When adding numbers in scientific notation, we need to ensure that the exponents of 10 are the same.
2.98x10^7 + 3.12x10^7 can be rewritten as:
(2.98 + 3.12) x 10^7
= 6.10 x 10^7
Therefore, the sum of 2.98x10^7 and 3.12x10^7 in scientific notation is 6.10x10^7.
a solution contains some or all of the following ions: sn4 , ag , and pb2 . the solution is treated as described below. test 1) addition of 6 m hcl causes a precipitate to form. test 2) addition of h2s and 0.2 m hcl to the liquid remaining from test 1 produces no reaction. what conclusions can be drawn from the results of these two tests?
Test 1 and 2 take us to the conclusion that PbCl2 and AgCl precipitate in the first test. SnCl4 and SnS2, both of which are extremely soluble, are present in greater amounts in the second.
This study takes into account the acidity. Except for Pb2+, Ag+, and Hg2+ for chlorides and Sr+2, Ba+2, Pb+2, and Hg+2 for sulfides, the chlorides and sulfides groups are largely soluble.
In the first instance, the HCl content is very high. It implies that HCl reacts with all ions. Because SnCl4 and SnS2 are both very soluble in the solution, there is no reaction in the second case. With Le Chatelier, if we add more reactive, the equilibrium leans to reactive, thus there is more SnCl4.
To know more about cation/anion test, visit,
https://brainly.com/question/21082064
#SPJ4
Name the following organic molecules.
The IUPAC names of the organic compounds are as follows:
1,1,3, trimethylcyclohexane2-methylethoxy-6-hydroxybutane3-oxopentanedioic acid dimethyl ester2-ethyl-4-hdroxypentanoic acidWhat is the IUPAC nomenclature of organic compounds?The IUPAC nomenclature of organic compounds is a system of naming organic chemical compounds according to a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC).
The basic rules of the IUPAC nomenclature system involve identifying the longest continuous chain of carbon atoms in the molecule (the parent chain), assigning a root name to this chain based on the number of carbon atoms, and adding prefixes or suffixes to indicate functional groups and other substituents.
Stereochemistry (the arrangement of atoms in three-dimensional space) is also taken into account when naming compounds.
Learn more about organic compounds at: https://brainly.com/question/802962
#SPJ1
how is the majority of electricity generated in the area where you live? does the process involve the combustion of coal? check with your teacher if you are not sure.
The process involves burning coal is used to make nearly half of the electricity in the United States.
By burning coal in a boiler to make steam, coal-fired power plants produce electricity. Under tremendous pressure, the produced steam enters a turbine, which spins a generator to generate electricity. The steam is then cooled, dense back into the water, and got back to the kettle to begin the interaction once again.
At the moment, coal provides the majority of the world's electricity. The primary source remains for many nations.
Fossil fuel power plants generate heat by burning oil or coal, which is then used to create steam that powers turbines that generate electricity.
To learn more about coal here
https://brainly.com/question/30560160
#SPJ4
PLEASE HELP!!! 4. If excess nitric acid acid reacts with 25.4 g of lithium bromide, how many
grams of hydrobromic acid are produced?
HNO3(aq) + LiBr(a) → LINO3(aq) + HBr(ag)
The correct answer is To determine how many grams of hydrobromic acid (HBr) are produced when excess nitric acid[tex](HNO3)[/tex]reacts with 25.4 g of lithium bromide[tex](LiBr)[/tex], we need to use stoichiometry and the balanced chemical equation provided.
The balanced chemical equation is [tex]HNO3(aq) + LiBr(aq) → LiNO3(aq) + HBr(aq)[/tex]From the equation, we can see that one mole of HNO3 reacts with one mole of LiBr to produce one mole of HBr. Therefore, we need to first determine the number of moles of LiBr used in the reaction. To do this, we can use the molar mass of LiBr to convert the given mass of 25.4 g to moles: [tex]25.4 g LiBr x (1 mole LiBr / 86.85 g LiBr) = 0.292 moles LiBr[/tex]Since the reaction uses 1 mole of LiBr, we know that 0.292 moles of HBr will be produced. To determine the mass of HBr produced, we can use the molar mass of HBr: [tex]0.292 moles HBr x (80.91 g HBr / 1 mole HBr) = 23.6 g HBr[/tex] Therefore, when excess nitric acid reacts with 25.4 g of lithium bromide, 23.6 g of hydrobromic acid are produced. It's important to note that the word "excess" indicates that there is more than enough nitric acid to react with all of the lithium bromide, which means that the reaction will go to completion and all of the LiBr will be consumed. If the nitric acid were limiting, then we would need to calculate the amount of HBr produced based on the limiting reactant.
