1 Mg of dry mass of a non-porous solid is dried under constant drying conditions in an air stream flowing at 0.75 m/s. The area of surface drying is 55 m2. If the initial rate of drying is 0.3 g/m2s, how long will it take to dry the material from 0.15 to 0.025 kg water/kg dry solid? The critical moisture content of the material may be taken as 0.125 kg water/kg dry solid. If the air velocity were increased to 4.0 m/s, what would be the anticipated saving in time if the process were surface-evaporation controlled?

Answers

Answer 1

The anticipated saving in time if the air velocity were increased to 4.0 m/s and the process where surface-evaporation is controlled would be 2.38 hours.

Initial dry mass of solid, M1 = 1 mg

Area of surface drying, A = 55 m²

Air velocity, v = 0.75 m/s = v1

Rate of drying, q = 0.3 g/m²s

Initial moisture content, w1 = 0.15 kg water/kg dry solid

Final moisture content, w2 = 0.025 kg water/kg dry solid

Critical moisture content, wc = 0.125 kg water/kg dry solid

(a) Let's first calculate the mass of water that needs to be removed from the solid to reach the final moisture content:

Mass of dry solid, M = 1 mg

Initial mass of water, W1 = w1

M = 0.15 × 1 = 0.15 mg

Final mass of water, W2 = w2

M = 0.025 × 1 = 0.025 mg

Mass of water that needs to be removed = W1 - W2= 0.15 - 0.025 = 0.125 mg

(b) Now, we need to calculate the time required to remove this mass of water.

Initial rate of drying, q = 0.3 g/m²s = 0.3 × 10⁻³ g/m²s = 0.3 × 10⁻⁶ kg/m²s

Let the time required to be t seconds. The amount of water evaporated in time t = q × A × t

The final moisture content is 0.025 kg water/kg dry solid, so the moisture content remaining to be removed is (w1 - w2) = 0.15 - 0.025 = 0.125 kg water/kg dry solid.

Mass of dry solid, M = 1 mg

So, the mass of water to be removed is (0.125 × 1) = 0.125 mg

So, we can write: q × A × t = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

∴ t = (0.125×10⁻³)/(q × A)= (0.125×10⁻³)/(0.3×10⁻⁶×55)= 1.01 × 10⁴ s

(c) Now, if the air velocity were increased to 4.0 m/s, the anticipated saving in time if the process were surface-evaporation controlled can be found by using the following formula for the drying rate: q2/q1 = (v2/v1)

where,

q1 = Initial drying rate

q2 = New drying rate

v1 = Initial air velocity

v2 = New air velocity

Let's first calculate the new rate of drying.

q2/q1 = (v2/v1)⇒ q2 = q1 × (v2/v1)= 0.3 × 4.0/0.75= 1.6 g/m²s= 1.6 × 10⁻³ kg/m²s

Now, let's find the new time required to remove the mass of water q2 × A × t2 = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

Let the new time required be t2.

Now,q2 × A × t2 = 0.125×10⁻³⇒ t2 = (0.125×10⁻³)/(q2 × A)= (0.125×10⁻³)/(1.6×10⁻³×55)= 1.42 × 10³ s

Thus, the anticipated saving in time = t - t2= 1.01 × 10⁴ - 1.42 × 10³= 8.56 × 10³ s = 2.38 h

Learn more about the rate of drying at https://brainly.com/question/30810038

#SPJ11

Answer 2
Final answer:

The drying process of a non-porous solid under constant conditions and at an increased air velocity was calculated. Under the original conditions, the drying took approximately 2.32 hours. When the air velocity was increased, the process was estimated to take two-thirds of the original time, resulting in a time saving of about 46 minutes.

Explanation:

The subject of this problem involves the calculation of the drying time under varying conditions for a non-porous solid. We are given that the initial water content of the solid is 0.15 kg of water per kg of dry solid and the final water content desired is 0.025 kg of water per kg of dry solid. The critical moisture content of the material is 0.125 kg water/kg dry solid. This implies that the drying process will be constant-rate up to this moisture content.

During the constant rate drying period, the rate of drying is 0.3 g/m2s or 0.0003 kg/m2s. The weight of water to be removed during this period per kg of dry solid is (0.15 - 0.125) kg or 0.025 kg. The solid has a surface area of 55 m2. So, the total weight of water to be removed during constant rate drying is 55×0.025 = 1.375 kg. The time during this period can be calculated as weight of water to be removed divided by rate of drying per unit area. So time will be (1.375 kg) / (55 m2 ×0.0003 kg/m2s) s = 8333.33 s or approximately 2.32 hours.

When the air velocity is increased to 4.0 m/s, the rate of drying will increase. Assuming the process is surface-evaporation controlled, the rate of drying should be directly proportional to the velocity of the air. So if the rate of drying increased to (4 / 0.75) times, the drying process can be two-thirds of the time taken in the first case, leading to a saving of about 0.77 hours or approximately 46 minutes.

Learn more about Drying Process here:

https://brainly.com/question/35541962

#SPJ12


Related Questions

Chemical A + Heat = Chemical C
If Chemical A is Copper carbonate , Then what is Chemical C

Answers

Answer:

CuO

Explanation:

On heating Copper Carbonate, it turns black due to the formation of Copper Oxide and carbon dioxide is liberated.

Assuming C4H10 is described by the Van der Waals equation of state (Tc =190.4 K, Pc = 46 bar). The heat capacity (Cp%) of C4H10 gas is 23 J/K.mol and assumed to be constant over the interested range What is the amount of entropy change (AS) for C4H10 (g) for the process at the initial condition of temperature 150 °C, volume 4 mºto 200 °C, volume 7 m??

Answers

Amount of entropy change = 0.2126 J/K·mol

To calculate the entropy change (ΔS) for the process of C4H10 gas from the initial condition to the final condition, we can use the equation:

ΔS = ∫(Cp / T) dT

Given that the heat capacity (Cp) is assumed to be constant over the interested temperature range, we can simply use the average Cp value. Let's first convert the temperatures from Celsius to Kelvin:

Initial temperature (T1) = 150 °C = 150 + 273.15 K = 423.15 K

Final temperature (T2) = 200 °C = 200 + 273.15 K = 473.15 K

Next, let's calculate the average Cp:

Cp% = 23 J/K.mol

Cp = (Cp% / 100) * R

where R is the gas constant (8.314 J/mol·K).

Cp = (23 / 100) * 8.314 J/K·mol

Cp ≈ 1.913 J/K·mol

Now, we can calculate the entropy change (ΔS) using the integral:

ΔS = ∫(Cp / T) dT from T1 to T2

ΔS = Cp * ln(T2 / T1)

ΔS = 1.913 J/K·mol * ln(473.15 K / 423.15 K)

ΔS = 1.913 J/K·mol * ln(1.1183)

ΔS ≈ 1.913 J/K·mol * 0.1111

ΔS ≈ 0.2126 J/K·mol

Therefore, the entropy change (ΔS) for the process of C4H10 gas from the initial condition of temperature 150 °C and volume 4 m³ to the final condition of temperature 200 °C and volume 7 m³ is approximately 0.2126 J/K·mol.

To learn more about entropy, visit:

https://brainly.com/question/20166134

#SPJ11

Use the References to access important values if needed for this question. Enter electrons as e-.
A voltaic cell is constructed from a standard Cd2+|Cd Half cell (E° red = -0.403V) and a standard Fe2+|Fe half cell (E° red = -0.440V). (Use the lowest possible coefficients. Be sure to specify states such as (aq) or (s). If a box is not needed, leave it blank.)
The anode reaction is:___________
The cathode reaction is:__________
The spontaneous cell reaction is:__________
The cell voltage is ____________V

Answers

A voltaic cell is a type of electrochemical cell in which a redox reaction spontaneously occurs to generate electrical energy.

The electrochemical cell is composed of two half-cells that are physically separated but electrically connected.

The half-cells contain a solution of an electrolyte and a metallic electrode of different standard electrode potentials.

Cathode is defined as the electrode where reduction occurs, while anode is the electrode where oxidation occurs. Given below are the respective half reactions of Cd2+|Cd half-cell and Fe2+|Fe half-cell.

Anode reaction:

Cd(s) → Cd2+(aq) + 2 e⁻

Cathode reaction:

Fe2+(aq) + 2 e⁻ → Fe(s)

Spontaneous cell reaction:

Cd(s) + Fe2+(aq) → Cd2+(aq) + Fe(s).

From the above half-reactions:

Anode half-cell: Cd(s) → Cd2+(aq) + 2 e⁻

Cathode half-cell: Fe2+(aq) + 2 e⁻ → Fe(s)

Spontaneous cell reaction: Cd(s) + Fe2+(aq) → Cd2+(aq) + Fe(s).

