5(x + 3) – 12 = 43 solve

Answers

Answer 1

Answer:

[tex]x=8[/tex]

Step-by-step explanation:

We can solve this equation by isolating the variable x.

First let’s apply the distributive property:

[tex]5(x+3)-12=43\\5\cdot x + 5\cdot3 - 12=43\\5x + 15 - 12 = 43[/tex]

Combine like terms:

[tex]5x + 3 = 43[/tex]

Now we can subtract 3 from both sides:

[tex]5x + 3 - 3 = 43-3\\5x = 40[/tex]

Divide both sides by 5:

[tex]5x\div5 = 40\div5\\x = 8[/tex]

So [tex]x=8[/tex].

Hope this helped!

Answer 2

Answer:

x = 8

Step-by-step explanation:

5(x + 3) – 12 = 43

Add 12 to each side

5(x + 3) – 12+12 = 43+12

5(x+3) =45

Divide each side by 5

5(x+3)/5 = 55/5

x+3 = 11

Subtract 3 from each side

x+3-3 = 11-3

x = 8


Related Questions

The total cost for my brother's bowling party was $140. It cost $50to reserve a bowling lane plus the cost of renting shoes for the 9 people attending.

Answers

$140 - $50 for the bowling lane = $90
$90 divide by the 9 people attending = $10 for bowling shoes for each person

Answer:

$10 to rent shoes for 9 people

Step-by-step explanation:

Total amount of the party = $140

A bowling lane = $50

$140 - $50 = $90

$90 divided by 9 = 10

$10 to rent shoes for 9 people

Find the directional derivative of the function at the given point in the direction of the vector v. f(x, y, z) = xey + yez + zex, (0, 0, 0), v = 4, 3, −1

Answers

Answer: 6 / √26

Step-by-step explanation:

Given that f(x, y, z) = xe^y + ye^z + ze^x

so first we compute the gradient vector at (0, 0, 0)

Δf ( x, y, z ) = [ e^y + ze^x,  xe^y + e^z,  ye^z + e^x ]

Δf ( 0, 0, 0 ) = [ e⁰ + 0(e)⁰, 0(e)⁰ + e⁰, 0(e)⁰ + e⁰ ] = [ 1+0 , 0+1, 0+1 ] = [ 1, 1, 1 ]

Now we were also given that  V = < 4, 3, -1 >

so ║v║ = √ ( 4² + 3² + (-1)² )

║v║ = √ ( 16 + 9 + 1 )

║v║ = √ 26

It must be noted that "v"  is not a unit vector but since ║v║ = √ 26, the unit vector in the direction of "V" is ⊆ = ( V / ║v║)

so

⊆ =  ( V / ║v║) = [ 4/√26, 3/√26, -1/√26 ]

therefore by equation   D⊆f ( x, y, z ) = Δf ( x, y, z ) × ⊆

D⊆f ( x, y, z ) = Δf ( 0, 0, 0 ) × ⊆ = [ 1, 1, 1 ] × [ 4/√26, 3/√26, -1/√26 ]

= ( 1×4 + 1×3 -1×1 ) / √26

= (4 + 3 - 1) / √26

= 6 / √26

A catering service offers 11 appetizers, 12 main courses, and 8 desserts. A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet. In how many ways can this be done?

Answers

Answer:  203,280

Step-by-step explanation:

Given: A catering service offers 11 appetizers, 12 main courses, and 8 desserts.

Number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet.

Total number of ways to do this: [tex]^{11}C_9\times ^{12}C_2\times^{8}C_3[/tex]

[tex]=\dfrac{11!}{9!2!}\times\dfrac{12!}{2!10!}\times\dfrac{8!}{3!5!}\\\\=\dfrac{11\times10}{2}\times\dfrac{12\times11}{2}\times\dfrac{8\times7\times6}{3\times2}\\\\= 203280[/tex]

hence , this can be done in 203,280 ways.

