Answer:
16
Step-by-step explanation:
47% is 0.47
34 x 0.47 = 15.98
So a trick question, its either 15 students or 16 students.... I would say 16 students, although the percentage would be 47.05%
16 students either have glasses or contacts.
The graph shows government receipts and outlays (both on-budget and off-budget) for . In what years did receipts appear to climb faster than outlays?
Answer: Receipts appear to climb faster than outlays in 2001, 2002, 2003 and 2004
Step-by-step explanation: So if you see the graph you can see that receipts started to climb faster by the middle of 2001 so in conclusion Receipts appear to climb faster than outlays in 2001, 2002, 2003 and 2004 hope that help you
When government revenues exceed government outlays in a particular year, this is called a d) budget surplus.
What is budget surplus?A budget surplus occurs when a government's income from taxes and other sources of revenue exceed its expenses and spending on public programs, services, and infrastructure. A budget surplus is a positive indicator for the government's financial health as it indicates that the government is able to manage its finances well, generate more revenue than it spends, and potentially pay off any debts.
Here, we have,
In contrast, a budget deficit occurs when government spending exceeds its revenue, resulting in increased debt and a potentially negative impact on the government's credit rating.
Budget surpluses can be used to invest in public projects or programs, reduce debt, or returned to taxpayers in the form of tax cuts.
However, it is important to note that budget surpluses can also be a result of reduced spending on public programs, which can have a negative impact on social services and infrastructure.
Therefore, the correct answer is d) budget surplus.
Learn more about budget surplus here:
brainly.com/question/30453443
#SPJ2
coomplete question:
When government revenues exceed government outlays in a particular year, this is called
A.
the national debt.
B.
a budget deficit.
C.
fiscal policy.
D.
a budget surplus.
3^x = 27^a+b and a^2-b^2/(a-b)=5 What is x?
Select the correct answer from each drop-down menu. The graph represents the piecewise function.
Answer:
1). f(x) = x² if ∞ < x < 2
2). f(x) = 5 if 2 ≤ x < 4
Step-by-step explanation:
The graph attached shows the function in two pieces.
1). Parabola
2). A straight line parallel to the x-axis.
Standard equation of a parabola is,
y = a(x - h)² + k
where (h, k) is the vertex.
Vertex of the given parabola is (0, 0).
Equation of the parabola will be,
y = a(x - 0)² + 0
Therefore, the function will be,
f(x) = ax²
Given parabola is passing through (-1, 1) also,
1 = a(-1)²
a = 1
Therefore, parabolic function will be represented by,
f(x) = x² if ∞ < x < 2
2). Straight line parallel to the x-axis,
y = 5 if 2 ≤ x < 4
Function representing the straight line will be,
f(x) = 5 if 2 ≤ x < 4
Answer:
Please mark me as Brainliest :)
Step-by-step explanation:
helppppppppPPPPppppppPPPPppppPPpppppPPppPPpppPPPppp PLEASE do not look it up on any source
Answer:
open side up: 2%
closed side up: 10%
landing on side: 88%
Step-by-step explanation:
Jake tossed it 50 times, so to figure out probability it is easier to make the fraction over 100 so multiply the open side up by 2 the closed side up by 2 and the landing side up by 2 and make it over 100 then divide them.
Which expression is equivalent to 2m^2 - m^2(7-m)+6m^2?
Answer:
[tex]m^3+m^2[/tex]
Step-by-step explanation:
=> [tex]2m^2-m^2(7-m)+6m^2[/tex]
Collecting like terms and expanding the brackets
=> [tex]2m^2+6m^2-7m^2+m^3[/tex]
=> [tex]8m^2-7m^2+m^3[/tex]
=> [tex]m^2+m^3[/tex]
=> [tex]m^3+m^2[/tex]
Find the value of annuity if the periodic deposit is $400 at 4% compounded monthly for 18 years
Answer:
~820.8$
Step-by-step explanation:
The total money (M) after 18 years could be calculated by:
M = principal x (1 + rate)^time
with
principal = 400$
rate = 4% compounded monthly = 0.04/12
time = 18 years = 18 x 12 = 216 months (because of compounded monthly rate)
=> M = 400 x (1 + 0.04/12)^216 = ~820.8$
Explain how to use the vertex and the value of “A” to determine the range of an absolute value function. PLEASE HELP!!