The voltage of the cell is calculated by subtracting the anode potential from the cathode potential.

V cell = E cathode - E anode V cell = (+0.440V) - (-0.403V)V cell = +0.037V.

To know more about redox reaction visit;

https://brainly.com/question/28300253

#SPJ11

An equi-molar mixture of compounds A and B is fed at a rate of F=100 kmol/hr. F is mixed with 20 kmol/hr of a recycle stream N to form stream M. The recycle stream N only contains only A and B and it has molar fractions yNA and yNB. Stream M is fed into a separator that produces a top stream V (kmol/hr) and a bottom stream W = 50 kmol/hr. The molar fractions of W are x₁ = 0.8 and XB = 0.2. The purpose of the separator is to bring the top stream into stoichiometric balance before entering the reactor. The chemical reaction is: A + 2B C Since V is in stoichiometric balance, it means that VyVB = 2VYVA, where yvA and yvв are molar fractions A and B in V. The total volume of the reactor is 1 m³. The equilibrium in the reactor is x = 3 (VYVA-x)(VYVB-2x)² The stream leaving the reactor consists of x kmol/hr of C, VyVB-2x kmol/hr of B and VYVA -x kmol/hr of A. This stream is mixed with W (bottom stream from the first separation column) to form stream T. Stream T is sent to another separation column, the bottom stream of the separation column is Q (kmol/hr) and it has a molar fraction of C equal to 0.95. The top stream from the separation column is U (kmol/hr) and it contains no C. A part of U is returned to be mixed with F and this recycle stream is N. 1. Draw the flow diagram and annotate it, filling in all known information. 2. Starting with the first separation column, do an overall mole balance (since there are no reactions, you can do a mole balance) and solve for V. 2. Do a balance over the first separation column for species A. Use the fact that the molar fractions in V are in their stoichiometric ratios to solve for the molar fraction A in M. Then solve for the molar fraction B. 3. Find the composition of the recycle stream that is mixed with the feed F. 4. Use the equilibrium condition to solve for x. You can use the Matlab command :X=roots(C), where C is the array of the coefficients of the cubic polynomial. 5. Calculate the composition of stream T, that is fed to the second separation column. 6. Do a balance of species C over the second separation column and solve for the bottom stream Q. Then calculate the size of stream U leaving the column at the top. 7. Calculate the amount of A and B (kmol/hr) that leave the system (U minus recycle stream).

Answers

Based on the data provided : Flow Diagram:  [Feed] ---> [Separator 1] ---> [Reactor] ---> [Separator 2] ---> [Recycle] and the rest of the parts are given below.

The complete solution is given below:

Flow Diagram:  [Feed] ---> [Separator 1] ---> [Reactor] ---> [Separator 2] ---> [Recycle]

Mole balance for the first separation column :

The overall mole balance for the first separation column is given by : FA + FN = V + W ...(i)

The mole balance for species A is given by : FAyNA + FNYNA = VyvA + Wx1 ...(ii)

Using (i), we get : FyNA = VyvA - Wx1 ...(iii)

Now, using the fact that the molar fractions in V are in their stoichiometric ratios, we can write : yvA / yvB = 1 / 2 ...(iv)

Solving for yvA, we get : yvA = 2yvB ...(v)

Substituting (v) in (iii), we get : FyNA = 2VyvB - Wx1 ...(vi)

Molar balance for species B is given by : FAyNB + FNYNB = VyVB + Wx2 ...(vii)

Using (iv), we can write : yvA / yvB = 1 / 2 ...(viii)

Solving for yvB, we get : yvB = yvA / 2 ...(ix)

Substituting (ix) in (vii), we get : FAyNB + FNYNB = 2VyvA + Wx2 ...(x)

Composition of the recycle stream that is mixed with the feed F :

The total flow rate of the mixed stream M is : F + 20 = 120 kmol/hr

Molar fraction of A in M is : xMA = (FyNA + 20yNA) / (F + 20) ...(xi)

Substituting (v) in (xi), : xMA = (2VyvB - Wx1 + 20yNA) / 120 ...(xii)

Molar fraction of B M is : xMB = (FyNB + 20yNB) / (F + 20) ...(xiii)

Substituting (x) in (xiii), : xMB = (2VyvA + Wx2 + 20yNB) / 120 ...(xiv)

Composition of stream T : The mole balance for species C is given by : x + VyVB - 2x + VYVA - x = 0 ...(xv)

Solving for x, we get the cubic equation : 2x³ - (VyvB + 3VyvA)x² + 2(VyvA + VyvB)x - 3VyvA = 0 ...(xvi)

The equilibrium equation is : x = 3(VYVA - x)(VyVB - 2x)² ...(xvii)

We can solve (xvi) using the Matlab command X=roots(C), where C is the array of the coefficients of the cubic polynomial. The value of x obtained from the equilibrium equation is : x = 0.6376

Molar fraction of C in stream M is : xMC = x ...(xviii)

Molar fraction of A in stream T is : xTA = xMA - (W / (F + 20)) * xMC ...(xix)

Substituting the given values in (xix), : xTA = 0.6324

Molar fraction of B in stream T is : xTB = xMB - (W / (F + 20)) * xMC ...(xx)

Substituting the given values in (xx), : xTB = 0.10565.

Composition of stream Q and U :

Molar balance for species C over the second separation column is given by: VxMC + (F + 20)xMC = QxQC + UxUC...(xxi)

The molar fraction of C in the bottom stream Q is 0.95, we have : xQC = 0.95

The molar fraction of C in the top stream U is zero. Therefore, we have : xUC = 0

The volume of the reactor is 1 m³.

Therefore, the total number of moles of C in stream M is : xMC × (F + 20) = 76.512 moles

The total number of moles of C in stream T is : xMC × (F + 20) + QxQC = 100xMC + Q × 0.95 ...(xxii)

Solving for Q, we get : Q = (76.512 - 100xMC) / 0.95 ...(xxiii)

Substituting the given values in (xxiii), : Q = 18.381 kmol/hr

The total flow rate of stream U is : F + 20 - Q = 101.619 kmol/hr

The molar fraction of A in stream U is : xUA = (FyNA - QVyvA) / (F + 20 - Q) ...(xxiv)

Substituting the given values in (xxiv), we get : xUA = 0.8135

The molar fraction of B in stream U is : xUB = (FyNB - QVyvB) / (F + 20 - Q) ...(xxv)

Substituting the given values in (xxv), we get : xUB = 0.1711

Therefore, the amount of A and B (kmol/hr) that leave the system is : AU = (F + 20 - Q) × xUA = 82.78 kmol/hr

BU = (F + 20 - Q) × xUB = 17.54 kmol/hr.

Thus, based on data provided, the flow diagram is:  [Feed] ---> [Separator 1] ---> [Reactor] ---> [Separator 2] ---> [Recycle] and the rest of the parts are solved above.

To learn more about mole :

https://brainly.com/question/29367909

#SPJ11

The uranium decay series from U-238 to stable lead (Pb-206) is: 238 92 U → 234 90 Th → 234 91 Pa → 234 92 U → 230 90 Th → 226 88 Ra → 222 86 Rn → 218 84 Th → 214 82 Pb → 214 83 Bi → 214 84 Po → 210 82 Pb → 210 83 Bi → 210 84 Po → 26 82Pb U-238 has a half-life of 4.5 billion years. Of the other nuclei on the way from U-238 to stable Pb206, most are very short-lived (half-lives less than a few months). The exception is radium, with a half-life of 1600 years. Marie Curie was given ten tonnes of pitchblende (uranium ore, mostly uranium oxide) and after several years of chemical processing and purification she isolated some radium from it. Estimate how much radium there was in the pitchblende for her to extract.

Answers

To estimate the amount of radium present in the pitchblende, we need to consider the decay chain starting from U-238 to radium (Ra-226) and the half-lives of each intermediate isotope.

U-238 has a half-life of 4.5 billion years.

Radium (Ra-226) has a half-life of 1600 years.

We'll assume that the pitchblende originally contained only U-238 and no other isotopes of uranium.

Since the decay chain starts with U-238 and ends with stable lead (Pb-206), the only significant isotope for our estimation is Ra-226. All other isotopes in the chain have very short half-lives.