To learn more about stoichiometry click on the link below:
brainly.com/question/30215297
#SPJ1
in equilibrium reactions, we can look at both the forward and the backward reactions and compare the rates to determine information about the directionality of the reaction. a. write the rate expression for both the forward and backward reactions. b. how would the system respond to increasing the concentration of co2 (aq) to reestablish equilibrium? use a kinetic argument to justify your answer. c. what will the concentrations of each species be when equilibrium is reestablished, relative to what they were in the initial equilibrium? justify your answer.
a. The rate expression for the forward and backward reaction can be written as:
[tex]rate = k_{forward} [A]^m [B]^n[/tex]
[tex]rate = k_{backward} [C]^p [D]^q[/tex]
b. If the concentration of [tex]CO_2(aq)[/tex] is increased, the equilibrium would shift to the left to consume the additional [tex]CO_2\\[/tex].
c. At equilibrium, the concentrations of [tex]CO_2(aq)[/tex], A, and B would be higher than their initial concentrations, while the concentrations of C and D would be lower than their initial concentrations.
a) [tex]rate = k_forward [A]^m [B]^n[/tex]
where [tex]k_{forward[/tex] is the rate constant for the forward reaction, [A] and [B] are the concentrations of the reactants, and m and n are the reaction orders with respect to [A] and [B], respectively.
[tex]rate = k_backward [C]^p [D]^q[/tex]
where [tex]k_{backward[/tex] is the rate constant for the backward reaction, [C] and [D] are the concentrations of the products, and p and q are the reaction orders with respect to [C] and [D], respectively.
b. If the concentration of [tex]CO_2(aq)[/tex] is increased, the equilibrium would shift to the left to consume the additional [tex]CO_2[/tex]. This can be justified by Le Chatelier's principle, which states that a system at equilibrium will respond to any stress applied to it in a way that tends to counteract the stress and reestablish equilibrium.
In this case, increasing the concentration of [tex]CO_2(aq)[/tex] would be a stress that would upset the equilibrium, and the system would respond by shifting the equilibrium to the left, where [tex]CO_2(aq)[/tex] is consumed.
c. At equilibrium, the rate of the forward reaction is equal to the rate of the backward reaction. Therefore, the concentrations of the species at equilibrium can be calculated using the equilibrium constant, [tex]K_{eq[/tex]:
[tex]K_{eq} = ([C]^p [D]^q) / ([A]^m [B]^n)[/tex]
where the brackets denote the concentration of each species. At equilibrium, [tex]K_{eq}[/tex] is a constant, which means that the ratio of the product concentrations to the reactant concentrations is constant.
If the concentration of [tex]CO_2(aq)[/tex] is increased, the equilibrium would shift to the left, which would decrease the concentrations of the products (C and D) and increase the concentrations of the reactants (A and B).
Therefore, at equilibrium, the concentrations of [tex]CO_2(aq)[/tex], A, and B would be higher than their initial concentrations, while the concentrations of C and D would be lower than their initial concentrations.
However, the exact concentrations of each species at equilibrium would depend on the values of [tex]K_{eq}[/tex] and the initial concentrations of each species.
For more question on rate expression click on
https://brainly.com/question/15154019
#SPJ11
the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert independently. this law of partial pressure is referred to as
Dalton's law of partial pressure means that the total pressure of a gas mixture is equal to the sum of the individual partial pressures of each gas.
Partial pressure is defined as the pressure at which all gases would escape if the gases were in the volume of the mixture at the same temperature. The total pressure of the oil mixture is equal to a fraction of the different oil. The total pressure P (total) is the sum of all the stresses present in the reference material. Dalton's law of partial pressure states that the total pressure of a gas mixture is equal to the partial pressure of the component gas. Mathematically expression : [tex]P = \sum P_i = P_1 + P_2 + .... [/tex]
where, P --> total pressure
Pi --> partial pressures of each gas
The desired answer is therefore Dalton's partial pressure law.
For more information about Dalton's law of partial pressures, visit :
https://brainly.com/question/13082853
#SPJ4
write the equation showing the fusion of Li 7 atom with a H 3 atom to form a Be 8 atom and some number of neutrons
The equation showing the fusion of Li-7 atom with a H-3 atom to form a Be-8 atom and some number of neutrons is:
Li-7 + H-3 → Be-8 + n
What is the role of neutrons in the fusion reaction of Li-7 and H-3?The neutrons produced in the fusion reaction carry away excess energy and help to stabilize the beryllium-8 nucleus that is formed. They may also go on to participate in further fusion reactions.
What are some of the challenges associated with achieving nuclear fusion on Earth?Some of the challenges associated with achieving nuclear fusion on Earth include the need to create and maintain the high temperatures and pressures required for fusion reactions to occur, the difficulty of confining and controlling the hot plasma that is produced, and the potential hazards associated with the release of large amounts of energy in a relatively short amount of time.