Answer:
First, a absolute value function is something like:
y = f(x) = IxI
remember how this work:
if x ≥ 0, IxI = x
if x ≤ 0, IxI = -x
Notice that I0I = 0.
And the range of this function is all the possible values of y.
For example for the parent function IxI, the range will be all the positive reals and the zero.
First, if A is the value of the vertex of the absolute function, then we know that A is the maximum or the minimum value of the function.
Now, if the arms of the graph open up, then we know that A is the minimum of the function, and the range will be:
y ≥ A
Or all the real values equal to or larger than A.
if the arms of the graph open downwards, then A is the maximum of the function, and we have that the range is:
y ≤ A
Or "All the real values equal to or smaller than A"
Look at the number pattern shown below:3 × 17 = 5133 × 167 = 5511333 × 1667 = 555111What will be 33333 × 166667?
Answer:
33333 x 166667 = 5555511111
I think that is the answer you wanted
Step-by-step explanation:
166667
x 33333
5555511111
Solve for x: 4 over x plus 4 over quantity x squared minus 9 equals 3 over quantity x minus 3. (2 points) Select one: a. x = -4 and x = -9 b. x = 4 and x = -9 c. x = -4 and x = 9 d. x = 4 and x = 9
Answer:
c. x = -4 or x = 9Step-by-step explanation:
[tex]\dfrac{4}{x}+\dfrac{4}{x^2-9}=\dfrac{3}{x-3}[/tex]
Domain:
[tex]x\neq0\ \wedge\ x^2-9\neq0\ \wedge\ x-3\neq0\\\\x\neq0\ \wedge\ x\neq\pm3[/tex]
solution:
[tex]\dfrac{4}{x}+\dfrac{4}{x^2-3^2}=\dfrac{3}{x-3}[/tex]
use (a - b)(a + b) = a² - b²
[tex]\dfrac{4}{x}+\dfrac{4}{(x-3)(x+3)}=\dfrac{3}{x-3}[/tex]
multiply both sides by (x - 3) ≠ 0
[tex]\dfrac{4(x-3)}{x}+\dfrac{4(x-3)}{(x-3)(x+3)}=\dfrac{3(x-3)}{x-3}[/tex]
cancel (x - 3)
[tex]\dfrac{4(x-3)}{x}+\dfrac{4}{x+3}=3[/tex]
subtract [tex]\frac{4(x-3)}{x}[/tex] from both sides
[tex]\dfrac{4}{x+3}=3-\dfrac{4(x-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x}{x}-\dfrac{(4)(x)+(4)(-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-\bigg(4x-12\bigg)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-4x-(-12)}{x}\\\\\dfrac{4}{x+3}=\dfrac{-x+12}{x}[/tex]
cross multiply
[tex](4)(x)=(x+3)(-x+12)[/tex]
use FOIL
[tex]4x=(x)(-x)+(x)(12)+(3)(-x)+(3)(12)\\\\4x=-x^2+12x-3x+36[/tex]
subtract 4x from both sides
[tex]0=-x^2+12x-3x+36-4x[/tex]
combine like terms
[tex]0=-x^2+(12x-3x-4x)+36\\\\0=-x^2+5x+36[/tex]
change the signs
[tex]x^2-5x-36=0\\\\x^2-9x+4x-36=0\\\\x(x-9)+4(x-9)=0\\\\(x-9)(x+4)=0[/tex]
The product is 0 if one of the factors is 0. Therefore:
[tex]x-9=0\ \vee\ x+4=0[/tex]
[tex]x-9=0[/tex] add 9 to both sides
[tex]x=9\in D[/tex]
[tex]x+4=0[/tex] subtract 4 from both sides
[tex]x=-4\in D[/tex]
i dont understand how to find Which ordered pair is a solution of the equation? y=8x+3
Answer:
Step 1:
To find ordered pair solutions, you could create an x and y graph and fill out the x side. Then, plug in an x number to get your y number and graph the ordered pairs to see if they give you a straight line. I'm going to use these numbers: -1, 0, 1, and 2.
[tex]...x...|...y...[/tex]
[tex]\left[\begin{array}{ccc}-1&?\\0&?\\1&?\\2&?\end{array}\right][/tex]
Now, let's plug in -1 into the equation first to see what we get for y.