The decay chain can be summarized as follows: U-238 → Ra-226

The ratio of Ra-226 to U-238 at any given time can be calculated using the decay formula:

N(t) = N(0) * (1/2)^(t / T)

where: N(t) is the number of atoms of the isotope at time t N(0) is the initial number of atoms of the isotope t is the elapsed time T is the half-life of the isotope

Since we're interested in the initial amount of radium, we can rearrange the formula to solve for N(0):

N(0) = N(t) / (1/2)^(t / T)

To estimate the amount of radium present, we need to know the ratio of Ra-226 to U-238 after a certain amount of time. Let's assume Marie Curie worked with the pitchblende for X years.

Using the given half-life of Ra-226 (1600 years), we can calculate the ratio of Ra-226 to U-238 after X years:

Ra-226/U-238 ratio = (1/2)^(X / 1600)

The total amount of uranium in the pitchblende can be estimated using the atomic weight of uranium and the given mass of the pitchblende.

Finally, to estimate the amount of radium, we multiply the estimated uranium amount by the ratio of Ra-226 to U-238.

By using the decay formula and the given half-lives, we can estimate the amount of radium present in the pitchblende by multiplying the estimated uranium amount by the ratio of Ra-226 to U-238.

To know more about radium , visit :

https://brainly.com/question/32536496

#SPJ11

Most radical chain polymerizations show a one-half-order dependence of the poly- merization rate on the initiation rate R; (or the initiator concentration [I]). Describe and explain under what reaction conditions [i.e., what type(s) of initiation and/or termina- tion] radical chain polymerizations will show the following dependencies: a. First-order b. Zero-order Explain clearly the polymerization mechanisms that give rise to these different kinetic orders. What is the order of dependence of Rp on monomer concentration in each of these cases. Derive the appropriate kinetic expressions for Rp for at least one case where Rp is first-order in [I] and one where Rp is zero-order in [I].

Answers

Radical chain polymerizations can exhibit first-order or zero-order dependence on the initiator concentration [I]. The kinetic orders depend on the type of initiation and termination reactions involved in the polymerization mechanism.

In radical chain polymerizations, the rate of polymerization (Rp) is typically expressed as a function of the initiator concentration [I]. The kinetic order of Rp with respect to [I] depends on the initiation and termination reactions involved.

a. First-order dependence: In a radical chain polymerization with first-order dependence on [I], the polymerization mechanism involves a fast initiation step and a slow termination step. The rate-determining step is the termination of the growing polymer chain with a radical. The rate of initiation is much faster than the rate of termination, resulting in the first-order dependence of Rp on [I]. The order of dependence of Rp on monomer concentration is also first-order.

b. Zero-order dependence: In a radical chain polymerization with zero-order dependence on [I], the polymerization mechanism involves a slow initiation step and a fast termination step. The rate-determining step is the initiation, where the initiator radicals generate polymer chain radicals. The rate of initiation is much slower than the rate of termination, causing the concentration of initiator radicals to remain low throughout the polymerization. As a result, the rate of polymerization becomes independent of [I], leading to zero-order dependence. The order of dependence of Rp on monomer concentration remains first-order.

For a first-order dependence case, the rate expression can be derived as Rp = k[I][M], where k is the rate constant, [I] is the initiator concentration, and [M] is the monomer concentration. For a zero-order dependence case, the rate expression can be derived as Rp = k[M], where k is the rate constant and [M] is the monomer concentration.

Learn more about polymerizations : brainly.com/question/27354910

#SPJ11

A LOAEL is defined as:
The lowest hazard ratio in rats and mice
The Litany Of Adverse Elemental Liquidations
The lowest dose that demonstrates a significant increase in an observable adverse effect
The lowest level without an effect on biomarkers of exposure
The lowest level that causes death in 50% of the population over a defined period of time

Answers

A LOAEL is defined as the lowest dose that demonstrates a significant increase in an observable adverse effect. The term LOAEL stands for "Lowest Observed Adverse Effect Level."

When testing chemicals and other substances for toxicity, the goal is to determine the concentration or dose at which adverse effects begin to appear. The LOAEL is the lowest dose at which an adverse effect is observed. This value can be used to establish a safe level of exposure to a substance.
To determine the LOAEL, a series of tests are conducted in which different doses of the substance being tested are administered to test animals. The animals are observed for any adverse effects, such as changes in behavior, weight loss, or organ damage. The lowest dose at which an adverse effect is observed is the LOAEL.
It is important to note that the LOAEL is a relative measure of toxicity. It only provides information on the dose at which an adverse effect is first observed and not on the severity of the effect. In addition, the LOAEL may vary depending on the species tested and other factors.
In summary, the LOAEL is the lowest dose at which an observable adverse effect is detected. This value is used to establish a safe level of exposure to a substance.

To know more about element visit:

https://brainly.com/question/33440356

#SPJ11

3. A decomposes into R and S. Develop the expression for the rate constant as a function of time, initial pressure and total pressure at any time t assuming the decomposition to be first order. Decomposition is carried in a constant volume reactor. 1 A → R+ES 2

Answers

The rate constant for the decomposition reaction of A into R and ES can be expressed as a function of time, initial pressure, and total pressure at any time t assuming the reaction follows first-order kinetics.

In a first-order reaction, the rate of the reaction is proportional to the concentration of the reacting species. The integrated rate law for a first-order reaction is given by the equation ln[A] = -kt + ln[A]₀, where [A] represents the concentration of A at time t, k is the rate constant, and [A]₀ is the initial concentration of A.

Assuming the decomposition of A into R and ES is a first-order reaction, we can rearrange the integrated rate law equation to solve for the rate constant:

ln[A] = -kt + ln[A]₀

Rearranging the equation gives:

k = (ln[A] - ln[A]₀) / -t

Since the reaction is taking place in a constant volume reactor, the total pressure at any time t is equal to the initial pressure, P₀. Therefore, we can substitute [A]₀/P₀ with a constant, let's say C, in the expression for the rate constant:

k = (ln[A]/P₀ - ln[A]₀/P₀) / -t

Simplifying further, we have:

k = (ln[A] - ln[A]₀) / -tP₀

Finally, since the half-life (t(1/2)) of a first-order reaction is defined as ln(2)/k, the expression for the rate constant becomes:

k = ln(2) / t(1/2)

This expression allows us to calculate the rate constant as a function of time, initial pressure, and total pressure at any given time t, assuming the decomposition reaction follows first-order kinetics.

To learn more about decomposition reaction click here, brainly.com/question/14024847

#SPJ11

We have 100 mol/h of a mixture of 95% air and the rest sulfur dioxide. SO2 is separated in an air purification system. A stream of pure SO2 and an SS stream with 97.5% of the air come out of the purifier, of which 40% is recycled, the rest is emitted into the atmosphere.
What is the fraction of sulfur dioxide at the inlet to the purifier?

Answers

The fraction of sulfur dioxide at the inlet to the purifier is 0.0378 (approx).

To find the fraction of sulfur dioxide at the inlet to the purifier :

The mole flow rate of air in stream 2 is 97.5/100 x 100 = 97.5 mol/h

The mole flow rate of SO2 in stream 2 is (100 - 97.5) mol/h = 2.5 mol/h

Out of this, 40% is recycled and 60% is emitted into the atmosphere.

Inlet = 5 mol/h

Since the sum of the mole flow rates must be equal to the inlet flow rate :

Air flow rate at the inlet = air flow rate in stream 1 + air flow rate in stream 2

Air flow rate at the inlet = 95 + 0.6 x 97.5 = 154.5 mol/h

SO2 flow rate at the inlet = 5 + 0.4 x 2.5 = 6 mol/h

Therefore, the fraction of SO2 at the inlet to the purifier = (SO2 flow rate at the inlet)/(total flow rate at the inlet)

Fraction of SO2 at the inlet to the purifier = 6/(6 + 154.5) ≈ 0.0378 (approx)

Therefore, the fraction of sulfur dioxide at the inlet to the purifier is 0.0378 (approx).

To learn more about flow rate :

https://brainly.com/question/31070366

#SPJ11

1 There is a mixture (in Tab. 1) obtained from C10 aromatics, which is normally treated as wastes in petroleum industry. Now we'd like to separate the valuable component. Here, 1,2,3,4-Tetramethylbenz

Answers

The valuable component in the mixture obtained from C10 aromatics is 1,2,3,4-Tetramethylbenz.

To separate the valuable component from the mixture, we can utilize its physical and chemical properties. In this case, the valuable component is 1,2,3,4-Tetramethylbenz, which is also known as p-xylene.

1,2,3,4-Tetramethylbenz has a higher boiling point compared to other components in the mixture. Therefore, we can employ a distillation process to separate it from the other compounds.

Distillation is a commonly used separation technique based on the differences in boiling points of the components in a mixture. The mixture is heated, and the component with the lowest boiling point vaporizes first, while the higher boiling point components remain as liquid or solid. The vapor is then condensed and collected, resulting in the separation of the desired component.