To know more about fusion,visit:
https://brainly.com/question/12701636
#SPJ1
finding the ph of a weak base solution is very similar to that for a weak acid. what is the only step that is necessary in the calculation of ph of a weak base and not a weak acid?
The only additional step required in the calculation of pH for a weak base solution is the calculation of the concentration of hydroxide ions using the Kb value.
The equilibrium expression for the dissociation of a weak base, B, can be written as:
B + H₂O ⇌ BH+ + OH-
The equilibrium constant for this reaction is called the base dissociation constant, Kb. Like the acid dissociation constant, Ka, the Kb can be used to calculate the concentration of hydroxide ions in the solution.
The relationship between the Kb and the Ka of the conjugate acid of the weak base can be expressed as:
Kw = Ka × Kb
where Kw is the ion product constant for water, which is equal to 1.0 x 10⁻¹⁴ at 25°C.
By using the Kb value and the initial concentration of the weak base, the concentration of OH- can be calculated. Then, the pH of the solution can be determined using the same equation as for a weak acid:
[tex]pH= pKa + log(\frac{[A-]}{[HA]} )[/tex]
where A- is the conjugate base of the weak acid, and HA is the weak acid itself.
To know more about the Acid, here
https://brainly.com/question/28134210
#SPJ4
Given ΔfG (SO2(g)) = -300.4 kJ·mol-1 and ΔfG (H2O(g)) = -228.57 kJ·mol-1, calculate ΔGrxn for the reaction below at 25 °C in kJ. SO2(g) + 2 H2(g) → S(s) + 2 H2O(g)
The value of ΔGrxn for the given reaction is -156.74 kJ·mol-1 at 25 °C.
To calculate ΔGrxn for the given reaction, we can use the following equation:
ΔGrxn = ΣnΔfG(products) - ΣmΔfG(reactants)
where ΔfG is the standard molar Gibbs free energy of formation, n and m are the stoichiometric coefficients of the products and reactants respectively.
Let's start by writing the balanced chemical equation for the reaction:
[tex]SO_2(g) + 2 H_2(g)[/tex] → [tex]S(s) + 2 H_2O(g)[/tex]
Now we can use the given values of ΔfG to calculate ΔGrxn:
ΔGrxn = [ΔfG(S) + 2ΔfG([tex]H_2O[/tex])] - [ΔfG([tex]SO_2[/tex]) + 2ΔfG([tex]H_2[/tex])]
ΔGrxn = [0 + 2(-228.57 kJ·mol-1)] - [-300.4 kJ·mol-1 + 2(0)]
ΔGrxn = -457.14 kJ·mol-1 + 300.4 kJ·mol-1
ΔGrxn = -156.74 kJ·mol-1
For more question on ΔGrxn click on
https://brainly.com/question/31384759
#SPJ11
2 NH3 + 3 CuO --> 3 Cu + N2 + 3 H2O
In the above equation how many moles of N2 can be made when 166.8 grams of CuO are consumed?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Nitrogen
14
Copper
63.5
Oxygen
16
2. For the reaction C + 2H2 → CH4, how many moles of carbon are needed to make 174.6 grams of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Carbon
12
3. 3 Cu + 8HNO3 --> 3 Cu(NO3)2 + 2 NO + 4 H2O
In the above equation how many moles of water can be made when 110.2 grams of HNO3 are consumed?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Nitrogen
14
Copper
63.5
Oxygen
16
The amount of nitrogen in moles (n) is [n=166.8.028.0] = 5.95714286 moles. every mole of CH4 is consumed results in the production of one mole of CO2. In 100 g of water, there are about eleven moles of hydrogen atoms.
when 100 moles of water are present?Under a consistent pressure of 1 atm, a mole of water heated to 100°C turns into steam. [Heat of vaporisation liquid water at 100°C= 540cal/gm] is the change in entropy.
How many mole of CH4 must be burned in order to produce 44g of CO2?Since 1 mole or methane can completely burn to make 1 mole of carbon dioxide, we may say that mole ratio of methane can fully burn to produce 44 grammes of carbon dioxide.
To know more about atoms visit:
https://brainly.com/question/30898688
#SPJ1
99. a solution containing sodium fluoride is mixed with one containing calcium nitrate to form a solution that is 0.015 m in naf and 0.010 m in ca ( n o 3 ) 2 does a precipitate form in the mixed solution? if so, identify the precipitate.
Since Q > Ksp, a precipitate forms in the mixed solution. The precipitate is calcium fluoride ([tex]CaF_{2}[/tex]).
