Answer:
D. On a graph, plot the line y = −x + 1, which has y-intercept = 1 and slope = −1, and y = 2x + 4, which has y-intercept = 4 and slope = 2, and write the coordinates of the point of intersection of the two lines as the solution.
Step-by-step explanation:
Correct answer is in bold. Incorrect answer have the mistakes put between stars *** ***.
50 POINTS!!!! I ALSO GIVE BRAINLIEST, BUT YOU HAVE TO ANSWER QUICK Choose the correct graph of the given system of equations. A pair of linear equations is shown: y = −x + 1 y = 2x + 4 Which of the following statements best explains the steps to solve the pair of equations graphically?
A. On a graph, plot the line y = −x + 1, which has y-intercept = ***−1*** and slope = 1, and y = 2x + 4, which has y-intercept = 2 and slope = 4, and write the coordinates of the point of intersection of the two lines as the solution.
B. On a graph, plot the line y = −x + 1, which has y-intercept = 1 and slope = ***1***, and y = 2x + 4, which has y-intercept = 1 and slope = 4, and write the coordinates of the point of intersection of the two lines as the solution.
C. On a graph, plot the line y = −x + 1, which has y-intercept = 1 and slope = −1, and y = 2x + 4, which has y-intercept = ***−2*** and slope = 2, and write the coordinates of the point of intersection of the two lines as the solution.
D. On a graph, plot the line y = −x + 1, which has y-intercept = 1 and slope = −1, and y = 2x + 4, which has y-intercept = 4 and slope = 2, and write the coordinates of the point of intersection of the two lines as the solution.
Let A = {H, T} be the set of outcomes when a coin is tossed, and let B = {1, 2, 3, 4, 5, 6} be the set of outcomes when a die is rolled. The set of outcomes when a coin is tossed twice. Write the set in terms of A and/or B. A ∩ B A × A A × B A ∪ B List the elements of the set.
Answer:it is 6 trust
Step-by-step explanation:yah know
Fill in the blank. A _______ variable is a variable that has a single numerical value, determined by chance, for each outcome of a procedure.
Answer:
Random variable
Step-by-step explanation:
The reason it is a random variable is because a, the definition fits, and b you can use context clues as well, such as 'determined by chance' which is another example of random! So, the answer is random, because random variables are determined by chance. Hope this helped.
Answer:
"A random variable is a variable that has a single numerical value, determined by chance, for each outcome of a procedure."
A random variable is distinct on the off chance that it takes on a countable number of quantities.
Point C is on the graph of the function y = x2 – 3. Its x-coordinate is 4. Which ordered pair gives the location of point C? A.(4, 42 – 3) B.(4, 2 + 3) C.(42, 42 – 3) D.(4, 42)
Answer:
B (4, 2+3)
Step-by-step explanation:
To do this you fill in x with 4 so the equation becomes y = (4)2 - 3
You then solve to y = 8 - 3
then 8 - 3 is 5.
Making the coordinates (4, 5) and in this case with the answers (4, 2+3)
Answer:
A. (4, 4^2 – 3)
find the exact value of sin 0
Answer:
12/13
Step-by-step explanation:
First we must calculate the hypotenus using the pythagoran theorem
5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13Now let's calculate sin0
sin O = 12/13So the exact value is 12/13
Answer:
C.) 12/13
Step-by-step explanation:
In a right angle triangle MN = 12, ON = 5 and; angle N = 90°
Now,
For hypotenuse we will use Pythagorean Theorem
(MO)² = (MN)² + (ON)²
(MO)² = (12)² + (5)²
(MO)² = 144 + 25
(MO)² = 169
MO = √169
MO = 13
now,
Sin O = opp÷hyp = 12÷13
a scale drawing of a rectangular playground has a length of 20 inches and a width of 10 inches as shown below. the scale is 1 inch = 4 feet. what is the area of the actual playground? *
Answer:
3200ft^2
Step-by-step explanation:
1 inch = 4ft
so 20 inches = 80ft
and 10 inches = 40ft
Area = 80ft*40ft
Area = 3200ft^2
Solve the equation 1/3 (x + 1) +2x =2
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's solve your equation step-by-step.
