A 0.5 kg soccer ball is kicked at 10 m/s. A goalie catches the ball and brings it to rest in 0.25 seconds then the force exerted on the ball by the goalie is 20N. Option C is correct.
Here, we must determine the change in momentum of the soccer ball. The momentum of an object is stated by the product of its mass and velocity. The mass of the soccer ball is 0.5 kg, and its initial velocity is 10 m/s. Therefore, the ball is conducted to be constant, and its final velocity is 0 m/s.
The change in momentum is computed by reducing the final momentum from the initial momentum. In this concern, the initial momentum is 0.5 kg × 10 m/s = 5 kg·m/s, and the final momentum is 0.5 kg × 0 m/s = 0 kg·m/s. Now, the change in momentum is 5 kg·m/s - 0 kg·m/s = 5 kg·m/s.
Next, we separate the change in momentum by the time taken to bring up the ball to rest, which is 0.25 seconds. Thus, the goalie's force exerted on the ball is 5 kg·m/s / 0.25 s = 20 N.
Therefore, the correct answer is C. 20 N.
Learn more about velocity here:
https://brainly.com/question/18084516
The correct Option is C. The force exerted on the ball by the goalie is 20 N.
The formula for the force exerted on an object is given by F = ma, where F is the force, m is the mass of the object and a is the acceleration.
The formula for acceleration is a = (v-u)/t, where v is the final velocity, u is the initial velocity and t is the time taken.
The acceleration is negative if the object is brought to rest.
So, for the given problem, the initial velocity of the soccer ball is 10 m/s and the final velocity is 0.
The time taken to bring it to rest is 0.25 s.
Therefore, the acceleration is given by:a = [tex](0 - 10)/0.25 = - 40 m/s^{2}[/tex]
Now, we can calculate the force exerted by the goalie using the formula: [tex]F = maF = 0.5 kg $\times$ (- 40 m/s^{2} ) = - 20 N[/tex]
We get a negative value for the force, which means that the force exerted is in the opposite direction to the motion of the ball.
However, the magnitude of the force is given by |-20 N| = 20 N.
So, the answer is option (C) 20 N.
For more questions on force
https://brainly.com/question/30762901
#SPJ8
When a piece of wood is put in a graduated cylinder containing water the level of water rises from 17.7cm cubic to 18.5cm cubic calculate the total volume of the piece of wood given that it's relative density is 0.60
The total volume of the piece of wood is 1.33[tex]cm^3[/tex].
To calculate the total volume of the piece of wood, we can use the principle of displacement.
1. First, we need to find the difference in volume between the two water levels. The initial volume is 17.7 [tex]cm^3[/tex], and the final volume is 18.5 cm^3. The difference is 18.5 [tex]cm^3[/tex] - 17.7 [tex]cm^3[/tex] = 0.8 [tex]cm^3[/tex].
2. Now, we need to find the volume of water displaced by the piece of wood. Since the relative density of the wood is 0.60, it means that the wood is 0.60 times denser than water.
3. The volume of water displaced by the wood is equal to the difference in volume divided by the relative density of the wood. So, the volume of water displaced is 0.8 cm^3 / 0.60 = 1.33 [tex]cm^3[/tex].
4. Finally, the total volume of the piece of wood is equal to the volume of water displaced. Therefore, the total volume of the piece of wood is 1.33 [tex]cm^3[/tex].
For more question displacement
https://brainly.com/question/321442
#SPJ8