3x to the 2nd power +4y to the 2nd power x=2 y=1 z=-3

Answers

Answer:

Step-by-step explanation:

3(2)^2 + 4(1)^2

3(4) + 4

12+4= 16

Answer:

[tex]\huge\boxed{16}[/tex]

Step-by-step explanation:

[tex]3x^2+4y^2\ \text{for}\ x=2;\ y=1.\\\\\text{Substitute:}\\\\3(2)^2+4(1)^2=3(4)+4(1)=12+4=16\\\\\text{Used PEMDAS}[/tex]

differentiate with respect to X
[tex] \sqrt{ \frac{cos2x}{1 +sin2x } } [/tex]

Answers

Power and chain rule (where the power rule kicks in because [tex]\sqrt x=x^{1/2}[/tex]):

[tex]\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'[/tex]

Simplify the leading term as

[tex]\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}[/tex]

Quotient rule:

[tex]\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}[/tex]

Chain rule:

[tex](\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)[/tex]

[tex](1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)[/tex]

Put everything together and simplify:

[tex]\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}[/tex]

[tex]=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}[/tex]

[tex]=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}[/tex]

Someone please explain this!!!!

Answers

Answer:

23) x ≥ -140.

24) k > -9.

25) v ≥ 9.

26) m > 16.

Step-by-step explanation:

23) -14 ≤ [tex]\frac{x}{10}[/tex]

[tex]\frac{x}{10}[/tex] ≥ -14

x ≥ -140

Since it is a ≥ sign, you will put a shaded circle at -140, and the line will stretch infinitely to the right of the circle.

24) -20 < k - 11

k - 11 > -20

k > -9

Since it is a > sign, you will put a non-shaded circle at -9, and the line will stretch infinitely to the right of the circle.

25) -6v ≤ 54

6v ≥ 54

v ≥ 9

Since it is a ≥ sign, you will put a shaded circle at 9, and the line will stretch infinitely to the right of the circle.

26) 8 < [tex]\frac{m}{2}[/tex]

[tex]\frac{m}{2}[/tex] > 8

m > 16

Since it is a > sign, you will put a non-shaded circle at 16, and the line will stretch infinitely to the right of the circle.

Hope this helps!

A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05. Suppose a random sample of 100 male students is selected and the GPA for each student is calculated. What is the probability that the random sample of 100 male students has a mean GPA greater than 3.42?

Answers

Answer: 0.0548

Step-by-step explanation:

Given, A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05.

Let [tex]\overline{X}[/tex] represents the sample mean GPA for each student.

Then, the probability that the random sample of 100 male students has a mean GPA greater than 3.42:

[tex]P(\overline{X}>3.42)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{3.42-3.5}{\dfrac{0.5}{\sqrt{100}}})\\\\=P(Z>\dfrac{-0.08}{\dfrac{0.5}{10}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>1.6)\\\\=1-P(Z<1.6)\\\\=1-0.9452=0.0548[/tex]

hence, the required probability is 0.0548.

A 4 foot wide painting should be centered on a 10 foot wide wall. How many feet (x) should be on each side of the painting?

Answers

Answer:

3 feet

Step-by-step explanation:

To find x, we can write the following equation:

x + 4 + x = 10

2x + 4 = 10

2x = 6

x = 3 feet

There are 42 students in an elementary statistics class. On the basis of years of experience, the instructor knows that the time needed to grade a randomly chosen first examination paper is a random variable with an expected value of 5 min and a standard deviation of 6 min. (Give answers accurate to 3 decimal places.)
(a) If grading times are independent and the instructor begins grading at 6:50 P.M. and grades continuously, what is the (approximate) probability that he is through grading before the 11:00 P.M. TV news begins?
1
(b) If the sports report begins at 11:10, what is the probability that he misses part of the report if he waits until grading is done before turning on the TV?
2

Answers

Answer:

A) 0.99413

B) 0.00022

Step-by-step explanation:

A) First of all let's find the total grading time from 6:50 P.M to 11:00 P.M.:

Total grading time; X = 11:00 - 6:50 = 4hours 10minutes = 250 minutes

Now since we are given an expected value of 5 minutes, the mean grading time for the whole population would be:

μ = n*μ_s ample = 42 × 5 = 210 minutes

While the standard deviation for the population would be:

σ = √nσ_sample = √(42 × 6) = 15.8745 minutes

To find the z-score, we will use the formula;

z = (x - μ)/σ

Thus;

z = (250 - 210)/15.8745

z = 2.52

From the z-distribution table attached, we have;

P(Z < 2.52) ≈ 0.99413

B) solving this is almost the same as in A above, the only difference is an additional 10 minutes to the time.