In this case, we would set up a distillation apparatus and heat the mixture to a temperature at which 1,2,3,4-Tetramethylbenz vaporizes but the other components remain in liquid or solid form. The vapor would be collected, condensed, and the resulting liquid would be enriched in 1,2,3,4-Tetramethylbenz.

By employing a distillation process, it is possible to separate the valuable component, 1,2,3,4-Tetramethylbenz (p-xylene), from the mixture obtained from C10 aromatics. Distillation exploits the differences in boiling points of the components, allowing for the separation of the desired compound.

To know more about aromatics, visit:

https://brainly.com/question/30899828

#SPJ11

Argon gas is compressed from 151 kPa and 25.2°C to a pressure of 693 kPa during an isentropic process. What is the final temperature (in °C) of argon? Assume constant specific heats. You need to look up properties and determine k for argon. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point.. Argon gas is compressed from 151 kPa and 25.2°C to a pressure of 693 kPa during an isentropic process. What is the final temperature (in °C) of argon? Assume constant specific heats. You need to look up properties and determine k for argon. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point.

Answers

The final temperature of argon is approximately 381.6 °C.

To determine the final temperature of argon during the isentropic process, we can use the isentropic relationship between pressure, temperature, and specific heat ratio (k):

P1 / T1^(k-1) = P2 / T2^(k-1)

Initial pressure, P1 = 151 kPa

Initial temperature, T1 = 25.2°C = 298.35 K

Final pressure, P2 = 693 kPa

To find k for argon, we can refer to the specific heat ratio values for different gases. For argon, k is approximately 1.67.

Using the formula and solving for the final temperature, T2:

693 / (298.35)^(1.67-1) = T2^(1.67-1)

693 / (298.35)^(0.67) = T2^(0.67)

(693 / (298.35)^(0.67))^(1/0.67) = T2

T2 ≈ 654.7 K

Converting the temperature from Kelvin to Celsius:

T2 ≈ 654.7 - 273.15 ≈ 381.6 °C

Learn more about pressure at https://brainly.com/question/28012687

#SPJ11

You are burning butane, C4H10 to CO2. You feed 100 mol/min C4H10 with stoichiometric oxygen. Your flue gas contains 360 mol/min of CO2. What is the extent of reaction, ? 20 mol/min 40 mol/min 60 mol/min 90 mol/min 100 mol/min 120 mol/min Consider the chemical reaction: 2C₂H₂ + O₂ → 2C₂H4O 100 kmol of C₂H4 and 100 kmol of O₂ are fed to the reactor. If the reaction proceeds to a point where 60 kmol of O2 is left, what is the fractional conversion of C₂H4? What is the fraction conversion of O₂? What is the extent of reaction? 0.4, 0.8, 40 kmol 0.4, 0.8, 60 kmol 0.8, 0.4, 40 kmol O 0.8, 0.4, 60 kmol

Answers

1. Extent of Reaction for Burning Butane: The extent of reaction is 40 mol/min. 2. Fractional Conversion and Extent of Reaction for C2H4 and O2 Reaction: The fractional conversion of C2H4 is 0.4, the fractional conversion of O2 is 0.8, and the extent of reaction is 40 kmol.

1. Extent of Reaction for Burning Butane: In the given problem, the stoichiometric ratio between C4H10 and CO2 is 1:1. Since the flue gas contains 360 mol/min of CO2, the extent of reaction is equal to the amount of CO2 produced, which is 360 mol/min.

2. Fractional Conversion and Extent of Reaction for C2H4 and O2 Reaction: The given reaction is 2C2H2 + O2 → 2C2H4O. Initially, 100 kmol of C2H4 and 100 kmol of O2 are fed to the reactor. If 60 kmol of O2 is left at the end, it means 40 kmol of O2 reacted. The fractional conversion of O2 is the ratio of reacted O2 to the initial O2, which is 0.4 (40 kmol/100 kmol).

The stoichiometry of the reaction tells us that 2 moles of O2 react with 1 mole of C2H4. Since the fractional conversion of O2 is 0.4, it means 0.4 moles of O2 reacted for every 1 mole of C2H4 reacted. Therefore, the fractional conversion of C2H4 is 0.4.

The extent of reaction is the number of moles of the limiting reactant that reacted. In this case, the extent of reaction is 40 kmol, as 40 kmol of O2 reacted.

Learn more about stoichiometric  : brainly.com/question/6907332

#SPJ11

6. What is the difference between delayed coking and catalytic
cracking, from the mechanism, products distribution, energy
consumption and profit. (10)

Answers

A.  Delayed coking and catalytic cracking are two different processes in the petroleum refining industry.

Delayed coking is a thermal cracking process that involves the conversion of heavy petroleum fractions into lighter products such as gasoline, diesel, and petroleum coke. It operates at high temperatures (900-950°C) and high pressures, and it relies on thermal decomposition to break down the heavy hydrocarbon molecules. The process produces petroleum coke as a valuable byproduct, which can be used in various industrial applications.

B. Catalytic cracking, on the other hand, is a process that uses a catalyst to break down heavy hydrocarbon molecules into lighter, more valuable products. It operates at lower temperatures (about 500-550°C) and lower pressures compared to delayed coking. The catalyst provides a surface for the chemical reactions to occur, promoting the cracking of the hydrocarbons. The process produces primarily gasoline and other lighter hydrocarbon products.

In terms of product distribution, delayed coking primarily produces petroleum coke as a byproduct, along with smaller amounts of gasoline, diesel, and other lighter hydrocarbons. Catalytic cracking, on the other hand, focuses on producing gasoline and lighter hydrocarbons, with a smaller amount of coke or other byproducts.

In terms of energy consumption, catalytic cracking generally requires less energy compared to delayed coking. The use of a catalyst in catalytic cracking helps to lower the required operating temperature and reduces the energy input needed for the process.

Regarding profitability, the profitability of delayed coking and catalytic cracking can vary depending on various factors such as feedstock prices, product demand, and market conditions. Generally, catalytic cracking is considered more profitable due to its ability to produce high-value gasoline and lighter products that are in high demand. Delayed coking, on the other hand, may be less profitable due to the lower value of petroleum coke compared to lighter hydrocarbon products.

Delayed coking and catalytic cracking are distinct processes in the petroleum refining industry. Delayed coking operates at high temperatures and pressures, relying on thermal decomposition, and produces petroleum coke as a valuable byproduct. Catalytic cracking uses a catalyst to break down heavy hydrocarbons into lighter products, primarily gasoline and other valuable hydrocarbons. Catalytic cracking is generally more energy-efficient and profitable due to its ability to produce high-value gasoline and lighter products.

To know more about refining industry visit

https://brainly.com/question/30819737

#SPJ11

Geothermal sources produce hot water flows on pressure 60 psia
and temperature 300 oF.
If the installation of a power plant with CO2 gas
working fluid works with the following operating conditions:
-

Answers

The enthalpy change of the working fluid (CO2 gas) in the power plant, assuming an isentropic process, can be calculated by finding the difference in enthalpies between the geothermal source conditions and the power plant operating conditions.

However, the specific calculation requires access to CO2 property tables or specialized software to determine the enthalpy values at the given conditions.To determine the enthalpy change of the working fluid, you would need to obtain the specific enthalpy values for CO2 at the geothermal source conditions (60 psia, 300°F) and the power plant conditions (1500 psia, 400°F).

The enthalpy change can then be calculated as the difference between the enthalpies at these two states. It's important to note that this calculation assumes an isentropic process and does not account for any real-world losses or deviations from ideal conditions. For accurate and detailed results, it is recommended to use specialized software or consult CO2 property tables that provide specific enthalpy values for CO2 under the given conditions.

To know more about enthalphy visit:

https://brainly.com/question/14307149

#SPJ11

explain the ideal solution from viewpoint of thermodynamics together with the mathematical functions or the definitions of physical properties and demonstrate the experimental method to find ideal solution for binary

Answers

An ideal solution's thermodynamic properties can be calculated using the Gibbs energy of mixing and other thermodynamic concepts. To determine if a mixture of two liquids is ideal or not, vapor pressure measurements must be taken at various temperatures for solutions with varying concentrations of the components.

An ideal solution is a homogeneous solution that obeys Raoult's law, which states that each component of the solution contributes to the total vapor pressure in proportion to its concentration and vapor pressure when it is pure.

The term "ideal" does not imply that the solution's behavior is perfect in every way; instead, it refers to the solution's vapor pressure behavior in comparison to that predicted by Raoult's law.