[tex]\frac{1}{3} (x+1)+2x=2[/tex]
Step 1: Simplify both sides of the equation.
[tex]\frac{1}{3} (x+1)+2x=2[/tex]
[tex](\frac{1}{3}) (x) + (\frac{1}{3} ) (1) + 2x = 2[/tex] (Distribute)
[tex]\frac{1}{3} x + \frac{1}{3} + 2x = 2[/tex]
[tex]( \frac{1}{3} x + 2x ) + (\frac{1}{3}) = 2[/tex] (Combine Like Terms)
[tex]\frac {7}{3} x + \frac{1}{3} = 2\\\frac{7}{3} x + \frac{1}{3} = 2[/tex]
Step 2: Subtract 1/3 from both sides.
[tex]\frac{7}{3} x + \frac{1}{3} - \frac{1}{3} = 2 - \frac{1}{3} \\\\\frac{7}{3} x = \frac{5}{3}[/tex]
Step 3: Multiply both sides by 3/7.
[tex]( \frac{3}{7} ) * (\frac{7}{3}x) = ( \frac{3}{7}) * \frac{5}{3} \\\\x = \frac{5}{7}[/tex]
So the answer is : [tex]x = \frac{5}{7}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
3.01)Which statement best describes the area of the triangle shown below?
9
It is one-half the area of a rectangle of length 4 units and width 2 units.
It is twice the area of a rectangle of length 4 units and width 2 units.
O It is one-half the area of a square of side length 4 units.
Ont is twice the area of a square of side length 4 units.
Answer:
C. It is one-half the area of a square of side length 4 units.
Step-by-step explanation:
Hey there!
Well if a square has side lengths of 4 units,
the area would be 16 because of l*w.
Now the formula for the area of a triangle is,
b*h/2
b = 4
h = 4
4*4=16
16 ÷ 2 = 8
So the area of a square is 16 units^2 whereas the area of a triangle with the same dimensions is 8 units^2,
meaning the area of a triangle is one-half the area of a square.
Hope this helps :)
Use the given conditions to write an equation for the line in point-slope form
Passing through (7,3) and (4,4)
OA
1
1.
y-3 = - =(x-
5(x-4) or y-4 = - 3(x - 7)
B.
1
1
y-3= - 3(x-7) or y- 4= - 3(x - 4)
O C. y - 3 = 7(x + 7) or y-4= 4(x-3).
OD
1
1
y + 3 = - 3(x+7) or y+4= - 3(x+4)
Answer:
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
Steb by step explanation:
The condition for the line is (7,3) and (4,4).
Point slope form of equation is in this format below.
(Y-y1)= m(x-x1)
We have the given parameters in the above format except the m
M = gradient
Gradient= (y2-y1)/(x2-x1)
Gradient=(4-3)/(4-7)
Gradient= 1/-3
Gradient= -1/3
So
(Y-y1)= m(x-x1)
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
How many odd 2 digit positive odd integers geater than 50 are there?
Answer:
25
Step-by-step explanation:
Let's break this down step by step:
"2 digit positive odd integers greater than 50"
So we start at 50
Don't exceed 99 since 2-digit limit
Any 2-digit integer greater than 50 will be positive (So that's a redundant statement)
Well...we know that from 50-99, is 50 integers counting by ones.
We know that half will be even and half will be odd.
With this we can say 50/2 == 25
Hence, there are 25 2 digit positive odd integers greater than 50.
Cheers.
Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is:
Answer: $323.33
Step-by-step explanation:
($17,000 + $4,900 - $2,500) ÷ 60 months = $323.33 per month
↓ ↓ ↓
price finance down payment
Let f(x) = -2x - 7 and g(x) = -4x + 6. Find (f o g)(-5)
PLZ IM ON THE CLOCK!!!!! A sports memorabilia store makes $6 profit on each football it sells and $5.50 profit on each baseball it sells. In a typical month, it sells between 35 and 45 footballs and between 40 and 55 baseballs. The store can stock no more than 80 balls total during a single month. What is the maximum profit the store can make from selling footballs and baseballs in a typical month? $457.50 $460.00 $462.50 $572.50
Answer:
460
Step-by-step explanation:
Answer:
460
Step-by-step explanation:
Find the solution(s) of the system of equations: x2 + y2 = 8 y = x – 4 options: (–2,–6) (2,–2) and (–2,–6) (2,–2) No solutions
Answer: x=2 y=-2
(2,-2) one solution
Step-by-step explanation:
Solve by substitution
[tex]\begin{bmatrix}x^2+y^2=8\\ y=x-4\end{bmatrix}[/tex]
[tex]\mathrm{Subsititute\:}y=x-4[/tex]
[tex]\begin{bmatrix}x^2+\left(x-4\right)^2=8\end{bmatrix}[/tex]
[tex]2x^2-8x+16=8[/tex]
[tex]\mathrm{Isolate}\:x\:\mathrm{for}\:2x^2-8x+16=8:\quad x=2[/tex]
[tex]\mathrm{For\:}y=x-4[/tex]
[tex]\mathrm{Subsititute\:}x=2[/tex]
[tex]y=2-4[/tex] [tex]2-4=-2[/tex]
[tex]y=-2[/tex]
[tex]The\:solutions\:to\:the\:system\:of\:equations\:are[/tex]
[tex]x=2,\:y=-2[/tex]
Fill in the blanks.
(x+_)^2=x^2+14x+_
Step-by-step explanation:
(ax + b)² = a²x² + 2abx + b²
In this case, a = 1, so:
14 = 2b
b = 7
(x + 7)² = x² + 14x + 49
23. Stacie is a resident at the medical facility where you work. You are asked to chart the amount of solid food that she consumes. For the noon meal, today, she ate 1/2 of a 3-ounce serving of meatloaf, 3/4 of her 3-ounce serving of mashed potatoes, and 1/3 of a 2-ounce serving of green beans. Show, in decimal form, how many ounces of solid food that Stacie consumed. Round two decimal places for final answer.
Answer:
4.42 ounces
Step-by-step explanation:
Given:
The solid food Stacie has eaten in the noon meal:
1. [tex]\frac{1}2[/tex] of a 3-ounce serving of meatloaf.
2. [tex]\frac{3}4[/tex] of her 3-ounce serving of mashed potatoes
3. [tex]\frac{1}3[/tex] of a 2-ounce serving of green beans
To find:
How many ounces of solid food was consumed by Stacie (upto 2 decimal places) ?
Solution:
Let us convert the given fractions to decimal form upto 2 decimal places:
1. [tex]\frac{1}{2}\ of\ 3\ ounces[/tex] [tex]= \frac{1}{2}\times 3 =1.50\ ounces[/tex] meatloaf .
2. [tex]\frac{3}{4}\ of\ 3\ ounces[/tex] [tex]= \frac{3}{4}\times 3 =2.25\ ounces[/tex] mashed potatoes .
3. [tex]\frac{1}{3}\ of\ 2\ ounces[/tex] [tex]= \frac{1}{3}\times 2 =0.67\ ounces[/tex] green beans.
Let us add the above 3 quantities to get total solid food consumed.
Total solid food consumed = 1.50 + 2.25 +0.67 = 4.42 ounces.
So, the answer is 4.42 ounces.
Answer question 18 or 19 in the image thank you and please help
Answer:
19)
[tex]\frac{1}{2}*\frac{1}{4}*\frac{1}{8}*\frac{1}{16} = 2^n[/tex]
Notice that in the left side, all the numbers are powers of 2.
2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
remember that:
(a^x)*(a^y) = a^(x+y)
then the denominator in the left is:
(2*4*8*16) = 2*(2^2)*(2^3)*(2^4) = 2^(1 + 2 + 3+ 4) = 2^8
Then we have:
[tex]\frac{1}{2}*\frac{1}{4}*\frac{1}{8}*\frac{1}{16} = \frac{1}{2^8} = 2^n[/tex]
[tex]1 = 2^8*2^n = 2^{8 + n}[/tex]
then 8 + n = 0
then n = -8.