Thus, total time is now 250 + 10 = 260 minutes

Similar to the z-formula in A above, we have;

z = (260 - 210)/15.8745

z = 3.15

P(Z > 3.15) = 0.00022

A circle has a center at (4, -7) and a radius of 4 units. Write an equation of this circle.

Answers

Answer:

(x – 4)^2 + (y + 7)^2 = 16

Step-by-step explanation:

The formula of a circle is:

(x – h)^2 + (y – k)^2 = r^2

(h, k) represents the coordinates of the center of the circle

r represents the radius of the circle

If you plug in the given information, you get:

(x – 4)^2 + (y – (-7))^2 = 4^2

which simplifies into:

(x – 4)^2 + (y + 7)^2 = 16

Yesterday at 1:00 P.M., Maria’s train was 42 miles north of Gull’s Beach, traveling north at an average speed of 90 mph. At the same time on the adjacent track, Elena’s train was 6 miles north of Gull’s Beach, traveling north at an average speed of 101 mph. To the nearest hundredth of an hour, after how much time will the trains meet up? 0.23 hours 0.31 hours 3.27 hours 4.36 hours

Answers

Answer:b

Step-by-step explanation:

Answer:

3.27 hours

Step-by-step explanation:

Calculate the difference in speed and distance between the trains.

The relative speed:

101 - 90 = 11 mph

Difference in distance:

42 - 6 = 36 miles

[tex]time=\frac{distance}{speed}[/tex]

[tex]t=\frac{36}{11}[/tex]

[tex]t = 3.27[/tex]

Searches related to Searches related to A motorboat travels 135 kilometers in 3 hours going upstream. It travels 183 kilometers going downstream in the same amount of time. What is the rate of the boat in still water? what is the rate of the current?

Answers

Answer:

[tex]\large \boxed{\sf \text{The rate of the boat is } 53 \ km/h \text{, the rate of the current is }8\ km/h \ \ }[/tex]

Step-by-step explanation:

Hello, let's note v the rate of the boat and r the rate of the current. We can write the following

[tex]\dfrac{135}{v-r}=3=\dfrac{183}{v+r}[/tex]

It means that

[tex]135(v+r)=183(v-r)\\\\135 v + 135r=183v-183r\\\\\text{ *** We regroup the terms in v on the right and the ones in r to the left***}\\\\(135+183)r=(183-135)v\\\\318r=48v\\\\\text{ *** We divide by 48 both sides ***}\\\\\boxed{v = \dfrac{318}{48} \cdot r= \dfrac{159}{24} \cdot r}[/tex]

But we can as well use the second equation:

[tex]3(v+r)=183\\\\v+r=\dfrac{183}{3}=61\\\\\dfrac{159}{24}r+r=61\\\\\dfrac{159+24}{24}r=61\\\\\boxed{r = \dfrac{61*24}{183}=8}[/tex]

and then

[tex]\boxed{v=\dfrac{159*8}{24}=53}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

State sales tax S S is directly proportional to retail price p p . An item that sells for 142 142 dollars has a sales tax of 12.32 12.32 dollars. Find a mathematical model that gives the amount of sales tax S S in terms of the retail price p p .

Answers

Answer: [tex]S=0.087p[/tex] .

Step-by-step explanation:

Equation for direct proportion:

y=kx

, where x= independent variable ,

y=dependent variable.

k= proportionality constant

Here, State sales tax S  is directly proportional to retail price p.

Also, dependent variable= S,  independent variable =p

Required equation: S= kp

Put S= 12.32 and x= 142

[tex]S=12.32=k(142)\\\\\Rightarrow\ k=\dfrac{12.32}{142}\approx0.087[/tex]

Hence, the required equation is [tex]S=0.087p[/tex] .

please answer this correctly
How far apart are the gift shop and the science lab
Please answer this correctly without making mistakes

Answers

The answer is 86.4 km

Explanation:

The graph shows the gift shop is to the east of the science lab, and, between the gift shop and the science lab it is the art supply. Besides this, the description of the graph provides the distance between the art supply and the science lab, which is 40.0, as well as, the distance between the art supply and the gift shop, which is 46.4 kilometers.