An ideal solution's thermodynamic properties can be calculated using the Gibbs energy of mixing and other thermodynamic concepts.

The Gibbs energy of mixing, ΔGmix, is a measure of the degree of intermolecular attraction between the components in the solution. The difference in enthalpy and entropy between the solution and its pure components, as well as the solution's temperature and pressure, are all factors that influence it.

Experimental technique for determining an ideal solution for a binary liquid mixture :

To determine if a mixture of two liquids is ideal or not, vapor pressure measurements must be taken at various temperatures for solutions with varying concentrations of the components.

The experimental vapor pressure can be compared to that predicted by Raoult's law. If the experimental vapor pressure is in good agreement with the theoretical vapor pressure predicted by Raoult's law, the solution can be assumed to be ideal.

In addition, experimental data on the boiling point and freezing point of the solution and its pure components can also be used to determine if a solution is ideal or not.

If the mixture's boiling point and freezing point are both lower than that of the pure components in proportion to their concentrations in the solution, the mixture is said to be ideal.

Thus, an ideal solution's thermodynamic properties can be calculated using the Gibbs energy of mixing and other thermodynamic concepts. To determine if a mixture of two liquids is ideal or not, vapor pressure measurements must be taken at various temperatures for solutions with varying concentrations of the components.

To learn more about Gibb's energy :

https://brainly.com/question/9179942

#SPJ11

1. Phosphorous 32 has a half-life of 15 days. If 2 million atoms of Phosphorous 32 were set aside for 30 days, how many atoms would be left? how many atoms would be left after 45 days?
2. The internal combustion engine in an car emits 0.35Kg of CO per liter of gas burned; How much CO does a 2018 equinox FWD emit in a year?

Answers

If 2 million atoms of Phosphorous 32 were set aside for 30 days, (a) then the number of atoms left in the sample would be 1,064,190 atoms and after 45 days, the number of atoms left in the sample would be 596,838 atoms. (b) A 2018 Equinox FWD emits 63,000.33 Kg of CO per year.

Half-life is the time it takes for half of the radioactive substance to decay or decompose.

1. The formula for radioactive decay is given as : N(t) = N₀e^(−λt)

whereN(t) = the number of atoms at time t ; N₀ = the initial amount of atoms ; λ = decay constant ; t = time

For Phosphorus 32 : Half-life = 15 days

Let N₀ = 2 million atoms

The formula for Phosphorus 32 is given as :

N(t) = N₀e^(−λt)N(30) = N₀e^(−λ * 30)......(i)

We need to find the value of λ.

For half-life, we know that N = ½ N₀ at t = t₁/2

From the above equation, we can say that : 1/2N₀ = N₀e^(−λt₁/2)λ = ln(2) / t₁/2

Substituting the values in the above equation : λ = ln(2) / t₁/2λ = ln(2) / 15λ = 0.0462 / day

Substituting the value of λ in equation (i) : N(30) = 2,000,000e^(−0.0462 * 30)N(30) = 1,064,190.22 ≈ 1,064,190 atoms

After 30 days, the number of atoms left in the sample would be 1,064,190 atoms.

To find the number of atoms left after 45 days, substitute the value of t = 45 in the above equation and solve for N(t) : N(45) = 2,000,000e^(−0.0462 * 45)N(45) = 596,837.53 ≈ 596,838 atoms

Therefore, after 45 days, the number of atoms left in the sample would be 596,838 atoms.

2. According to the problem statement : CO emitted per liter of gas burned = 0.35 Kg

CO2 emitted per liter of gas burned = 2.3 Kg

Total gas consumption of 2018 Equinox FWD = 11.7 L/100km (given)

Total gas consumption per year = 15384.8 km/year * 11.7 L/100km = 180000.96 L/year

CO2 emitted per year = 2.3 Kg/L * 180000.96 L/year = 414000.22 Kg/year

CO emitted per year = 0.35 Kg/L * 180000.96 L/year = 63000.33 Kg/year

Therefore, a 2018 Equinox FWD emits 63,000.33 Kg of CO per year.

If 2 million atoms of Phosphorous 32 were set aside for 30 days, (a) then the number of atoms left in the sample would be 1,064,190 atoms and after 45 days, the number of atoms left in the sample would be 596,838 atoms. (b) A 2018 Equinox FWD emits 63,000.33 Kg of CO per year.

To learn more about half-life :

https://brainly.com/question/1160651

#SPJ11

What is the cell potential of an electrochemical cell that has the half-reactions
shown below?
Fe3++e Fe²+
Cu → Cu²+ + 2e
Click for a reduction potential chart
A. 0.43 V
OB. 1.2 V
O C. 1.1 V
OD. -0.43 V

Answers

The cell potential for the given electrochemical cell with Fe and Cu half-reactions is 1.1 V, calculated by subtracting their reduction potentials. The correct answer is option C.

Given half-reactions: [tex]Fe_3^+ + e^- \rightarrow Fe_2+Cu_2^+ + 2e^- \rightarrow Cu[/tex]. Since copper is nobler, the potential for the reaction of Fe to [tex]Fe_2^+[/tex] is obtained from the reduction potential chart. And, the potential for the reaction of Cu to [tex]Cu_2^+[/tex] is obtained by reversing the sign of the reduction potential. Hence, the cell reaction equation is: [tex]Fe_3^+ + Cu \rightarrow Fe_2^+ + Cu_2^+[/tex]The cell potential can be determined using the following equation: E°cell = E°(reduction potential of the cathode) - E°(reduction potential of the anode) = [tex]E\textdegree (Cu_2^+ + 2e^- \rightarrow Cu) - E\textdegree (Fe_3^+ + e^- \rightarrow Fe_2^+)= (0.34 V) - (-0.77 V) = 1.11 V.[/tex] The cell potential for the given electrochemical cell is 1.1V. Therefore, the correct answer is option C.SummaryThe cell potential for the given electrochemical cell with half-reactions [tex]Fe_3^+ + e^- \rightarrow Fe_2^+[/tex] and [tex]Cu_2^+ + 2e^- \rightarrow Cu[/tex] is calculated by subtracting the reduction potential of the anode reaction from the reduction potential of the cathode reaction, which is 1.1 V.

For more questions on electrochemical cells

https://brainly.com/question/31031753

#SPJ8

1.2. Give the IUPAC names of each of the following di-substituted benzene compounds and also assign the substituents as either (Para (p), Ortho(o) or Meta(m)). (5) NO₂ 1.2.1 Br SO3H 1.2.2 OH 1.2.3 1

Answers

1.2.1: 1,4-Dinitrobenzene (p), 1.2.2: 2-Bromobenzenesulfonic acid (m), 1.2.3: 1-Hydroxy-2-methylbenzene (o)

1.2.1: The compound with the substituent NO2 is named 1,4-dinitrobenzene. In this compound, the two nitro groups (-NO2) are located at the para positions, which are positions 1 and 4 on the benzene ring.

1.2.2: The compound with the substituent Br and SO3H is named 2-bromobenzenesulfonic acid. In this compound, the bromine atom (-Br) is located at the ortho position, which is position 2 on the benzene ring, while the sulfonic acid group (-SO3H) is located at the meta position, which is position 1 on the benzene ring.

1.2.3: The compound with the substituent OH is named 1-hydroxy-2-methylbenzene. In this compound, the hydroxy group (-OH) is located at the ortho position, which is position 1 on the benzene ring, and the methyl group (-CH3) is located at the meta position, which is position 2 on the benzene ring.

The IUPAC names of the di-substituted benzene compounds are 1,4-dinitrobenzene, 2-bromobenzenesulfonic acid, and 1-hydroxy-2-methylbenzene. The substituents on each compound are assigned as para (p), meta (m), and ortho (o) based on their positions on the benzene ring. It is important to accurately name and assign substituents in organic compounds to communicate their structures and understand their properties and reactivities.

To know more about Dinitrobenzene , visit;

https://brainly.com/question/32676396

#SPJ11

4. (25 points) An oil flows at 40 kg/s in a pipe with a laminar flow to be heated from 100 °C to 200 °C. The wall temperature is constant at 220°C. Use the oil properties: µ=5.0 cP, µw=1.5 cP, ID

Answers

The given information is insufficient to provide a direct answer without the specific dimensions of the pipe (inner diameter, length).

To decide the intensity move in the given situation, we can utilize the idea of convective intensity move and the condition for the convective intensity move rate:

Q = h * A * (Tw - T)

where Q is the intensity move rate, h is the convective intensity move coefficient, An is the surface region, Tw is the wall temperature, and T is the mass temperature of the oil.