[tex]y=8(-1)+3\\y=-8+3\\y=-5\\(-1,-5)[/tex]
-5 is our y if x was -1.
We do the same for the other three numbers.
[tex]y=8(0)+3\\y=0+3\\y=3\\(0,3)[/tex]
[tex]y=8(1)+3\\y=8+3\\y=11\\(1,11)[/tex]
[tex]y=8(2)+3\\y=16+3\\y=19\\(2,19)[/tex]
Step 2:
With all that done, we can now fill out our table and graph the points.
[tex]....x...|...y....[/tex]
[tex]\left[\begin{array}{ccc}-1&-5\\0&3\\1&11\\2&19\end{array}\right][/tex]
If you graph these points on graph paper / a graphing website, you will see that these points go in a straight line. If you are given an ordered pair already (for example: (3,5)), then all you have to do is plug in the x into the equation (3) and see if the outcome is true (5).
[tex]5=8(3)+3\\5=24+3\\5\neq 27[/tex]
Since they don't equal each other, then (3,5) is false.
Here is the graph for the table above. I hope I helped you!
Lets go over the solutions.
Let's start with (1, 11). After substituting x = 1 and y = 11, it results in the equation 11 = 11, which is a true statement. Hence, this is one solution.
Now, let's look at (-1 -5). After substituting x = -1 and y = -5, it results in the equation -5 = -5, which is also a true statement. So, this being said, (-1, -5) would also be a solution.
Hence, our two solutions are:
Both [tex](1, 11)[/tex] and [tex](-1, -5)[/tex].
Hope this helps!
6th-grade math help me, please
Answer:
Question (2). Option (D)
Question (3). (a). 56
(b). 84
Step-by-step explanation:
Question (2).
Since, a% of b = [tex]\frac{a}{100}\times b[/tex]
42% of 350 = [tex]\frac{42}{100}\times 350[/tex]
Therefore, Option (d) is the correct option.
Question (3).
Total number of people who attended the music concert = 700
a). Percentage of people who arrived late in the concert = 8%
Therefore, number of people who attended the concert = 8% of 700
= [tex]\frac{8}{100}\times 700[/tex]
= 56
b). Percentage of people who bought the shirt = 12%
Number of people who bought the shirt = 12% of 700
= [tex]\frac{12}{100}\times 700[/tex]
= 84
helpppppppppppppppppppppp i will give star thanks bralienst
Answer:
90/x=70/100 that's my answer
[tex]90 \x = 70 \100[/tex]
Answer:
90/x = 70/100
Step-by-step explanation:
Is means equals and of means multiply
90 = 70% *x
Changing to decimal form
90 = .70x
Changing to fraction form
90 = 70/100 *x
Divide each side by x
90/x = 70/100
How much of a radioactive kind of sodium will be left after 9 years if you start with 96 grams and the half-life is 3 years?
Answer:
9 years = 12 grams
Step-by-step explanation:
0 years = 96 grams
After 3 years , the amount left is 1/2 of what you started with
3 years = 1/2 *96 = 48 grams
After 3 years , the amount left is 1/2
6 years = 1/2 (48) = 24 grams
After 3 years , the amount left is 1/2
9 years = 1/2 ( 24) = 12 grams
Which statements are true about these lines? Select three options.
The slope of line MN is Two-thirds.
The slope of line PQ is undefined.
The slope of line RS is Negative three-halves.
Lines RS and TV are parallel.
Line RS is perpendicular to both line MN and line PQ
Answer:
A) The slope of line MN is Two-thirds.
C) The slope of line RS is Negative three-halves.
E) Line RS is perpendicular to both line MN and line PQ.
Step-by-step explanation:
i did the work
A sample of 32 boxes of cereal has a sample standard deviation of 0.81 ounces. Construct a 95% confidence interval to estimate the true standard deviation of the filling process for the boxes of cereal.
a. (0.656, 1.064)
b. (0.520, 1.100)
c. (0.430, 1.132)
d. (0.729, 0.729)
e None of the above
Answer:
a. (0.656, 1.064)
Step-by-step explanation:
The sample of cereal is :
n = 32, Standard deviation = 0.81
The confidence interval is 95%
degrees of freedom = df = 31 (n - 1)
[tex]\alpha[/tex] = 95%
1 - 0.95 = 0.05
1 - [tex]\frac{ \alpha }{2}[/tex]
1 - 0.025 = 0.975
Using chi square distribution we get,
0.656, 1.064
baby weights: a study was conducted to determin the average birth weight (in ounces) of babies born in hospitals in a five county area of a given state. A Simple Random Sample of Recent birth records at the local hospitals were selected and the confidence interval was calulated to be (117.89 ounces, 124.91), at a 95% level of confidence. Which statistic is appropriate for this confidences interval?