In this context, it is possible to calculate the distance from the science lab to the gift shop by adding the partial distances, considering the art supply as a middle point in the map. This means the distance from the lab to the gift shop = 40.0 km (distance from the lab to the art supply) + 46.4 km (distance from the art supply to the gift shop) = 86.4 km.

A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock

Answers

Answer:

-1.031 m/s or  [tex]\frac{-\sqrt{17} }{4}[/tex]

Step-by-step explanation:

We take the length of the rope from the dock to the bow of the boat as y.

We take x be the horizontal  distance from the dock to the boat.

We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s

We need to find the rate of change of the horizontal  distance from the dock to the boat =  [tex]\frac{dx}{dt}[/tex] = ?

for x = 4

Applying Pythagorean Theorem we have

[tex]1^{2} +x^{2} =y^{2}[/tex]    .... equ 1

solving, where x = 4, we have

[tex]1^{2} +4^{2} =y^{2}[/tex]

[tex]y^{2} = 17[/tex]

[tex]y = \sqrt{17}[/tex]

Differentiating equ 1 implicitly with respect to t, we have

[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]

substituting values of

x = 4

y = [tex]\sqrt{17}[/tex]

[tex]\frac{dy}{dt}[/tex] = -1

into the equation, we get

[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]

[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s

Find the coordinate vector [Bold x ]Subscript Upper B of x relative to the given basis BequalsStartSet Bold b 1 comma Bold b 2 comma Bold b 3 EndSet.

Answers

Answer:

3

Step-by-step explanation:

3

Vector has x and y components of -8.80 cm and 18.0 cm, respectively; vector has x and y components of 12.2 cm and -6.80 cm, respectively. If - + 3 = 0, what are the components of ? x = cm y = cm

Answers

Question:

Vector A has x and y components of −8.80 cm  and 18.0 cm , respectively; vector B has x and  y components of 12.2 cm and −6.80 cm , respectively.  If A − B +3 C = 0, what are the components of C?

Answer:

x = ___ cm

y = ___ cm

Answer:

x = 7.0cm

y = -8.27cm

Step-by-step explanation:

For a vector F, with x and y components of a and b respectively, its unit vector representation is as follows;

F = ai + bj              [Where i and j are unit vectors in the x and y directions respectively]

Using this analogy, let's represent vectors A and B from the question in their unit vector notation.

A has an x-component of -8.80cm and y-component of 18.0cm

B has an x-component of 12.2cm and y-component of -6.80cm,

In unit vector notation, these become;

A = -8.80i + 18.0j

B = 12.2 i + (-6.80)j = 12.2i - 6.80j

Also, there is a third vector C. Let the x and y components of C be a and b respectively. Therefore,

C = ai + bj

Now,

A - B + 3C = 0                [substitute the vectors]

=> [-8.80i + 18.0j] - [12.2 i -6.80j] + [3(ai + bj)] =  0        [open brackets]

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3(ai + bj) =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0  [collect like terms and solve]

=> -8.80i  - 12.2 i  + 3ai + 6.80j + 18.0j + 3bj =  0

=> -21.0 i  + 3ai + 24.8j + 3bj =  0       [re-arrange]

=> 3ai + 3bj = 21.0i - 24.8j

Comparing both sides shows that;

3a = 21.0  -------------(i)

3b = -24.8    -----------(ii)

From equation (i)

3a = 21.0

a = 21.0 / 3 = 7.0

From equation (ii)

3b = -24.8

b = -24.8 / 3

b = -8.27

Therefore, the x-component and y-component of vector B which are a and b, are 7.0cm and -8.27cm respectively.

The sum of three consecutive even integers is 90. Find the Integers.

Answers

Answer:

  28, 30, 32

Step-by-step explanation:

Their average will be 90/3 = 30. That is the middle integer.

The three integers are 28, 30, 32.

_____

Comment on the working

It often works well to use the average value when working consecutive integer problems. The average of an odd number of consecutive integers is the middle one. The average of an even number of consecutive integers is halfway between the middle two.

Is this equation linear or nonlinear?
y =x/2​

Answers

Answer:

linear

Step-by-step explanation:

How do I use intercepts to graph 3y= - 5x - 30

Answers

Answer:

y-intercept is (0,-10) and x-intercept is (-6,0).  Connect them by a straight line to graph the given equation.