Considering that the wall temperature (Tw) is 220°C, the mass temperature (T) goes from 100°C to 200°C, and the oil properties (consistency) are given, we can compute the convective intensity move coefficient utilizing the Nusselt number (Nu) relationship for laminar stream in a line:

Nu = 3.66 + (0.0668 * Re * Pr)/[tex](1 + 0.04 * (Re^{0.67}) * (Pr^{(1/3)}))[/tex]

where Re is the Reynolds number and Pr is the Prandtl number.

The Reynolds number (Re) can be determined utilizing the condition:

Re = (ρ * v * D)/µ

where ρ is the thickness of the oil, v is the speed of the oil, D is the measurement of the line, and µ is the powerful consistency of the oil.

Considering that the oil stream rate [tex](m_{dot})[/tex] is 40 kg/s, we can compute the speed (v) utilizing the condition:

v =[tex]m_{dot[/tex]/(ρ * A)

where An is the cross-sectional region of the line.

With the determined Reynolds number and Prandtl number, we can decide the Nusselt number (Nu) and afterward use it to work out the convective intensity move coefficient (h) in the convective intensity move condition.

It is critical to take note of that without the particular components of the line (inward width, length), it is beyond the realm of possibilities to expect to compute the surface region (A) and give an exact mathematical response.

To learn more about temperature, refer:

https://brainly.com/question/13536388

#SPJ4

The complete question is:

(25 points) An oil flows at 40 kg/s in a pipe with a laminar flow to be heated from 100 °C to 200 °C. The wall temperature is constant at 220°C. Use the oil properties: µ=5.0 cP, µw=1.5 cP, ID=10 cm, k=0.15 W/m°C, Cp=2.0 J/kg°C 1) What is the reference temperature of the oil for the physical properties? 2) Calculate the required length of the tube in m (Laminar flow). 3) Calculate the heat transfer coefficient of the oil (h;) in W/m²°C.

A voltaic cell is constructed with two Zn2+-Zn electrodes,
where the half-reaction is:
Zn2+ + 2e- → Zn (s) E° = -0.763 V
A) 0.0798
B) -378
C) 0.1069
D) -1.54 × 10^-3
The concentrations of

Answers

The concentrations of the reactants and products are not provided in the given question.

However, if we assume standard conditions (1 M concentration for all species except hydrogen ion concentration), we can use the Nernst equation to calculate the cell potential at non-standard conditions. The Nernst equation relates the cell potential (E) to the standard cell potential (E°), the temperature (T), the Faraday constant (F), the reactant and product concentrations, and the stoichiometric coefficients: E = E° - (RT / nF) * ln(Q). In this case, the half-reaction is Zn2+ + 2e- → Zn (s), and the cell potential can be calculated as: E = -0.763 V - (RT / (2F)) * ln(Q).

The value of Q depends on the concentrations of Zn2+ and Zn. Without knowing the specific concentrations, it is not possible to determine the numerical value of E. Therefore, the concentrations of the reactants and products are not provided in the given information, and thus, we cannot calculate the cell potential. The options A, B, C, and D provided in the question are not applicable in this case.

To learn more about reactants click here: brainly.com/question/30129541

#SPJ11

Minitab - Response Surface Method 1. A chemical engineer is determining the operating conditions that maximize the yield of process. Two controllable variable influence process yield: reaction time an

Answers

The main effect diagram using the first-order model data in Table 1.1 is as follows:

Main Effect Diagram:

Reaction Time (V1): 0.035

Reaction Temperature (V2): -0.19

To obtain the main effect diagram using the first-order model data in Table 1.1, we need to calculate the main effects for each variable. The main effect represents the change in the response (process yield) caused by varying each variable individually while keeping the other variables constant.

Calculate the Average Response:

To start, we calculate the average response for each variable setting. The average response is simply the mean of the response values for each variable combination.

Average Response for V1 (Reaction Time = 30 minutes):

(39.3 + 40.0 + 40.9 + 41.5) / 4 = 40.425

Average Response for V2 (Reaction Time = 35 minutes):

(40.3 + 40.5 + 40.7 + 40.2 + 40.6) / 5 = 40.46

Average Response for V3 (Reaction Temperature = 150°F):

(39.3 + 40.9 + 40.3 + 40.7) / 4 = 40.55

Average Response for V4 (Reaction Temperature = 160°F):

(40.0 + 41.5 + 40.5 + 40.2 + 40.6) / 5 = 40.36

Calculate the Main Effects:

The main effect represents the difference between the average response at the high level and the average response at the low level for each variable.

Main Effect for V1 (Reaction Time):

Main Effect V1 = Average Response at High Level - Average Response at Low Level

Main Effect V1 = 40.46 - 40.425

= 0.035

Main Effect for V2 (Reaction Temperature):

Main Effect V2 = Average Response at High Level - Average Response at Low Level

Main Effect V2 = 40.36 - 40.55

= -0.19

The main effect diagram using the first-order model data in Table 1.1 is as follows:

Main Effect Diagram:

Reaction Time (V1): 0.035

Reaction Temperature (V2): -0.19

The main effect diagram shows the influence of each variable (reaction time and reaction temperature) on the process yield (response). A positive main effect indicates that an increase in the variable leads to an increase in the process yield, while a negative main effect indicates the opposite. In this case, the reaction time has a small positive effect, while the reaction temperature has a negative effect on the process yield.

To know more about Temperature, visit

brainly.com/question/29039495

#SPJ11

Minitab - Response Surface Method 1. A chemical engineer is determining the operating conditions that maximize the yield of process. Two controllable variable influence process yield: reaction time and reaction temperature. The engineer is currently operating the process with a reaction time of 35 minutes and a temperature of 155°F, which result in yields of around 40 percent. Because it is unlikely that this region contains the optimum, she fits a first-order model and applies the method of steepest ascent. Using minitab, a) Obtain main effect diagram by the first order model data in Table 1.1 Table 1.1 Process Data for Fitting the First Order Model Coded Natural Variables Variables Response V 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2 40,6 & 1 & 22222 30 30 40 40 35 35 35 35 35 6 150 160 150 160 155 155 155 155 155 3₁ 0 0 0 0 0  

Polarities of analyte functional group increase in the order of hydrocarbon ethers < esters

Answers

The correct order of the increasing polarity of the analyte functional group isEthers < Esters.

The given statement is "Polarities of analyte functional group increase in the order of hydrocarbon ethers < esters."  The order of polarities of functional groups is the order of their increasing polarity (i.e., less polar to more polar) based on their electron-donating or withdrawing ability from the rest of the molecule.Polarity of analyte: The analyte's polarity is directly proportional to the dipole moment of the functional group, which is associated with a difference in electronegativity between the atoms that make up the functional group.The electronegativity of an element is its ability to attract electrons towards itself. The greater the difference in electronegativity between two atoms, the more polar their bond, and hence the greater the polarity of the molecule.

To find the correct order of the increasing polarity of the analyte functional group, let's first compare the two groups: hydrocarbon ethers and esters. Here, esters have a carbonyl group while ethers have an oxygen atom with two alkyl or aryl groups. The carbonyl group has more electronegative oxygen, which pulls electrons away from the carbon atom, resulting in a polar molecule. On the other hand, ethers have a less polar oxygen atom with two alkyl or aryl groups, making them less polar than esters. Therefore, the correct order of the increasing polarity of the analyte functional group isEthers < Esters.

To know more about polarity visit:-

https://brainly.com/question/33242453

#SPJ11

Which solution will have the highest pH? 0.25 M KOH 0.25 M NaBr 0.25 M HF 0.25 M Ba(OH)2 0.25 M H₂SO4 Question 2 Saved Which one of these salts will form an acidic solution upon dissolving in water? LICI NH4Br NaNO3 KCN NaF Question 3 What is the pH of a 0.020 M solution of NH4Cl? [K(NH3) = 1.8 × 10−5] 3.22 8.52 10.78 5.48 7.00 Question 4 Consider the following reaction. Which statement is CORRECT? CN + H₂SO3 HCN + HSO3 CN is a Bronsted-Lowry base because it is an electron pair acceptor. H₂SO3 is a Lewis acid because it is an electron pair donor. CN is a Lewis base because it is an electron pair donor. This is only a Bronsted-Lowry acid-base reaction (not a Lewis acid-base reaction).

Answers

the pH of a 0.020 M solution of NH4Cl is approximately 4.75.

1. The solution with the highest pH would be 0.25 M KOH. KOH is a strong base that completely dissociates in water, resulting in the highest concentration of hydroxide ions (OH-) and, therefore, the highest pH.