Answer: Sample mean [tex](\overline{x})[/tex]
Step-by-step explanation:
Given: A study was conducted to determine the average birth weight (in ounces) of babies born in hospitals in a five county area of a given state.
i.e. The parameter of the study is [tex]\mu[/tex] . (Population mean).
A Simple Random Sample of Recent birth records at the local hospitals were selected and the confidence interval was calculated to be (117.89 ounces, 124.91), at a 95% level of confidence.
Since a measure of sample is a statistic , and this case statistic is sample mean denoted by [tex]\overline{x}[/tex].
Hence, the statistic is appropriate for this confidences interval : [tex]\overline{x}[/tex]
Please help!!
Find the value of x.
X=
Answer:
Step-by-step explanation:
Hello,
We can write three equations thanks to Pythagoras
[tex]AB^2+AC^2=(7+3)^2\\x^2+7^2=AB^2\\x^2+3^2=BC^2\\[/tex]
So it comes
[tex]x^2+7^2+x^2+3^2=(7+3)^2\\\\2x^2=100-49-9=42\\\\x^2 = 42/2=21\\\\x = \sqrt{\boxed{21}}\\[/tex]
Hope this helps
Answer:
x = [tex]\sqrt{21}[/tex]
Step-by-step explanation:
Δ BCD and Δ ABD are similar thus the ratios of corresponding sides are equal, that is
[tex]\frac{BD}{AD}[/tex] = [tex]\frac{CD}{BD}[/tex] , substitute values
[tex]\frac{x}{7}[/tex] = [tex]\frac{3}{x}[/tex] ( cross- multiply )
x² = 21 ( take the square root of both sides )
x = [tex]\sqrt{21}[/tex]
What are the trigonometric ratios? Write all six.
Step-by-step explanation:
Check that attachment
Hope it helps :)
Hey! :)
________ ☆ ☆_________________________________________
Answer:
There are six trigonometric ratios, which will be under “Explanation”
Step-by-step explanation:
Trigonometric ratios are a measurements of a right triangle.
Here are the all the six trigonometric ratios.
1. cotangent (cot)
2. cosecant (csc)
3. cosine (cos)
4. secant (sec)
5. sine (sin)
6. tangent (tan)
Hope this helps! :)
_________ ☆ ☆________________________________________
By, BrainlyMember ^-^
Good luck!
Brainliest for correct awnser Estimate the line of best fit using two points on the line.A.y = −8x + 80B.y = 4x + 80C.y = −4x + 80D.y = 8x + 80
Answer:
A.y = −8x + 80B
Step-by-step explanation:
first you have to find the slope :
P1(2,64). P2(6,32)
slope=Y2-Y1/X2-X1
slope=64-32/2-6
slope= -8
y= -8x + b. now solve for "b" by using one of the coordinates given above.
y= -8x + b. I will use coordinate p(2,64)
64= -8(2) + b
64 + 16 = b
80= b
you can use any of the coordinates i.e either P1(2,64)or P2(6,32) it doesn't affect the value of "b".
line of equation is :
.y = −8x + 80B
Answer: y= -8x+80
Step-by-step explanation:
The area of an Equilateral triangle is given by the formula A= 3pi squared/4(s)Squared. Which formula represents the length of equilateral triangle’s side S?
Answer:
The formula that represents the length of an equilateral triangle’s side (s) in terms of the triangle's area (A) is [tex]\text{s}= \sqrt{ \frac{4 \text{A}}{\sqrt{3} }}[/tex] .
Step-by-step explanation:
We are given the area of an Equilateral triangle which is A = [tex]\frac{\sqrt{3} }{4} \times \text{s}^{2}[/tex] . And we have to represent the length of an equilateral triangle’s side (s) in terms of the triangle's area (A).