Step-by-step explanation:

The given equation of line is

[tex]3y=-5x-30[/tex]

For x=0,

[tex]3y=-5(0)-30[/tex]

[tex]3y=-30[/tex]

[tex]y=-10[/tex]

So, y-intercept is at point (0,-10).

For y=0,

[tex]3(0)=-5x-30[/tex]

[tex]0=-5x-30[/tex]

[tex]5x=-30[/tex]

[tex]x=-6[/tex]

So, x-intercept is at point (-6,0).

Now, plot the point (0,-10) and (-6,0) on a coordinate plane and connect them by a straight line to graph the given line as shown below.

(3/4) URGENT!! PLEASE HELP! -50 POINTS- WILL MARK BRAINLEST ASAP AND 5 STARS IF CORRECT!!! please no wrong answers for the points.

Answers

Answer:

D

Step-by-step explanation:

The graph above is your graph.

As x increase, y decreases

As x decrease, y increases.

However, there is a small portion of the graph where both x and y were positive.

But I'm guessing it should be D.

Answer:

D

Step-by-step explanation:

[tex]f(x)=-x^3+2x^2-x+3[/tex]

As the highest power is 3, it is odd, as [tex]x[/tex] approaches to [tex]-\infty[/tex] [tex]y[/tex] approaches to [tex]\infty[/tex]

First, we have [tex]x \rightarrow-\infty[/tex], [tex]y \rightarrow \infty[/tex]

Plotting the graph, you can easily conclude the answer to the question.

And as [tex]x \rightarrow \infty[/tex], [tex]y \rightarrow -\infty[/tex]

A car was sold at a 12% discount, which amounts to $1800. How much would the car sell for after the discount?

Answers

Answer:

1584$

Step-by-step explanation:

Original price is 1800$ (100%)

Discount percent: 12%

=> The price after discount is 100 - 12 = 88% of original price

=> The price after discount is 1800 x 88% = 1800 x 88/100 = 1584$

Answer:

13200

Step-by-step explanation:

12% - 1800

100% - x

X = (1800x100)/12 = 15000 - original price

15000-1800 = original price - discount = 13200 price after discount


Find the value of n such that 540n is perfect cube.​

Answers

Answer:

1.35

Step-by-step explanation:

next cube above 540 is 729

to get to 729: 729 / 540 = 1.35

n = 1.35

The Box-and-Whisker plot shows the average temperatures in, atlanta, georgia, in march. which statement about the temperatures in atlanta must be true? A. about half the days in march had average temperatures above 60 degrees. B. about half the days in march had average temperatures either below 60 or above 73 degrees C. the coldest day in march was 51 D. the hottest day in march was 84

Answers

Answer:

"B. about half the days in march had average temperatures either below 60 or above 73 degrees"

Step-by-step explanation:

To answer this question, note that a box plot is usually divided into quartiles, each representing approximately 25% each.

In the box plot above,

*about 25% (Q1) represents days with temperature of 60° and below. This is about ¼ of the days in March.

*About 25% (Q2) represents days with temperature between 61° and 68°. That's about ¼ of the days in March

*About 25% (Q3) represents days with temperature between 70° and 73°. That's about ¼ of the days in March

*About 25% (Q4) represents days with temperature between 74° and 82°. That's about ¼ of the days in March

*Coldest day in March has a temperature of 54°

*Hottest day in March is 82°

From the options given, the only statement that is true is "B. about half the days in march had average temperatures either below 60 or above 73 degrees"

¼ of the Days in March has temperatures below 60° (Q1), while ¼ of the days in March has temperatures above 73° (Q4). Therefore, ¼+¼ = ½ of the days in March having average temperatures either below 60 or above 73 degrees.

Answer:

b

Step-by-step explanation:

About half of the days in March had average temperatures either below 60 or above 73 degrees.

assume that when adults with smartphones are randomly selected 15 use them in meetings or classes if 15 adult smartphones are randomly selected, find the probability that at least 4 of them use their smartphones

Answers

Answer:

The probability that at least 4 of them use their smartphones is 0.1773.

Step-by-step explanation:

We are given that when adults with smartphones are randomly selected 15% use them in meetings or classes.

Also, 15 adult smartphones are randomly selected.