A solution containing sodium fluoride is mixed with one containing calcium nitrate to form a solution that is 0.015 M in NaF and 0.010 M in [tex]Ca(NO_{3})_{2}[/tex]. To determine if a precipitate forms in the mixed solution, follow these steps:
1. Write the possible reaction between the ions in the solution: NaF (aq) + [tex]Ca(NO_{3})_{2}[/tex] (aq) → [tex]NaNO_{3}[/tex] (aq) + [tex]CaF_{2}[/tex] (s)
2. Identify the solubility rules for the potential products. Sodium nitrate ( [tex]NaNO_{3}[/tex]) is soluble because nitrates are generally soluble. Calcium fluoride ( [tex]CaF_{2}[/tex]) may be insoluble, as fluorides often have limited solubility.
3. Calculate the ion product (Q) and compare it with the solubility product constant (Ksp) of [tex]CaF_{2}[/tex]. If Q > Ksp, a precipitate will form. Q = [tex][Ca_{2+}][F-]^{2}[/tex]. The concentrations of ions in the mixed solution are: [[tex]Ca_{2+}[/tex]] = 0.010 M (from [tex]Ca(NO_{3})_{2}[/tex]) [F-] = 0.015 M (from NaF)
So, Q = (0.010) × ([tex]0.015^{2}[/tex]) = 2.25 × [tex]10^{-6}[/tex] The Ksp of [tex]CaF_{2}[/tex] is 3.9 × [tex]10^{-11}[/tex].
4. Compare Q with Ksp: Q (2.25 × [tex]10^{-6}[/tex]) is greater than Ksp (3.9 × [tex]10^{-11}[/tex]).
Since Q > Ksp, a precipitate forms in the mixed solution. The precipitate is calcium fluoride ( [tex]CaF_{2}[/tex]).
To know more about precipitate, refer here:
https://brainly.com/question/30904755#
#SPJ11
an unknown compound has the formula . you burn 0.2236 g of the compound and isolate 0.5459 g of and 0.2235 g of . what is the empirical formula of the
#SPJ4
Full Question
an unknown compound has the formula . you burn 0.2236 g of the compound and isolate 0.5459 g of and 0.2235 g of . what is the empirical formula of the
what is the concentration (in m) of ions, in a solution of 0.584 moles of cacl2 dissolved in enough water to make 4.76 l of the solution?
Answer:
Explanation:
Calcium chloride (CaCl2) dissociates into three ions in water: one Ca2+ ion and two Cl- ions.
To find the concentration of ions in the solution, we need to find the total number of moles of ions that result from dissolving 0.584 moles of CaCl2:
One mole of CaCl2 produces one mole of Ca2+ ions and two moles of Cl- ions.
Therefore, 0.584 moles of CaCl2 produces 0.584 moles of Ca2+ ions and 2 x 0.584 = 1.168 moles of Cl- ions.
Next, we need to find the total volume of the solution:
The solution is made by dissolving the CaCl2 in enough water to make 4.76 L of solution.
Therefore, the volume of the solution is 4.76 L.
Finally, we can calculate the concentration of each ion:
Concentration of Ca2+ ions: moles of Ca2+ ions / volume of solution = 0.584 mol / 4.76 L = 0.122 M
Concentration of Cl- ions: moles of Cl- ions / volume of solution = 1.168 mol / 4.76 L = 0.245 M
So the concentration of Ca2+ ions is 0.122 M and the concentration of Cl- ions is 0.245 M.
The concentration (in m) of ions, in a solution of 0.584 moles of CaCl2 dissolved in enough water to make 4.76 L of the solution is 0.245 M.
What is concentration?
Concentration refers to the amount of a substance that is dissolved in a specific quantity of solvent or solution. It is typically measured in units of moles per liter (M) or milligrams per deciliter (mg/dL).
What is CaCl2?
Calcium chloride (CaCl2) is a compound of calcium and chlorine. It is a salt that is commonly used as a drying agent, because it can absorb water from the air. It is also used in food preservation, snow and ice removal, and concrete mixing.
How to find the concentration of CaCl2 ions?
The molar mass of CaCl2 is 111 g/mol.
Number of moles of CaCl2 = mass/molar mass= 0.584 moles
Volume of the solution = 4.76 L.
The concentration of CaCl2 ions can be calculated as follows:
Concentration of CaCl2 = Number of moles of CaCl2/Volume of the solution= 0.584 moles/4.76 L= 0.1227 M
The concentration of ions, on the other hand, is calculated as twice the concentration of CaCl2 because the compound dissociates into two ions: Ca2+ and 2Cl-.
Therefore, the concentration of ions = 2 × 0.1227 M= 0.245 M.
Therefore, the concentration (in m) of ions, in a solution of 0.584 moles of CaCl2 dissolved in enough water to make 4.76 L of the solution is 0.245 M.