So, the area of an equilateral triangle = [tex]\frac{\sqrt{3} }{4} \times \text{s}^{2}[/tex]
where, s = side of an equilateral triangle
A = [tex]\frac{\sqrt{3} }{4} \times \text{s}^{2}[/tex]
Cross multiplying the fractions we get;
[tex]4 \times A = \sqrt{3} \times \text{s}^{2}[/tex]
[tex]\sqrt{3} \times \text{s}^{2}= 4\text{A}[/tex]
Now. moving [tex]\sqrt{3}[/tex] to the right side of the equation;
[tex]\text{s}^{2}= \frac{4 \text{A}}{\sqrt{3} }[/tex]
Taking square root both sides we get;
[tex]\sqrt{\text{s}^{2}} = \sqrt{ \frac{4 \text{A}}{\sqrt{3} }}[/tex]
[tex]\text{s}= \sqrt{ \frac{4 \text{A}}{\sqrt{3} }}[/tex]
Hence, this formula represents the length of an equilateral triangle’s side (s) in terms of the triangle's area (A).
Suppose that E and F are two events and that P(E and F) = 0.2 and P(E) = 0.4. What is P(F/E)
Answer:
The conditional probability is given by
P(F|E) = P(E and F)/P(E)
P(F|E) = 0.2/0.4
P(F|E) = 0.5
P(F|E) = 50%
Step-by-step explanation:
Recall that the conditional probability is given by
∵ P(B | A) = P(A and B)/P(A)
For the given case,
P(F|E) = P(E and F)/P(E)
Where P(F|E) is the probability of event F occurring given that event E has occurred.
The probability of event E and F is given as
P(E and F) = 0.2
The probability of event E is given as
P(E) = 0.4
So, the conditional probability is
P(F|E) = P(E and F)/P(E)
P(F|E) = 0.2/0.4
P(F|E) = 0.5
P(F|E) = 50%
The distance around a rectangular cafe is 35m . The ratio of length of the cafe to the width is 3:2. Find the dimension of the cafe
Hi there! :)
Answer:
Length = 10.5 m, width = 7 m.
Step-by-step explanation:
Given:
Perimeter, or P = 35 m
Ratio of l to w = 3 : 2
Since the ratio is 3 : 2, let l = 3x, and w = 2x.
We know that the formula for the perimeter of a rectangle is P = 2l + 2w. Therefore:
35 = 2(3x) + 2(2x)
35 = 6x + 4x
35 = 10x
x = 3.5
Plug this value of "x" into each expression to solve for the dimensions:
2(3.5) = w
w = 7 m
3(3.5) = l
l = 10.5 m
Therefore, the dimensions are:
Length = 10.5 m, width = 7 m.
Which inequality has -12 in its solution set?
A
B
С
D
X+6 <-8
X+42-6
X-3 >-10
X+55-4
ОА
B
D
Answer:
D) [tex]x+5\leq -4[/tex]
Step-by-step explanation:
We solve each of the inequalities
Option A
[tex]x+6<-8\\x<-8-6\\x<-14[/tex]
Option B
[tex]x+4\geq -6[/tex]
[tex]x\geq -6-4\\x\geq-10[/tex]
Option C
[tex]x-3>-10\\x>-10+3\\x>-7[/tex]
Option D
[tex]x+5\leq -4[/tex]
[tex]x\leq -4-5\\x\leq -9[/tex]
Therefore, only option D has -12 in its solution set.
Helppppppp pleaseeee
Answer:
d 13
Step-by-step explanation:
Which of the following functions is graphed below?
Answer:
B.
Step-by-step explanation:
The function above the x-axis looks like a parabola, so it must have an x^2 term. It also has an open circle, so it must have a > symbol.
The function below the x-axis has a closed circle, so it must have a <= symbol. It is also a 3rd degree polynomial.
Answer: B.
i neeed help thanksssss
Answer:
Volume: 366.6
Surface Area: 314.2
Explanation (look at below)
Step-by-step explanation:
Volume:
The radius of this sphere is 5 (half of 10). The equation will be [tex]\frac{4}{3} \pi[/tex]5^3
When you calculate that, it will become: 366.6<-- rounded to the nearest tenth.
Surface Area:
4[tex]\pi[/tex]5^2
=100Π
=314.2<-- rounded to the nearest tenth.