2. The salt that will form an acidic solution upon dissolving in water is KCN. KCN is the salt of a weak acid (HCN) and a strong base (KOH). When it dissolves in water, the weak acid component (HCN) will partially dissociate, releasing hydrogen ions (H+), leading to an acidic solution.

3. To determine the pH of a 0.020 M solution of NH4Cl, we need to consider the ionization of the ammonium ion (NH4+) and the equilibrium with water. The ammonium ion acts as a weak acid, and its ionization in water can be represented as follows:

NH4+ + H2O ⇌ NH3 + H3O+

The equilibrium constant expression for this reaction is:

Ka = [NH3][H3O+] / [NH4+]

Given that Ka (the ionization constant of NH4+) is 1.8 × 10^(-5), we can set up an equilibrium expression and solve for the concentration of H3O+ (which is equal to the concentration of OH- due to water being neutral):

1.8 × 10^(-5) = [NH3][H3O+] / [NH4+]

Since the NH4Cl solution only contains NH4+ and Cl-, and Cl- does not contribute to the pH, we can assume that the concentration of NH4+ is equal to the concentration of NH3.

Therefore, [NH3] = [NH4+] = 0.020 M

Plugging this into the equilibrium expression, we have:

1.8 × 10^(-5) = (0.020)([H3O+]) / (0.020)

Simplifying, we find:

[H3O+] = 1.8 × 10^(-5) M

To calculate the pH, we can take the negative logarithm of the H3O+ concentration:

pH = -log10(1.8 × 10^(-5)) ≈ 4.75

Therefore, the pH of a 0.020 M solution of NH4Cl is approximately 4.75.

4. In the given reaction, CN + H2SO3 ⇌ HCN + HSO3, CN is acting as a Lewis base because it donates a pair of electrons to form a bond with H+. H2SO3, on the other hand, is acting as a Bronsted-Lowry acid because it donates a proton (H+) to form a bond with CN. Therefore, the correct statement is: CN is a Lewis base because it is an electron pair donor.

To know more about PH Level related question visit:

https://brainly.com/question/2288405

#SPJ11

In a chemical production plant, benzene is made by the reaction of toluene and hydrogen. Reaction is as follows: C7H8 + H₂ → C6H6+ CH4 The complete process of producing toluene uses a reactor and a liquid-gas separator. 7820 kg/h toluene and 610 kg/h hydrogen are in the fresh feed. Pure toluene from the separator is fed back to the reactor. The overall conversion of toluene is 78%. Determine the: a. molar flowrates of the product stream, the mixed gas stream, and the recycle stream b. percent mole composition of the mixed gas stream c. percent mole composition of the stream leaving the reactor d. single-pass conversion of toluene

Answers

a. Molar flowrates of the product stream, the mixed gas stream, and the recycle stream:

Given that 7820 kg/h toluene and 610 kg/h hydrogen are in the fresh feed.So the molar flowrate of toluene is given by: n(C7H8) = 7820 kg/h / 92.14 kg/kmol = 84.78 kmol/h

And the molar flowrate of hydrogen is given by: n(H2) = 610 kg/h / 2.016 kg/kmol = 302.77 kmol/h.

From the reaction equation: C7H8 + H2 → C6H6 + CH4

We see that one mole of toluene reacts with one mole of hydrogen to form one mole of benzene and one mole of methane. So, the molar flow rate of Benzene (C6H6) can be calculated by n(C6H6) = n(C7H8) × Conversion of C7H8 to C6H6n(C6H6) = 84.78 kmol/h × 0.78 = 66.22 kmol/h. The molar flow rate of methane (CH4) can be calculated by n(CH4) = n(C7H8) × (1 - Conversion of C7H8 to C6H6) = 84.78 kmol/h × (1 - 0.78) = 18.56 kmol/h .

Therefore, the molar flow rates of the product stream are n(C6H6) = 66.22 kmol/h and n(CH4) = 18.56 kmol/h.

The mixed gas stream contains toluene and unreacted hydrogen. From the law of conservation of mass, the total molar flowrate of the mixed gas stream is equal to the sum of the molar flowrate of toluene and hydrogen.n(Toluene) = n(C7H8) = 84.78 kmol/hn(Hydrogen) = n(H2) = 302.77 kmol/h. Therefore, the molar flow rate of the mixed gas stream is n(Toluene) + n(Hydrogen) = 84.78 kmol/h + 302.77 kmol/h = 387.55 kmol/h. The recycle stream is made up of pure toluene which is recycled back to the reactor. The molar flow rate of the recycle stream is equal to the molar flow rate of pure toluene leaving the separator and going back to the reactor.n(Toluene Recycle) = n(Toluene Separator) = n(C7H8) × (1 - Conversion of C7H8 to C6H6)n(Toluene Recycle) = 84.78 kmol/h × (1 - 0.78) = 18.65 kmol/h

b. Percent mole composition of the mixed gas stream:

The percent mole composition of each component in the mixed gas stream can be calculated as follows:

% composition of toluene in the mixed gas stream = n(Toluene) / (n(Toluene) + n(Hydrogen)) × 100% composition of toluene in the mixed gas stream = 84.78 kmol/h / 387.55 kmol/h × 100% = 21.88%. % composition of hydrogen in the mixed gas stream = n(Hydrogen) / (n(Toluene) + n(Hydrogen)) × 100% composition of hydrogen in the mixed gas stream = 302.77 kmol/h / 387.55 kmol/h × 100% = 78.12%

c. Percent mole composition of the stream leaving the reactor:

The reaction of toluene and hydrogen results in the complete conversion of toluene and the formation of benzene and methane. Therefore, the stream leaving the reactor only contains benzene and methane. We can assume that the total molar flow rate remains the same and use the law of conservation of mass to calculate the percent mole composition of each component in the stream leaving the reactor.

% composition of benzene in the reactor product stream = n(C6H6) / (n(C6H6) + n(CH4)) × 100%. composition of benzene in the reactor product stream = 66.22 kmol/h / (66.22 kmol/h + 18.56 kmol/h) × 100% = 78.05%. % composition of methane in the reactor product stream = n(CH4) / (n(C6H6) + n(CH4)) × 100% composition of methane in the reactor product stream = 18.56 kmol/h / (66.22 kmol/h + 18.56 kmol/h) × 100% = 21.95%

d. Single-pass conversion of toluene:

The single-pass conversion of toluene is the fraction of toluene that is converted to benzene in one pass through the reactor. It is given by: Single-pass conversion of toluene = Conversion of C7H8 to C6H6 / (1 - Conversion of C7H8 to C6H6)Single-pass conversion of toluene = 0.78 / (1 - 0.78)Single-pass conversion of toluene = 3.55.

Learn about percent mole composition : https://brainly.com/question/20393858

#SPJ11

The gas phase reaction, N₂ + 3 H₂-2 NHs, is carried out isothermally. The Ne molar fraction in the feed is 0.1 for a mixture of nitrogen and hydrogen. Use: N₂ molar flow= 10 mols/s, P=10 Atm, and T-227 C. a) Which is the limiting reactant? b) Construct a complete stoichiometric table. c) What are the values of, CA, 8, and e? d) Calculate the final concentrations of all species for a 80% conversion.

Answers

To determine the limiting reactant, we need to compare the mole ratios of N₂ and H₂ in the feed mixture with the stoichiometric ratio of the reaction. The stoichiometric ratio of N₂ to H₂ is 1:3.

A)Given that the N₂ molar fraction in the feed is 0.1 and the N₂ molar flow rate is 10 mol/s, we can calculate the actual moles of N₂ in the feed:

Actual moles of N₂ = N₂ molar fraction * N₂ molar flow = 0.1 * 10 = 1 mol/s

Next, we need to calculate the actual moles of H₂ in the feed:

Actual moles of H₂ = (1 mol/s) * (3 mol H₂ / 1 mol N₂) = 3 mol/s

Since the actual moles of N₂ (1 mol/s) are less than the moles of H₂ (3 mol/s), N₂ is the limiting reactant.

b) A stoichiometric table can be constructed to show the initial moles, moles reacted, and final moles of each species:

Species | Initial Moles | Moles Reacted | Final Moles

--------------------------------------------------

N₂      | 1 mol         |               | 1 - x mol

H₂      | 3 mol         |               | 3 - 3x mol

NH₃     | 0 mol         |               | 2x mol

c) In the stoichiometric table, "x" represents the extent of reaction or the fraction of N₂ that has been converted to NH₃. At 80% conversion, x = 0.8.