Let X = Number of adults who use their smartphones

The above situation can be represented through the binomial distribution;

[tex]P(X = r) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; n = 0,1,2,3,.......[/tex]

where, n = number of trials (samples) taken = 15 adult smartphones

           r = number of success = at least 4

           p = probability of success which in our question is the % of adults

                 who use them in meetings or classes, i.e. 15%.

So, X ~ Binom(n = 15, p = 0.15)

Now, the probability that at least 4 of them use their smartphones is given by = P(X [tex]\geq[/tex] 4)

P(X [tex]\geq[/tex] 4) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)

= [tex]1- \binom{15}{0}\times 0.15^{0} \times (1-0.15)^{15-0}-\binom{15}{1}\times 0.15^{1} \times (1-0.15)^{15-1}-\binom{15}{2}\times 0.15^{2} \times (1-0.15)^{15-2}-\binom{15}{3}\times 0.15^{3} \times (1-0.15)^{15-3}[/tex]

= [tex]1- (1\times 1\times 0.85^{15})-(15\times 0.15^{1} \times 0.85^{14})-(105 \times 0.15^{2} \times 0.85^{13})-(455 \times 0.15^{3} \times 0.85^{12})[/tex]

= 0.1773

The surface area of a given cone is 1,885.7143 square inches. What is the slang height?

Answers

This question is not complete. This is because it lacks the appropriate diagram containing necessary information to solve this question.

Please find attached the appropriate diagram to solve for this question

Complete Question :

The surface area of a given cone is 1,885.7143 square inches. What is the slant height?

Answer:

25 inches

Step-by-step explanation:

In the diagram, we are given the following information

Height of the cone = 20 inches

Radius of the cone = 15 inches.

The formula for the slant height of a cone represented by l =

l² = r² + h²

l = √(r² + h²)

l = √(15² + 20²)

l = √(225 + 400)

l = √625

l = 25 inches

Therefore, the slant height of this cone = 25 inches

3. Write an equation of a line that is perpendicular to the line x – 2y = 8.

Answers

Answer:

y=0.5x+40

Step-by-step explanation:

Copy the  equation.

x-2y=8

Subtract x from both sides.

-2y=-x-8

Divide both sides by -2.

y=0.5x+4

Now we know the slope is 0.5.

Any line with a slope of 0.5 will be perpendiculr to the original line.

One that you can use is y=0.5x+40.

INTEGERS YES OR NO 74 3.49 - 4/7 (the - is suupose to be inbetween both numbers, not just the 4 is negative) -148.29 - 8/1

Answers

Answer:

The integers are the numbers such that:

- The distance between consecutive integers is always of 1 unit and the integer numbers only have zeros after the decimal point, such that the set is: Z = {..., 0, 1, 2, 3, 4, ......}

74) No digits after the decimal point, so this is an integer.

3.49) we have digits after the decimal point, so this is not an integer.

4/7) 4 is smaller than 7, so 4/7 is smaller than one and larger than zero,

one and zero are consecutive integer numbers, so 4/7 can not be an integer number.

You also can solve the division and find that the quotient has digits after the decimal point.

148.29) This number has digits after the decimal point, so this is not an integer number.

8/1) here we have 8 divided by one, we know that:

8/1 = 8

8 has no digits after the decimal point, so this is an integer.

Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.

Answers

Answer:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

Step-by-step explanation:

For this case we have the following probability density function

[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]

And for this case we can find the expected value with this formula:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

Which, if any, of the following proofs are correct demonstrations of the validity of this argument? A ⊃ (B ⊃ C) B ⊃ (~C ⊃ ~A) Proof 1 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) (A • B) ⊃ C 1 Exp (3) (B • A) ⊃ C 2 Com (4) B ⊃ (A ⊃ C) 3 Exp (5) B ⊃ (~C ⊃ ~A) 4 Contra Proof 2 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) B Assumption (3) A Assumption (4) B ⊃ C 1, 3 MP (5) C 2, 4 MP (6) A ⊃ C 3–5 CP (7) B ⊃ (A ⊃ C) 2–6 CP (8) B ⊃ (~C ⊃ ~A) 7 Contra

Answers

Answer

Step-by-step explanation:

Answer:

See the argument below

Step-by-step explanation:

I will give the argument in symbolic form, using rules of inference.

First, let's conclude c.