18)
here we have:
x = (x/9) + (x/6) + (x/2) + 4 + (x/12) + 2
now in the left side we can use the common factor x and write it as:
x = x*( 1/12 + 1/9 + 1/6 + 1/2) + 6
x = x*(0.861) + 6
x - x*(0.861) = 6
x*(1 - 0.861) = 6
x = 6/(1 - 0.861) = 43.2
In order to sustain itself in its cold habitat, a Siberian tiger requires 25 pounds of meat per day.
How much meat would seven Siberian tigers need for the month of April?
Select one:
a. 750 pounds
b. 175 pounds
c. 5425 pounds
d. 5250 pounds
Answer:
the answer is 750 because there are 30 days in the month of april and you just need to multiply it by how much meat they need to have per day.
Step-by-step explanation:
30 x 25 = 750
Solve the equation and give the solution 6x – 3y = 3 –2x + 6y = 14
Answer:
x=3.9 or 39/10 and y=3.13333 or 47/15
Step-by-step explanation:
Since both expressions (6x-3y) and (3-2x+6y) are equal to 14, separate the equations:
6x-3y=14 and 3-2x+6y=14
Simplify the equations
6x-3y=14 and -2x+6y=11
Now, line the equations up and pick a variable (either x or y) to eliminate
6x-3y=14
-2x+6y=11
In this case, let's eliminate y first. To do so make the y values in both equations the same but with opposite signs. Make both be 6y but one is +6y and the other -6y
Multiply (6x-3y=14) by 2 to get:
12x-6y=28
Line the equations up and add or subtract the terms accordingly
12x-6y=28
-2x+6y=11
This becomes:
10x+0y=39
Isolate for x
x= 39/10 or x= 3.9
Now substitute the x value into either of the original equations
6x-3y=14
6(3.9)- 3y=14
Isolate for y
23.4-14=3y
3y= 9.4
y= 3.1333 (repeating) or y= 47/15
Answer: x = 39/10, y = 94/30
Step-by-step explanation:
6x - 3y = 3 - 2x + 6y,
Now solving this becomes
6x + 2x -3y - 6y = 3
8x - 9y = 3 ------------------- 1
3 - 2x + 6y. = 14
-2x + 6y = 14 - 3
-2x. + 6y = 11
Now multiply both side by -1
2x. - 6y = -11 ----------------- 2
Solve equations 1 & 2 together
8x - 9y. = 3
2x - 6y = -11
Using elimination method
Multiply equation 1 through by 2 ,and equation 2 be multiplied by 8
16x - 18y = 6
-16x - 48y = -88 ------------------------- n, now subtract
30y = 94
Therefore. y = 94/30.
Now substitute for y in equation 2
2x - 6y = -11
2x - 6(94/30) = -11
2x - 94/5 = -11
Now multiply through by 5
10x - 94 = -55
10x = -55 + 94
10x = 39
x = 39/10
A study is done to see if the average age a "child" moves permanently out of his parents' home in the United States is at most 23. 43 U.S. Adults were surveyed. The sample average age was 24.2 with a standard deviation of 3.7. The p-value is
Answer:
The p-value is 2.1%.
Step-by-step explanation:
We are given that a study is done to see if the average age a "child" moves permanently out of his parents' home in the United States is at most 23. 43 U.S. Adults were surveyed.
The sample average age was 24.2 with a standard deviation of 3.7.
Let [tex]\mu[/tex] = true average age a "child" moves permanently out of his parents' home in the United States.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 23 {means that the average age a "child" moves permanently out of his parents' home in the United States is at most 23}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 23 {means that the average age a "child" moves permanently out of his parents' home in the United States is greater than 23}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample average age = 24.2
s = sample standard deviation =3.7
n = sample of U.S. Adults = 43
So, the test statistics = [tex]\frac{24.2-23}{\frac{3.7}{\sqrt{43} } }[/tex] ~ [tex]t_4_2[/tex]
= 2.127
The value of t-test statistics is 2.127.
Now, the p-value of the test statistics is given by;
P-value = P( [tex]t_4_2[/tex] > 2.127) = 0.021 or 2.1%
A cube 4 units on each side is composed of 64 unit cubes. Two faces of the larger cube that share an edge are painted blue, and the cube is disassembled into 64 unit cubes. Two of the unit cubes are selected uniformly at random. What is the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces?