To know more about concentration click here:
brainly.com/question/30862330
#SPJ11
a chemistry student weighs out of acrylic acid into a volumetric flask and dilutes to the mark with distilled water. he plans to titrate the acid with solution. calculate the volume of solution the student will
A chemistry student weighs out of acrylic acid into a volumetric flask, The weight of the acrylic acid the student weighed out, The concentration of the acrylic acid solution after dilution, The concentration of the titrant solution
To calculate the volume of the titrant solution needed for the titration, we need some additional information, such as:
1. The weight of the acrylic acid the student weighed out
2. The concentration of the acrylic acid solution after dilution
3. The concentration of the titrant solution
Once you have this information, follow these steps:
Step 1: Calculate the moles of acrylic acid in the solution.
- Moles = (weight of acrylic acid) / (molar mass of acrylic acid)
Step 2: Calculate the concentration of the diluted acrylic acid solution.
- Concentration = (moles of acrylic acid) / (total volume of the solution)
Step 3: Use the stoichiometry of the reaction between the acrylic acid and the titrant to determine the moles of titrant needed to neutralize the acid.
Step 4: Calculate the volume of the titrant solution needed for titration.
- Volume of titrant = (moles of titrant) / (concentration of titrant solution)
Remember to convert the volume of titrant to the appropriate units, such as milliliters or liters, depending on the question's requirements.
For more such questions on acrylic acid
brainly.com/question/13807060
#SPJ11
what is the wavelength (in nm) of the line in the spectrum of the hydrogen atom that arises from the transition of the electron from the orbital with n
Answer:
The wavelength of the line in the spectrum of the hydrogen atom is 102.57 nm.
The line in the spectrum of the hydrogen atom that results from the electron moving from the orbital with n = 5 to the orbital with n = 2 has a wavelength of 434 nanometers (nm).
The hydrogen atom is the most fundamental form of hydrogen. There is one proton, one electron, and no neutrons in the hydrogen atom. It's the lightest element on the periodic table, and it's also the most abundant. The symbol for hydrogen is H. It is the element that is present everywhere in the cosmos.
To know more about wavelength click here:
brainly.com/question/14286925
#SPJ11
is 1250g of carbon is reacted with excess water, and 710g of methane (ch4) was recovered, what was the percent yield of the reaction
The balanced chemical equation for the reaction between carbon and water to form methane is:
C + 2H2O → CH4 + CO2
From the equation, we see that one mole of carbon reacts with two moles of water to produce one mole of methane.
To determine the theoretical yield of methane, we first need to convert the mass of carbon to moles:
1250 g C × (1 mol C/12.011 g C) = 104.11 mol C
Since one mole of carbon produces one mole of methane, the theoretical yield of methane is also 104.11 mol.
Next, we can use the molar mass of methane to convert the theoretical yield from moles to grams:
104.11 mol CH4 × (16.043 g CH4/mol) = 1669.9 g CH4
Therefore, the theoretical yield of methane is 1669.9 g.
The percent yield of the reaction is the actual yield (the amount of methane recovered) divided by the theoretical yield, multiplied by 100%.
percent yield = (actual yield / theoretical yield) × 100%
To find the actual yield, we use the given mass of methane recovered:
actual yield = 710 g CH4
So, the percent yield is:
percent yield = (710 g CH4 / 1669.9 g CH4) × 100%
percent yield = 42.5%
Therefore, the percent yield of the reaction is 42.5%.
learn more about electrolysis here:brainly.com/question/16763470
#SPJ4
Write the letter of the expression in the second column that is most closely related to the following statement: The total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases.
calculate the amount of oxygen (a) diffused in 1 hour under steady state conditions through a non-diffusing gas mixture of methane (b) and hydrogen (c) in the volume ratios of 2:1.
The amount of oxygen diffused in 1 hour under the steady state condition through a non diffusing gas mixture of methane is 0.14076 K mole/hr.m2. This is calculated using the expression of Molar flux.
The molar flux = [tex]DA_{M}[/tex] * [tex]P_{t}[/tex]* ([tex]P_{A1}[/tex] - [tex]P_{A2}[/tex]) / [tex]RTZP_{BM}[/tex]
[tex]PB_{M}[/tex] =([tex]P_{B2}[/tex]- [tex]P_{B1}[/tex])/ ln ([tex]P_{B2}[/tex]/ [tex]P_{B1}[/tex])
[tex]P_{B2}[/tex]= 105- 13*103 = 87*103 N/m2, [tex]P_{B2}[/tex]= 105- 6500= 93.5*103 N/m2
[tex]PB_{M}[/tex]= (87*1000- 93.5*1000)/ ln (87/93.5)= 90200 N/m2
[tex]DA_{M}[/tex] = Diffusivity of oxygen into mixture of Methane and hydrogen
= (yCH4/[tex]DA_{B}[/tex] + yH2/[tex]DA_{C}[/tex])
Since volume ratio of Methane to hydrogen is 2:1
y[tex]CH_{4}[/tex]= 2/3 and y[tex]H_{2}[/tex]= 1/3
[tex]DA_{B}[/tex]= 1.86*10-5 m2/sec and [tex]DA_{C}[/tex] = 7*10-5 m2/sec
[tex]DA_{C}[/tex]= 1/ (0.667/1.86*10-5+ 0.333/7*10-5) =2.462*10-5
[tex]N_{A}[/tex] = 2.462*10-5*(13000-6500)/ 8314*273*0.002*90200
= 3.91*10-5 K mole/m2.s
for 1 hour NA= 3.91*10-5*3600 Kmolm2 =0.14076 K mole/hr.m2
To learn more about Molar Flux
https://brainly.com/question/23287548
#SPJ4
The correct question is,
calculate the amount of oxygen diffused in 1 hour under steady state conditions through a non-diffusing gas mixture of methane
seawater is not simply concentrated river water. which of the following is not true select one: a. hydrothermal activity removes some ions (e.g. mg2 ) and adds some other (e.g. ca2 ) b. volcanic gases add components such as chloride (cl-) and sulfate (so42-) c. biological activity such as formation of shells removes some ions (e.g. ca2 ) d. evaporation preferentially releases ions such as na and k into the atmosphere
The statement that is not true is: d. Evaporation preferentially releases ions such as Na and K into the atmosphere. Seawater is not simply concentrated river water because it undergoes various processes that modify its composition.