(1)⇒a  by simplification of conjunction

a⇒¬(¬a) by double negation

¬(¬a)∧(2)⇒¬(¬c) by Modus tollens

¬(¬c)⇒c by double negation

Now, the premise (5) is equivalent to ¬d∧¬h which is one of De Morgan's laws. From simplification, we conclude ¬h. We also concluded c before, then by adjunction, we conclude c∧¬h.

An alternative approach to De Morgan's law is the following:

By contradiction proof, assume h is true.

h⇒d∨h by addition

(5)∧(d∨h)⇒¬(d∨h)∧(d∨h), a contradiction. Hence we conclude ¬h.  

Other Questions
Ariel T. Corporation reported the following data for the month of February: Inventories: Beginning Ending Raw materials (Direct and Indirect) $40000 $24000 Work in process $23000 $17000 Finished goods $50000 $72000 Additional information: Raw materials purchases $63000 Direct labor cost $73700 Manufacturing overhead cost actually incurred: $55000 Raw materials included in manufacturing overhead costs incurred as indirect materials $5000. Manufacturing overhead cost applied to Work in Process $48000. Required:The adjusted cost of goods sold that appears on the income statement for February is:________ find the average speed of car if it travels 18km in 20 minutes. Find the number of unique permutations of the letters in each word. SIGNATURE RESTAURANT Give your reasons whyWhy rules andregulation are important 4. A local orchard packages apples in bags. When full, the bags weigh 5 poundseach and contain a whole number of apples. The weights are normally distributedwith a mean of 5 pounds and a standard deviation of 0.25 pound. An inspectorweighs each bag and rejects all bags that weigh less than 4.75 pounds. Whatpercentage of bags will the inspector reject? *Your answer A person lives in an apartment building. The land and structures are owned by a corporation, with one mortgage loan securing the entire property. Like the other residents, this person owns stock in the corporation and has a lease to the apartment. This type of ownership is called Tamarisk Corporation issued 115,000 shares of $18 par value, cumulative, 8% preferred stock on January 1, 2018, for $2,530,000. In December 2020, Tamarisk declared its first dividend of $730,000. Prepare Tamarisks journal entry to record the issuance of the preferred stock. (Credit account titles are automatically indented when amount is entered. Do not indent manually. If no entry is required, select "No Entry" for the account titles and enter 0 for the amounts.) pls help me with this question Number of miles a car can drive30028026024022020018016014012010080604020Number of gallons of gas in a car46 8 10 126. Which type of correlation does the scatter plot show?A. Positive correlationB. No correlationC. Negative correlationD. Can't be determined How does President Reagan establish ethos as a fellow American who shares in the loss? -by reminding listeners that he is president -by choosing words like we and us -by mentioning the astronauts service -by addressing the astronauts families -by speaking of discovery and truthanswer: by choosing words like we and us One number is 7 less than 3 times the second number. Their sum is 29. Find the numbers. 1.A small-scale businessman deposits money at the beginning of each year into his savings account, depending on the level of the business returns. He deposits $1000 in the first year, $3000 in the second year, $5000 in the third and $7000 in the fourth year and annual interest rate of 7%. What is the value of the investment at the time of his first deposit? Thesis: The school day should be extended by two hoursso that students can get more instructional time.Which is an example of a reasonable counter-argument to the thesis above?A. Extending the school day by two hours will require students totake courses in subjects they were previously able to avoid taking.O B. Teachers are spending too much time teaching subjects that arenot relevant to students' lives.O C. Many students have jobs, and an extended school day wouldinterfere with their work schedules.O D. Many teenagers like to sleep late, and having school start so earlywould affect their ability to learn. A literary critic should help readers understand what a piece of literature [blank]. The image of a parabolic lens is traced onto a graph. The function f(x) = (x + 8)(x 4) represents the image. At which points does the image cross the x-axis? What NFL team did Buff Donelli coach after he left soccer?- Miami Dolphins-Pittsburgh Steelers-Baltimore Colts-Oakland Raiders Most communities are built nearB. SeacoastsA. WoodC. MountainsD. Water A woman bought a cupof beans for 12 and sold itfor 15. What was herpercentage profit Please answer question now Mr. and Mrs. Smith were interested in purchasing a vacant lot. However, they first wanted the property surveyed. When the surveyor came out to measure the property he began measuring from the iron spike embedded in the middle of the street. In this case the iron spike would be known as: