPJ4

Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.4cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.2. If the point of balance of the Wheatstone bridge you built is reached when 12 is 3.6 cm, calculate the experimental value for Rx. Give your answer in units of Ohms with i decimal. Answer:

Answers

To calculate the experimental value for Rx, we can use the concept of the Wheatstone bridge. In a balanced Wheatstone bridge, the ratio of resistances on one side of the bridge is equal to the ratio on the other side. The experimental value for Rx is approximately 3.79 Ω.

In this case, we have Rc = 7.2 Ω and the slide wire of total length is 7.4 cm. The point of balance is reached when 12 is at 3.6 cm.

To find the experimental value of Rx, we can use the formula:

Rx = (Rc * Lc) / Lx

Where Rx is the unknown resistance, Rc is the known resistance, Lc is the length of the known resistance, and Lx is the length of the unknown resistance.

Substituting the values into the formula:

Rx = (7.2 Ω * 3.6 cm) / (7.4 cm - 3.6 cm)

Rx ≈ 14.4 Ω / 3.8 cm

Rx ≈ 3.79 Ω

Therefore, the experimental value for Rx is approximately 3.79 Ω.

To learn more about, Wheatstone bridge, click here, https://brainly.com/question/31431181

#SPJ11

2. An electron is xeleased from rest at a distance of 9.00 cm from a proton. If the proton is held in place, how fast will the electron be moving when it is 300 cm from the proton? (me = 9.11 X 103 kg, q= 1.6810-196)

Answers

The electron's speed can be determined using conservation of energy principles.

Initially, at a distance of 9.00 cm, the electron possesses zero kinetic energy and potential energy given by -U = kqQ/r.

At a distance of 300 cm, the electron has both kinetic energy (1/2)mv² and potential energy -U = kqQ/r. The total energy of the system, the sum of kinetic and potential energy, remains constant. Thus, applying conservation of energy, we can solve for the electron's speed.

Calculating the values using the given data:

Electron mass (me) = 9.11 x 10³ kg

Electron charge (q) = 1.68 x 10⁻¹⁹ C

Coulomb constant (k) = 9 x 10⁹ Nm²/C²

Proton charge (Q) = q = 1.68 x 10⁻¹⁹ C

Initial distance (r) = 9.00 cm = 0.0900 m

Final distance (r') = 300 cm = 3.00 m

Potential energy (U) = kqQ/r = 2.44 x 10⁻¹⁶ J

Using the equation (1/2)mv² - kqQ/r = -U, we find that v = √(3.08 x 10¹¹ m²/s²) = 5.55 x 10⁵ m/s.

Hence, the electron's speed at any point in its trajectory is 5.55 x 10⁵ m/s.

To learn more about the principles of conservation of energy and related topics, click this link:

brainly.com/question/16974883

#SPJ11

An electron 9.11 x 10^-31 kg, -1.60 x 10^-19 coulombs is moving with the speed of 15 m/s in the positive x direction, it is in a region where there is a constant electric field of 4 N per coulomb and the positive y direction in a constant magnetic field of 0.50 tesla and the -c direction, what is the electron's acceleration? Give your answer in unit vector form.
Please give solution and answer!

Answers

Given the charge of an electron (q = -1.60 x 10^-19 C), mass of an electron (m = 9.11 x 10^-31 kg), velocity of the electron (v = 15 m/s in the x direction), electric field (E = 4 N/C in the y direction), and magnetic field (B = 0.50 T in the negative z direction), we can determine the acceleration of the electron.

The force on an electron in an electric field is given by F = qE. Plugging in the values, we have F = (-1.60 x 10^-19 C)(4 N/C) = -6.40 x 10^-19 N.

The force on an electron in a magnetic field is given by F = qvBsinθ. Since the angle θ is 90°, sin90° = 1. Plugging in the values, we have F = (-1.60 x 10^-19 C)(15 m/s)(0.50 T)(1) = -1.20 x 10^-18 N.

Now, using Newton's second law (F = ma), we can find the acceleration of the electron: a = F/m = (-1.20 x 10^-18 N) / (9.11 x 10^-31 kg) = -1.32 x 10^12 m/s^2.

The acceleration of the electron is in the -z direction (opposite to the direction of the magnetic field) due to the negative charge of the electron. Therefore, the answer in unit vector form is a = (0, 0, -1.32 x 10^12 m/s^2).

To learn more about the concepts of force, acceleration, electric and magnetic fields, you can visit the following link: brainly.com/question/12923069

#SPJ11

The acceleration of the electron is determined as 1.32 x 10¹² m/s².

What is the acceleration of the electron?

The acceleration of the electron is calculated by applying the following formula as follows;

F = qvB

ma = qvB

a = qvB / m

where;

m is the mass of the electronq is the charge of the electronv is the speed of the electronB is the magnetic field strength

The given parameters include;

m = 9.11 x 10⁻³¹ kg

v = 15 m/s

q = 1.6 x 10⁻¹⁹ C

B = 0.5 T

The acceleration of the electron is calculated as follows;

a = qvB / m

a = (1.6 x 10⁻¹⁹ x 15 x 0.5 ) / (9.11 x 10⁻³¹ )

a = 1.32 x 10¹² m/s²

Learn more about acceleration here: https://brainly.com/question/14344386

#SPJ4

Consider a car driving on a dry concrete road as it goes around a banked curve (ie, the road is tilted to help drivers navigate the turn). Which of the following are contributing to the centripetal ac

Answers

The correct answer is "Only (i) and (iv) contribute to the centripetal acceleration of the car."

Centripetal acceleration is the acceleration directed towards the center of the circular path. In the case of a car driving on a banked curve, there are certain forces at play.

(i) The vertical component of the normal force of the road on the car contributes to the centripetal acceleration. It is responsible for providing the necessary inward force to keep the car on the curved path.

(ii) The horizontal component of the normal force does not contribute to the centripetal acceleration. It acts perpendicular to the direction of motion and does not affect the car's circular motion.

(iii) The vertical component of the force of friction between the road and the tires of the car also does not contribute to the centripetal acceleration. It acts against the gravitational force but does not play a role in changing the car's direction.

(iv) However, the horizontal component of the force of friction between the road and the tires of the car does contribute to the centripetal acceleration. It acts towards the center of the curve and provides the necessary inward force for the circular motion.

Hence, only (i) and (iv) contribute to the centripetal acceleration of the car as it goes around the banked curve.

Learn more about centripetal here: brainly.com/question/20905151

#SPJ11

COMPLETE QUESTION

Consider a car driving on a dry concrete road as it goes around a banked curve (ie, the road is tilted to help drivers navigate the turn). Which of the following are contributing to the centripetal acceleration of the car as it goes around the banked curve? (The vertical component of the normal force of the road on the car. (11) The horizontal component of the normal force of the road on the car (II) The vertical component of the force of friction between the road and the tires of the car. (iv) The horizontal component of the force of friction between the road and the tires of the car Select the correct answer O Only (l) and (iv) contribute to the centripetal acceleration of the car. Only (iv) contribute to the centripetal acceleration of the car. o Only () contributes to the centripetal acceleration of the car. O All four contribute to the centripetal acceleration of the car. o Only (1) contributes to the centripetal acceleration of the car. Only (1) and (iii) contribute to the centripetal acceleration of the car.

A snow maker at a resort pumps 220 kg of lake water per minute and sprays it into the air above a ski run. The water droplets freeze in the air and fall to the ground, forming a layer of snow. If all of the water pumped into the air turns to snow, and the snow cools to the ambient air temperature of -6.8°C, how much heat does the snow-making process release each minute? Assume the temperature of the lake water is 13.9°C, and use 2.00x102)/(kg-Cº) for the specific heat capacity of snow

Answers

Find the amount of heat released each minute by using the following formula:Q = m × c × ΔT

where:Q = heat energy (in Joules or J),m = mass of the substance (in kg),c = specific heat capacity of the substance (in J/(kg·°C)),ΔT = change in temperature (in °C)

First, we need to find the mass of snow produced each minute. We know that 220 kg of water is pumped into the air each minute, and assuming all of it turns to snow, the mass of snow produced will be 220 kg.

Next, we can calculate the change in temperature of the water as it cools from 13.9°C to -6.8°C:ΔT = (-6.8°C) - (13.9°C)ΔT = -20.7°C

The specific heat capacity of snow is given as 2.00x102 J/(kg·°C), so we can substitute all the values into the formula to find the amount of heat released:Q = m × c × ΔTQ = (220 kg) × (2.00x102 J/(kg·°C)) × (-20.7°C)Q = -9.11 × 106 J

The snow-making process releases about 9.11 × 106 J of heat each minute.

Learn more about heat and temperature

https://brainly.com/question/26866637

#SPJ11

A computer uses 3. 5A at 110V what is the resistance and ohms

Answers

To calculate the resistance of the computer, we can use Ohm's law:

V = IR

where V is the voltage, I is the current, and R is the resistance.

In this case, the voltage is 110V and the current is 3.5A. Substituting these values into the equation gives:

110V = 3.5A * R

Solving for R, we get:

R = 110V / 3.5A

R ≈ 31.43 Ω

Therefore, the resistance of the computer is approximately 31.43 ohms (Ω).

To know more about resistance, click on the link below:

brainly.com/question/17010736

#SPJ11

A circuit consists of a 256- resistor and a 0.191-H inductor. These two elements are connected in series across a generator that has a frequency of 115 Hz and a voltage of 351 V. (a) What is the current in the circuit? (b) Determine the phase angle between the current and the voltage of the generator. Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise.

Answers

a) The current in the circuit is 1.372 A.

b) The phase angle between the current and the voltage of the generator is 11.75°.

a) The current in the circuit is 1.372 A.

Step 1: The given values are: Resistance, R = 256 Ω Inductance, L = 0.191 HFrequency, f = 115 HzVoltage, V = 351 V

Step 2: Impedance of the circuit is given by the formula Z = √(R² + XL²),where XL = 2πfLZ = √(R² + (2πfL)²) = √(256² + (2π × 115 × 0.191)²) = 303.4 Ω

Step 3: The current in the circuit is given by the formula I = V/ZI = 351/303.4I = 1.372 A

b) The phase angle between the current and the voltage of the generator is 11.75°.Step 1: The phase angle between the current and the voltage of the generator is given by the formulaθ = tan⁻¹(XL/R)θ = tan⁻¹((2πfL)/R)θ = tan⁻¹((2π × 115 × 0.191)/256)θ = 11.75°.

Learn more about current

https://brainly.com/question/29766827

#SPJ11

a) The current in the circuit is 1.372 A.

b) The phase angle between the current and the voltage of the generator is 11.75°.

a) The current in the circuit is 1.372 A.

Step 1: The given values are: Resistance, R = 256 Ω Inductance, L = 0.191 HFrequency, f = 115 HzVoltage, V = 351 V

Step 2: Impedance of the circuit is given by the formula Z = √(R² + XL²),where XL = 2πfLZ = √(R² + (2πfL)²) = √(256² + (2π × 115 × 0.191)²) = 303.4 Ω

Step 3: The current in the circuit is given by the formula I = V/ZI = 351/303.4I = 1.372 A

b) The phase angle between the current and the voltage of the generator is 11.75°.Step 1: The phase angle between the current and the voltage of the generator is given by the formulaθ = tan⁻¹(XL/R)θ = tan⁻¹((2πfL)/R)θ = tan⁻¹((2π × 115 × 0.191)/256)θ = 11.75°.

Learn more about current on:

https://brainly.com/question/31686728

#SPJ4

Other Questions
she arrived at 8pm; open the door and shouted Good___! A model train powered by an electric motor accelerates from rest to 0.660 m/s in 29.0 ms. The total mass of the train is 660 g. What is the average power (in W) delivered to the train by the motor during its acceleration? (Break-even point and selling price) Simple Metal Works, Inc. will manufacture and sell 300,000 units next year. Fixed costs will total $350.000, and variable costs will be 65 percent of salesa. The firm wants to achieve a level of earnings before interest and taxes of $250,000. What selling price per unit is necessary to achieve this result? b. Set up an analytical income statement to verify your solution to part (a)a. What selling price per unit is necessary to achieve a level of eamings before interest and taxes of $250,000?$5.714(Round to three decimal places.)b. Set up the following analytical income statement to verify your solution to part (a). (Round up all items to the nearest dollar)SalesLess: Variable costs (65% of sales)Revenues before fixed costsLess: Fixed costsEBIT250,000 A red tennis ball has a net charge of + 4570 nC, and a green tennis ball has a net charge of 6120 nC. A) What is the electrostatic force between these two tennis balls if they are separated by 35.0 cm? B) Is the force attractive or repulsive? A block whose mass is 0.700 kg is attached to a spring whose spring constant is 650 N/m. The block is carried a distance of 7.5 cm from its equilibrium position (xo = 0) on a friction-free surface and is released at t = 0. Find the frequency of oscillation of the block. a. 40 Hz a O b.0.21 Hz O c. 4.77 Hz d. 30.0 Hz A capacitor is connected to an AC source. If the maximum current in the circuit is 0.400 A and the voltage from the AC source is given by Av = (90.6 V) sin[(861)s-1t], determine the following. = (a) the rms voltage (in V) of the source V (b) the frequency (in Hz) of the source Hz (c) the capacitance (in PF) of the capacitor UF Research the following topics:Administrative theories of the classical approach: quantitative, behavioral and contemporary.Then create a "Graphic Organizer" that illustrates your concepts, similarities, and differences.INCLUDE REFERENCE howdo critical access hospitals get paid by Medicare?,by Medicaid Byother insurers? Basic Definitions and Examples 1.3. Let U= {(u', u) | 0 The type of district court verdict that is automatically and directly appealed to the Texas Court of Criminal Appeals (bypassing the intermediate regional court of appeals) is that ofa. case involving issues of patent and copyrights.b. a capital felony conviction with imposed death sentence.c. a personal injury case involving the death of the victim.d. any felony criminal case.e. any first-degree felony conviction A man is riding a flatbed railroad train traveling at 16 m/s. He throws a water balloon at an angle that the balloon travels perpendicular to the train's direction of motion. If he threw the balloon relative to the train at speed of 24 m/s, what is the balloon's speed? There are two right vortices, whose nucleus has radius a. Inside the nucleus the vorticity is constant, being its magnitude w and outside the nucleus the vorticity is zero. The direction of the vorticity vector is parallel to the axis of symmetry of the straight tube. a) Find the velocity field for r < a and r > a. b) Consider two vortices such that one has positive vorticity and the other has negative vorticity (the magnitude of the vorticity is the same). Show that in this case the vortices move with constant speed and equal to: U 2d where d is the distance between the centers of the vortices and I is the circulation. This result is valid provided that d > a. What happens if d < a? Explain. c) Consider now that the two vortices are of the same sign. Show that in this case the vortices rotate around a common center and find the angular speeld of rotation. ki kz reaction: A B C : 1. Please derive the formula for the change of A, B, C concentration with time (represented by [A]o, k1, k2) w 2. Please plot the concentration of A, B, and C over time according to the data in the figure below (a) [A]o= 40, k, = 0.05min! k2 = 0.01 min-1 (b) [A]o = 40, k, = 0.05min 1.k2 = 0.1min! (c) [A]o= 40, k = k2 = 0.05min! 3. Try to explain in the second question, when the ratio of kl and k2 changes, the concentrations of A, B, and C change, as well as changes in [B]MAX IF Locate a QUANTITATIVE research article on any nursing topic andattach the article with the submission, Provide an APA referencefor the article. Was the design experimental, quasi-experimental,or no Thephysician ordered amikacin 15mg/kg/day IV Divided in 4 equal dosesfor a client who is 60kg. how many milligrams should the nurseadminister for each dose? round to the nearest tenth asneeded Suppose a tank contains 634 m of neon (Ne) at an absolute pressure of 1.01x10 Pa. The temperature is changed from 293.2 to 294.5 K. What is the increase in the internal energy of the neon? State if the statement below is true, or false. If it is false, write the correct statement. 1.1 lim,-a f(x) = f(a). 1.2 limxa(f(x) + g(x)) = limxa f(x) limxa g(x). 1.3 limx+c(x) = limxa f(x)limxag(x) limxa g(x) g(x) = (lim,-a f(x))(limxa g(x)). = (n-1) limxa f(x)(n-1). 1.4 lim, f(x) -a 1.5 limxa f(x) (a) In a class of 100 students, 35 offer History, 43 offer Goography and 50 offer Fconomics. 14 . students offer History and Geography. 13 offer Geograpiry and Economacs and 11 offer History and Feonomies. The manher of sindents that olfer none of the sabjects is four times the number of those that olfer tiree subjects (i) How mam studenti offir thinee subjects? The number of a countrys unemployment workers decreased from 5.3 million to 3.9 million last year. If the countrys population remained constant at 75 million, how did its unemployment rate change last year? (Present value of a growing perpetuity)What is the present value of a perpetual stream of cash flows that pays$1,500at the end of year one and the annual cash flows grow at a rate of2%per year indefinitely, if the appropriate discount rate is9%?What if the appropriate discount rate is7%? Steam Workshop Downloader