Explanation: When evaporation occurs, water molecules leave the surface and enter the atmosphere, but ions like Na and K generally do not evaporate with water. Instead, these ions remain in the seawater, making it saltier.
The other three statements are true and contribute to the differences between seawater and river water:
a. Hydrothermal activity removes some ions (e.g., [tex]Mg_2^+[/tex]) and adds others (e.g., [tex]Ca_2^+[/tex]): Hydrothermal vents at the seafloor release hot fluids, which can dissolve minerals from the Earth's crust. These fluids can remove ions like [tex]Mg_2^+[/tex] from the seawater and introduce new ions, such as [tex]Ca_2^+[/tex], altering the composition of seawater.
b. Volcanic gases add components such as chloride ([tex]Cl^-[/tex]) and sulfate ([tex]SO_{4}^{2-}[/tex]): When volcanoes erupt, they release gases that can dissolve in seawater. These gases contain components like chloride and sulfate, which contribute to the salinity of seawater.
c. Biological activity such as the formation of shells removes some ions (e.g., [tex]Ca_2^+[/tex]): Marine organisms like mollusks and corals extract ions like [tex]Ca_2^+[/tex] from seawater to build their shells and skeletons. This process helps to remove these ions from the seawater, altering its composition.
for more such question on concentrated
https://brainly.com/question/9363113
#SPJ11
buffer is made by combining 20.0 ml 0.250 m nh4cl with 30.0 ml 0.250 m nh3. a. calculate the ph of the buffer.
To calculate the pH of the buffer, we first need to find the concentration of NH4+ and NH3 in the solution.
The dissociation of NH4Cl in water is as follows:
NH4Cl → NH4+ + Cl-
Since NH4Cl is a strong electrolyte, it dissociates completely in water, and the concentration of NH4+ in solution is the same as the initial concentration of NH4Cl:
[ NH4+ ] = 0.250 M
The reaction between NH3 and water is as follows:
NH3 + H2O ⇌ NH4+ + OH-
The base dissociation constant for ammonia (Kb) is 1.8 x 10^-5. We can use this value to find the concentration of NH3 and OH- in the solution.
Let x be the concentration of NH3 in the solution. Then, the concentration of NH4+ will be 0.250 M - x (since NH4+ and NH3 are in equilibrium). The concentration of OH- can be calculated using the Kb value:
Kb = [ NH4+ ][ OH- ] / [ NH3 ]
1.8 x 10^-5 = (0.250 M - x) x / (0.250 M)
x = 0.0564 M (concentration of NH3)
[ OH- ] = Kb x / [ NH4+ ]
[ OH- ] = (1.8 x 10^-5) (0.0564 M) / (0.250 M - 0.0564 M)
[ OH- ] = 4.37 x 10^-6 M
Since this is a basic solution, the pH can be calculated using the pOH equation:
pOH = -log [ OH- ]
pOH = -log (4.37 x 10^-6)
pOH = 5.36
The pH can be found by subtracting the pOH from 14:
pH = 14 - pOH
pH = 14 - 5.36
pH = 8.64
Therefore, the pH of the buffer is 8.64.
To know more about buffer solution, visit the link given below:
https://brainly.com/question/24262133
#SPJ4
should a buffers ph increase, decrease, or be unchanged by the addition of water? explain your answer
The pH of the buffer solution is relatively stable and does not change significantly upon the addition of small amounts of acid or base.
The pH of a buffer solution is determined by the equilibrium between a weak acid and its conjugate base or a weak base and its conjugate acid. When water is added to a buffer solution, the concentration of the buffer components does not change, and the ratio of the weak acid and its conjugate base or weak base and its conjugate acid remains constant. Therefore, the pH of the buffer solution remains unchanged.
However, the addition of large amounts of water can dilute the buffer solution and cause a slight increase in pH due to the decrease in concentration of the buffer components. This effect is more pronounced in weaker buffer solutions. Therefore, in general, the pH of a buffer solution will remain relatively stable upon the addition of small amounts of water, but may increase slightly with the addition of large amounts of water.
To know more about the Buffer, here
https://brainly.com/question/30890340
#SPJ4
You have a 0.05 M solution of sulfuric acid. What is the concentration in grams per liter (or dm3)?
The sulfuric acid solution has a concentration of 4.904 grams per liter (or dm3).
What is sulphuric acid?With the chemical formula H₂SO₄, sulfuric acid is a potent, colorless, odorless, and extremely corrosive mineral acid. It is also referred to as "vitriol oil." An extremely significant industrial chemical, sulfuric acid is used to make a variety of goods, including fertilizers, detergents, pigments, dyes, medicines, and explosives.
The formula below can be used to get the molar mass of sulfuric acid (H₂SO₄):
H₂SO₄'s molar mass is calculated as follows: 2 × (1.008 g/mol) + 32.06 g/mol + 4(16.00 g/mol) = 98.08 g/mol.
Hence, 98.08 g equals one mole of sulfuric acid.
We must multiply the molarity by the sulfuric acid's molar mass in order to translate the molarity (0.05 M) to grams per liter:
4.904 g/L = 0.05 mol/L x 98.08 g/mol
As a result, the sulfuric acid solution has a concentration of 4.904 grams per liter (or dm³).
To know more about sulphuric acid, visit:
brainly.com/question/12986533
#SPJ1
determine whether each melting point observation corresponds to a pure sample of a single compound or to an impure sample with multiple compounds. wide melting point range choose... narrow melting point range choose... experimental melting point is below literature value choose... experimental melting point is close to literature value
Wide melting point range: Impure sample
Narrow melting point range : Pure sample
A wide melting point range is known as the range of more than 5°C which usually indicates that the substance is impure. A narrow melting point range is known as the range of 0.5 to 2°C which usually indicates that the substance is fairly pure. It explains the impurities effect on the Melting Point. A wide melting point is used as a indicator of purity as there is a general lowering and broadening of the melting range as impurities increase.
A narrow melting point range is defined as the range which suggests a pure sample with one compound when a wide melting point range suggests an impure sample with multiple compounds. Through the wide melting point and narrow melting point range observation of a sample it can provide an indication of whether the sample is pure or impure with multiple compounds present.
To learn more about wide melting point range
https://brainly.com/question/29222755
#SPJ4
which statement about a chemical equilibrium is correct? group of answer choices the reverse reaction is faster than the forward reaction the forward reaction is faster than the reverse reaction forward and reverse reactions happen at equal rates no reactions take place at equilibrium
Option C). The correct statement about a chemical equilibrium is that "forward and reverse reactions happen at equal rates."
What is a chemical equilibrium, A chemical equilibrium refers to a dynamic process that happens when the rate of the forward reaction is equal to the rate of the reverse reaction. In this case, the concentration of reactants and products will remain constant, and the system is said to be in chemical equilibrium.
The chemical equilibrium is represented by the following equation. aA + bB ↔ cC + dD
Which statement about a chemical equilibrium is correct, The statement about a chemical equilibrium that is correct is that forward and reverse reactions happen at equal rates.
This means that the concentration of products and reactants will remain constant. If the concentration of reactants and products changes, the reaction system will respond to reach the state of equilibrium.
For more such questions on chemical equilibrium
brainly.com/question/16878977
#SPJ11
Please answer briefly
Answer:
Explanation:
a
d
5 Aluminium and iron oxide (Fe₂O3) react together to produce aluminium oxide
(Al2O3). The equation for the reaction is:
Tran oxid
2:2
241+Fe2O3Al2O3+2Fe
Relative atomic masses (A): Al = 27,0=16, Fe=56.
Calculate the mass of iron that is produced by reacting 20 g of iron oxide with
an excess of aluminium.
Maths skills links
You may also need to convert the mass of a substance into an amount in moles
(and vice versa) when using moles to balance equations.
Aluminum and iron oxide (Fe₂O₃) react together to produce aluminum oxide, 20 g of Fe₂O3 will produce 14 g of Fe.
What is meant by oxide?Oxide is a category of chemical compound that has one or more oxygen atoms and also another element in its composition.