314.2 is the nearest tenth digit no.
Six years ago, an investor purchased a downtown apartment complex and an adjacent piece of land. The current value of the property is $850,000. Of the total, the current value of the apartment complex is $710,000 and the current value of the land is $140,000. Using the straight-line method, assuming an average appreciation of 6% on the land and an average depreciation of 3% on the apartment complex, what was the original value of the property? Round your answer to the nearest dollar.
Answer: $951,064.06 would be your answer.
Step-by-step explanation: Hope that helped!
Explain what a directed line segment is and describe how you would find the coordinates of point P along a directed line segment AB that partitions AB so that the ratio of AP to PB is 3:1.
Answer: see below
Step-by-step explanation:
In order to partition line segment AB so that AP and PB have a ratio of 3 : 1
1) Find the x- and y-lengths of the segment AB.
2) Divide the x- and y-lengths by (3 + 1) to find the length of one section.
3) Add 3 times those lengths to point A to find point P ...or...
Subtract 1 times those lengths from point B to find point P.
For example: Consider A = (0, 0) and B = (4, 8)
1) The length from A to B is
x = 4-0 = 4
y = 8-0 = 8
2) Divide those by (3 + 1):
x = 4/4 = 1
y = 8/4 = 2
3) Add 3 times those values to A to find point P:
x = 0 + 3(1) = 3
y = 0+3(2) = 6
--> P = (3, 6)
Note: We could have also subtracted 1 from the x-value of B and 2 from the y-value of B to find that point P = (4-1, 8-2) = (3, 6)
Now we know that the distance from point A to point P is 3 times the distance from point P to point B.
Solve by using logarithms, not the same base. I have absolutely no clue how to solve so any help would be amazing, thanks
Answer:
-5/48
Step-by-step explanation:
(8 · 2⁷ˣ)⁴ = (1/16)⁵ˣ · 128
Take log of both sides.
log (8 · 2⁷ˣ)⁴ = log ((1/16)⁵ˣ · 128)
Use log exponent/product rules.
4 log (8 · 2⁷ˣ) = log (1/16)⁵ˣ + log 128
Use log exponent/product rules.
4 (log 8 + log (2⁷ˣ)) = 5x log (1/16) + log 128
Use log exponent rule.
4 (log 8 + 7x log 2) = 5x log (1/16) + log 128
Distribute.
4 log 8 + 28x log 2 = 5x log (1/16) + log 128
Write as powers of 2.
4 log 2³ + 28x log 2 = 5x log (2⁻⁴) + log 2⁷
Use log exponent rule.
12 log 2 + 28x log 2 = -20x log 2 + 7 log 2
Combine like terms.
5 log 2 + 48x log 2 = 0
Divide by log 2.
5 + 48x = 0
Solve for x.
x = -5/48
Based on a poll, among adults who regret getting tattoos, 12% say that they were too young when they got their tattoos. Assume that ten adults who regret getting tattoos are randomly selected, and find the indicated probability.
Required:
a. Find the probability that the number of selected adults saying they were too young is 0 or 1.
b. Find the probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c. Find the probability that none of the selected adults say that they were too young to get tattoos.
Answer:
a. 0.6588
b. 0.3978
c. 0. 279
Step-by-step explanation:
In the given question the success and failure are given the number of outcomes is fixed so binomial distribution can be applied.
Here success= p = 12 % or 12/100 = 0.12
failure = q= 1-p = 1-0.12 = 0.88
n= 10
Using binomial probability distribution
a. Probability that the number of selected adults saying they were too young is 0 or 1 is calculated as:
P (x=0,1) = 0.12 ⁰(0.88)¹⁰10 C0 + 0.12 (0.88)⁹ 10 C1= 1* 0.279 * 1 + 0.12 ( 0.3165) 10 = 0. 279 + 0.3978= 0.6588
b. Probability that exactly one of the selected adults says that he or she was too young to get tattoos is calculated as
P (x=1) = 0.12 (0.88)⁹ 10 C1= 0.12 ( 0.3165) 10 = 0.3978
c. Probability that none of the selected adults say that they were too young to get tattoos is
P (x=0) = 0.12 ⁰(0.88)¹⁰10 C0 = 1* 0.279 * 1 = 0. 279