Answer:
P = 0.0714
Step-by-step explanation:
If two faces of the larger cube that share and edge are painted blue, it means that 28 of the 64 unit cubes are painted in at least one side and 36 cubes have no painting faces.
Additionally, from the 28 cubes painted only 4 have exactly two painted faces.
Then, to calculate the number of ways in which we can select x elements from a group of n, we can use the following equation:
[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]
So, the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces is:
[tex]P=\frac{4C1*36C1}{64C2}=0.0714[/tex]
Because there are 64C2 ways to select 2 cubes from the 64, and from that, there are 4C1*36C1 ways to select one cube with exactly two painted faces and one cube with no painted faces.
A graph shows an x- and y-axis. The data line is in the shape of a "vee." The begins above the x-axis and to the left of the y-axis, extends below the x-axis to a point on the y-axis, and ascends above the x-axis to the right of the y-axis. Which statement describes the relationship between x and y? As x increases, y decreases. As x increases, y increases. As x increases, y increases and then decreases. As x increases, y decreases and then increases.
Answer:
As x increases, y decreases and then increases
Step-by-step explanation:
You need only understand your own description of the graph:
begins above the x-axis, extends below the x-axis, and ascends above the x-axis
This is a description of decreasing, then increasing:
As x increases, y decreases and then increases
Answer:
C. As x increases, y increases and then decreases.
Step-by-step explanation:
Just took the Unit Test and got it correct on Edge.
A fair die is rolled two times. What is the probability that both rolls are 6?
Answer:
1/36
Step-by-step explanation:
the fair die has 6 equal parts which means its the total
the probability of rolling a 6 is 1/6
the probability of rolling another 6 is 1/6
so u multiply 1/6 times 1/6 which is 1/36
hope this helps
Hey there
To make it perfectly clear, consider the sample space for rolling a die twice. There are 36 equally likely possible outcomes, 6 of which define the event "rolling the same number two times in a row". Then, the probability of this event occurring is 636, which is equal to 16.Hope this hopeWhich of the following triangles can be proven similar through AA?
A)
B)
C)
D)
Answer:
The options that have two angles, which are A and D prove both triangles to be similar.
Step-by-step explanation:
The postulate AA is exactly what it sounds like, and you can find the two angles, which will prove the similarity of two triangles sharing those two angles.
The reason being is if two angles are the same between the two triangles, the third can't be different.
You are looking to invest in several different real estate deals. You have received ceconomic reports that explain the probability of good economic conditions will be .6 and .4 for bad economic conditions. Below is the Payoff Table, and after calculating the expected value for each decision, you determine the best "payoff deal is:
Good Economic Bad Economic
Conditions Condition (.60) Conditions (.40)
Apartment Building 50,000 30,000
Office Building $100,000 $-40,000
Warehouse 30,000 $10,000
A. Apartment Building
B. Office Building
C. Warehouse
D. None of the above.
Answer:
Real Estate Deals
The best "payoff deal:"
B. Office Building
Step-by-step explanation:
A) Payoff Table
Good Economic Bad Economic
Conditions Conditions
Probability (.60) (.40)
Apartment Building $50,000 $30,000
Office Building $100,000 $-40,000
Warehouse $30,000 $10,000
B) Calculation of Expected Values:
Good Economic Bad Economic Expected Values
Conditions Conditions
Probability (.60) (.40)
Apartment Building $30,000 $12,000 $42,000
Office Building $60,000 $-16,000 $44,000
Warehouse $18,000 $4,000 $22,000
b) The expected value for these real estate deals can be derived as the sum of the payoffs under the two economic conditions after they have been weighed with their odds of occurrence. The office building, in this example, showed the best payoff deal as the expected payoff from it results to a payoff of $44,000, which is higher than the expected payoff from the Apartment and Warehouse. However, it is also the riskiest, especially when bad economic conditions occur. This also accords with the general economic risk-return pattern that higher risky investments attract higher returns.
Please help. What is the equation of the line that has a slope of 3 and goes through the point (-3,-5)?
Answer:
y = 3x + 4
Step-by-step explanation:
We can use the equation y = mx + b to find the equation:
Plug in the slope and the point into the equation, and we can find b:
-5 = 3(-3) + b
-5 = -9 + b
4 = b
Now, we can plug in the slope and y-intercept into the equation:
y = 3x + 4 will be our equation
If the payment is not made on the credit card by the end of the grace period,
which of the following will occur?
Answer: C. Interest will be charged
Step-by-step explanation:
Answer:
Step-by-step explanation:
Interest will be charged is your answer!
Find the measures of the angles in the figure.
Answer:
[tex]120^o,\,120^o,\,60^o,\,\,\,and\,\,\,60^o[/tex]
which agrees with the first answer in the list of possible options.
Step-by-step explanation:
We can use the fact that the addition of all four internal angles of a quadrilateral must render [tex]360^o[/tex]. Then we can create the following equation and solve for the unknown "h":
[tex]2h+2h+h+h = 360^o\\6h=360^o\\h=60^o[/tex]
Therefore the angles of this quadrilateral are:
[tex]120^o,\,120^o,\,60^o,\,\,\,and\,\,\,60^o[/tex]
Answer:60,60,120,120
Step-by-step explanation:All qualdrilaterals equal to 360, so if you add all of the different numbers you should get 360
A rectangular garden is 20 ft longer than it is wide. Its area is 3500 ft?. What are its dimensions?
Its width equals
Preview
and its length equals
Answer:
width of the garden is 50 ft and the length is 70 ft
Step-by-step explanation:
Solution:-
- We will denote the width and and the length of the rectangular garden as:
Width: x
Length: x + 20
- We are given the area ( A ) of the garden is 3500 ft^2. We are to determine for what dimensions is the area A = 3500 ft^2.
- Recall that the area ( A ) of a rectangle is the product of length and width as follows:
A = Length * width
A = x*( x + 20 )
3500 = x^2 + 20x
x^2 + 20x - 3500 = 0
- Use the quadratic formula to determine the value of ( x ):
[tex]x = \frac{-b +/- \sqrt{b^2 - 4ac} }{2a} \\\\x = \frac{-20 +/- \sqrt{20^2 - 4*-3500} }{2}\\\\x = \frac{-20 +/- 120 }{2} = -10 +/- 60\\\\x = -70 , 50[/tex]
- Ignore the negative value of ( - 70 ft ). Physical impractical to have a negative value. Hence, the width of the garden is 50 ft and the length is 70 ft
Farid is baking muffins, The recipe calls for 3/4 cup of sugar for a full batch. Farid is making 1/2 of a batch. Write an expression for the amount of sugar Farid needs to make 1/2 of a batch of muffins. WILL GIVE BRAINLIEST, THANKS, AND FIVE STARS PLZ HELP ME
Answer:
y = 3/8x
or
3/8 cups of sugar for every 1/2 batch of muffins
Step-by-step explanation:
Since we are only making 1/2 of the full batch of muffins, we only need to use 1/2 the cups of sugar:
[tex]\frac{3}{4} (\frac{1}{2} )= \frac{3}{8}[/tex] cups of sugar.
Answer:
[tex]\frac{x}{2} = \frac{3y}{8}[/tex]
Step-by-step explanation:
Let the batch be x and the amount of sugar be y
Condition:
x = [tex]\frac{3}{4} y[/tex]
Multiplying both sides by 1/2
[tex]\frac{1}{2} x = \frac{3}{4}y * \frac{1}{2}[/tex]
[tex]\frac{x}{2} = \frac{3y*1}{4*2}[/tex]
[tex]\frac{x}{2} = \frac{3y}{8}[/tex]
So, For 1/2 batch of muffins, Farid need 3/8 cups of sugar.
At an assembly, 180 students sit in 9 equal rows. How many students sit in each row?
Answer:
20 students per row
Step-by-step explanation:
person per each row=180/9=20
Answer:
20
Step-by-step explanation:
Take the number of students and divide by the number of students
180/9
20
There are 20 students in each row