2Al + Fe₂O₃ -> Al₂O₃ + 2Fe
Molar mass of Fe₂O₃ is: (2 x 56) + (3 x 16) = 160 g/mol
moles of Fe2O3 = 20 g / 160 g/mol = 0.125 mol
As the reaction is carried out with an excess of Al, we can assume that all of the Fe₂O₃ is consumed and that 2 moles of Fe are produced for every mole of Fe₂O₃
moles of Fe = 2 x moles of Fe₂O₃ = 0.25 mol
Molar mass of Fe is : 56 g/mol
So the mass of Fe produced is:
mass of Fe = moles of Fe x molar mass of Fe
mass of Fe = 0.25 mol x 56 g/mol = 14 g
Therefore, 20 g of Fe₂O₃ will produce 14 g of Fe.
To know more about oxides, refer
https://brainly.com/question/30368235
#SPJ1
someone help pls simplee
The compounds are;
A - methane
B - nitrogen
C - water
What is a molecular model?A molecular model is a physical or virtual representation of a molecule, which shows the arrangement of its atoms and the nature of the chemical bonds between them.
Molecular models are used to visualize the three-dimensional structure of molecules and to understand their chemical and physical properties.
Molecular models are used in many fields of science, including chemistry, biochemistry, and materials science. They are used to study the properties and behavior of molecules in different environments and to design new molecules with specific properties for use in various applications.
Learn more about molecular models:https://brainly.com/question/30545244
#SPJ1
calculate the ph of the resulting solution when 40.0 ml of the 0.25m sodium hydroxide is added to 50.0 ml of 0.040 m nitric acid
The pH of the resulting solution = 1.05
an assessment of the acidity or basicity of an item or solution. Calculations are made for pH on a range of 0 to 14. On this scale, a pH of 7 indicates neutral, which means that it is neither acidic nor basic. The pH scale ranges from greater than 7 for more basic chemicals to less than 7 for more acidic ones. You need to know the hydronium ion concentration in moles per liter to determine the pH of an aqueous solution (molarity).
Given,
Volume of NaOH V1 = 40ml
M1 = 0.04m
Volume of nitric acid V2 = 50
M2 = 0.04M
[tex]concentration ofH^{+} = [H ^{+} ]= \frac{M1V1-M2V2}{V1+V2}[/tex]
[tex]\frac{(40)(0.25)-(50)(0.04) }{40+50}[/tex]
= 10-2/90
= 8/90
pH → -log[H+}
= [tex]Log_{10}[ \frac{8}{90}][/tex]
pH = -(-1.051)
pH = 1.05
Learn more about pH here :
https://brainly.com/question/30258439
#SPJ4
what is the percent yield of the given reaction if 40. g magnesium reacts with excess nitric acid to produce 1.7 g hydrogen gas? mg 2hno3⟶mg(no3)2 h2
The percent yield of the given reaction is 71.11%.
Given, Magnesium (Mg) reacts with excess nitric acid (HNO3) to produce Magnesium nitrate (Mg(NO3)2) and hydrogen gas (H2).
[tex]Mg + 2HNO3 → Mg(NO3)2 + H2[/tex]
Molar mass of Mg = 24.31 g/mol
Molar mass of HNO3 = 63.01 g/mol
Molar mass of Mg(NO3)2 = 148.31 g/mol
Molar mass of H2 = 2 g/mol
The balanced chemical equation shows that 1 mol of Mg produces 1 mol of H2 gas.
So, the amount of hydrogen gas produced = 1.7 g
Moles of Mg reacted = mass/Mr = 40/24.31 = 1.65 moles
From the stoichiometric coefficients of the balanced chemical equation, 1 mole of Mg yields 1 mole of H2.
So, moles of H2 expected = 1.65 moles
Mass of H2 expected = 1.65 moles x 2 g/mol = 3.3 g
The percent yield of a reaction is the actual yield of the product obtained divided by the theoretical yield multiplied by 100.
So, Percent yield = (actual yield / theoretical yield) x 100Actual yield = 1.7 g
Theoretical yield = 3.3 g
Therefore, the percent yield of the given reaction is 71.11%.
To know more about percent yield refer to-
brainly.com/question/17042787#
#SPJ11
when a high energy electron impact molecule m in the ionization chamber what type of species is initally produced
A radical cation is created in the ionization chamber when a high energy electron impacts molecule M.
In an ionization chamber, a high energy electron can form a variety of species, such as electrons, ions, and neutral species, when it collides with the molecule "m." Ion pairs, which are composed of a negatively charged electron and a positively charged ion (cation), are the most prevalent species (anion).
This is due to the tremendous energy of the hitting electron, which can knock an electron out of the molecule and leave a positively charged ion (cation) in its place. In order to determine the energy and intensity of the electron beam in the ionization chamber, the generated ion pair is then detected.
Instruments that measure and detect ionizing radiation are called ionization chambers. Ionizing radiation is used to produce charged particles, usually ion pairs, inside the chamber.
To know about ionization
https://brainly.com/question/1602374
#SPJ4
The complete question is
When high energy electron impacts molecule M in the ionization chamber, what type of species initially produced?