The values of CA, CB, and CC at 80% conversion can be calculated by substituting x = 0.8 into the stoichiometric table:

CA (concentration of N₂) = (1 mol/s) - (1 mol/s * 0.8) = 0.2 mol/s

CB (concentration of H₂) = (3 mol/s) - (3 mol/s * 0.8) = 0.6 mol/s

CC (concentration of NH₃) = (2 mol/s * 0.8) = 1.6 mol/s

d) The final concentrations of all species at 80% conversion are:

[ N₂ ] = 0.2 mol/s

[ H₂ ] = 0.6 mol/s

[ NH₃ ] = 1.6 mol/s

These concentrations represent the amounts of each species present in the reaction mixture after 80% of the N₂ has been converted to NH₃.

know more about stoichiometric :brainly.com/question/24663542

#SPJ11

A sample of gas is placed in a rigid container. If the original conditions were 320 torr and 400 K, what will be the pressure in the container at 200 K?
a. 160 torr
b. 640 torr
c. 250 torr
d. 760 torr

Answers

To solve this problem, we can use the combined gas law, which states:

P₁V₁/T₁ = P₂V₂/T₂

where P₁ and T₁ are the initial pressure and temperature, P₂ and T₂ are the final pressure and temperature, and V₁ and V₂ are the initial and final volumes (assuming constant volume in this case since the container is rigid).

Let's plug in the values given:

P₁ = 320 torr
T₁ = 400 K
T₂ = 200 K

Since the volume is constant, V₁ = V₂, so we don't need to include it in the equation.

Now, we can solve for P₂:

P₁/T₁ = P₂/T₂

P₂ = (P₁ * T₂) / T₁
= (320 torr * 200 K) / 400 K
= 160 torr

Therefore, the pressure in the container at 200 K would be 160 torr (option a).

compound synthesis, show with curved arrow mechanism
Note: reagents should be found commercially ( from Sigma
Aldrich)
Propose a curved arrow mechanism for making this product: H ^ are using Note: please use a complete reagents, for eg. if you. an acid please don't just write H+ the full acid, for eg. write Ht but giv

Answers

The compound synthesis for the given compound (H3C-CH=C(Cl)-CH2-NH-CO-C6H5) using curved arrow mechanism can be represented as follows:

Step 1: The given reactants are H2N-CO-C6H5 and H3C-CH=CH-Cl. Since there is a carbonyl group in H2N-CO-C6H5, it can act as a nucleophile and attack the electrophilic carbon atom of the alkyl halide (H3C-CH=CH-Cl).

H2N-CO-C6H5 + H3C-CH=CH-Cl → H3C-CH=C(Cl)-CH2-NH-CO-C6H5

This reaction takes place in the presence of a base like NaH or KOH.

Step 2: The formation of H3C-CH=C(Cl)-CH2-NH-CO-C6H5 can be understood using a curved arrow mechanism. The curved arrow mechanism is shown below:

Here, the curly arrows represent the movement of electron pairs during the reaction.

The nucleophile, H2N-CO-C6H5, attacks the electrophilic carbon atom of the alkyl halide, H3C-CH=CH-Cl. The Cl atom of the alkyl halide acts as a leaving group.

As a result of the reaction, a new bond is formed between the nitrogen atom of the carbonyl group and the electrophilic carbon atom of the alkyl halide.

Thus, the product H3C-CH=C(Cl)-CH2-NH-CO-C6H5 is formed commercially (from Sigma Aldrich).

Know more about mechanism here:

https://brainly.com/question/29752801

#SPJ11

Please discuss the meaning of 1E4 [Bq/t] which is a
maximum concentration of Cs-137 for the license application of
Trench disposal to JPDR decommissioning.

Answers

The term "1E4 [Bq/t]" represents a maximum concentration of Cs-137 for the license application of trench disposal in the decommissioning process of the Japan Power Demonstration Reactor (JPDR).

Let's break down the meaning of this term:

1. Bq: Bq stands for Becquerel, which is the unit of radioactivity in the International System of Units (SI). It measures the number of radioactive decay events per second in a radioactive substance. It is named after Henri Becquerel, a French physicist who discovered radioactivity.

2. t: "t" represents a unit of mass, typically in metric tons (t). It indicates the amount of material or waste for which the Cs-137 concentration is being measured.

3. Cs-137: Cs-137 is an isotope of cesium, a radioactive element. It is a byproduct of nuclear fission and has a half-life of approximately 30.17 years. Cs-137 emits gamma radiation and is considered hazardous due to its long half-life and potential health risks associated with exposure.

4. 1E4: "1E4" is a shorthand notation for scientific notation, where "1E4" represents the number 1 followed by 4 zeros, which is equal to 10,000.

Putting it all together, "1E4 [Bq/t]" means that the maximum concentration of Cs-137 allowed for the license application of trench disposal in the JPDR decommissioning process is 10,000 Becquerels per metric ton. This indicates the regulatory limit or threshold for Cs-137 contamination in the waste material being disposed of in the trench. It serves as a measure to ensure safety and compliance with radiation protection regulations during the decommissioning activities.

Learn more about licenses at https://brainly.com/question/28507911

#SPJ11

Which substance will have the largest temperature change if the same amount of heat is added to each of them? Gold, Au(s): specific heat = 0. 0308 calories per gram degree Celsius. Water, H2O(l): specific heat = 1. 00 calorie per gram degree Celsius. Copper, Cu(s): specific heat = 0. 0920 calorie per gram degree Celsius. Ethanol, C2H5OH(l): specific heat = 0. 588 calorie per gram degree Celsius

Answers

Explanation:

The one with the smallest specific heat .....this will heat up the most degrees per  calories

 assume you have 1 gm  of each substance and you want to heat it up 1 degree C

   then   gold will require  .0308 cal

                 water  1 cal

              copper .092 cal

            ethanol .588 cal

so gold will require fewer calories to change temp 1 C ....or will heat up the most

Alla™ 1.2. Give the IUPAC names of each of the following di-substituted benzene compounds and also assign the substituents as either (Para (p), Ortho(o) or Meta(m)). (5) NO₂ 1.2.1 Br SO3H 1.2.2 OH

Answers

1.2.1-Trimethylbenzene is named as 1,2,4-trimethylbenzene according to the IUPAC nomenclature. Bromotoluene is named as 1-bromo-2-methylbenzene. Benzenesulfonic acid is named as 1-sulfobenzoic acid. Phenol is named as 2-hydroxy-1-methylbenzene.

Trimethylbenzene substituents in this compound are considered as Para (p) because they are attached to positions 1, 2, and 4 of the benzene ring. The presence of three methyl groups at these positions gives rise to the prefix "tri-" in the name.

1.2.1-Bromotoluene is named as 1-bromo-2-methylbenzene. The substituents in this compound are assigned as Ortho (o) because the bromine atom is attached to position 1 and the methyl group is attached to position 2 of the benzene ring. The substituents are in adjacent positions, hence the prefix "ortho-".

1.2.1-Benzenesulfonic acid is named as 1-sulfobenzoic acid. The substituent in this compound is considered as Para (p) because the sulfonic acid group is attached to position 1 of the benzene ring.

1.2.2-Phenol is named as 2-hydroxy-1-methylbenzene. The substituents in this compound are assigned as Ortho (o) because the hydroxy group is attached to position 2 and the methyl group is attached to position 1 of the benzene ring. The substituents are in adjacent positions, hence the prefix "ortho-".

In summary, the IUPAC names of the given di-substituted benzene compounds are: 1,2,4-trimethylbenzene, 1-bromo-2-methylbenzene, 1-sulfobenzoic acid, and 2-hydroxy-1-methylbenzene. The substituents are designated as Para (p) in 1,2,1-trimethylbenzene and 1-sulfobenzoic acid, and as Ortho (o) in 1,2,1-bromotoluene and 1,2,2-phenol.

To know more about Trimethylbenzene , visit;

https://brainly.com/question/28772551

#SPJ11

Other Questions
Aurelius says "Choose not to be harmedand you wont feel harmed. Dont feel harmedand you havent been." Explain Marcus Aurelius' meaning in these lines. Do you agree or disagree, and why? The equation for the Surface Area of a Cone is: A=(r^2)+(rL) The Slant Height (L) is increasing from 0.5 meter until 15 meters with an increase of 2 What chore is the woman doing for her family? Select the most logical choice based on the image below. What is meant by the principle of moments MTCM company informs you the items at the origin of its operating WCR relating to year N, and asks you to assess the WCR ratio relating to inventory, customer and supplier , and give a short comment of its situation . Beginning Inventory Final inventory Inventories of raw materials Finished good 95000 902 000 126000 958 000 External cost ( services extrieurs): 721600 Net purchases of raw materials (Achats nets de Matires et approvisionnements): 1010 400 Production cost of manufactured Finished good (Cot de production des PF fabriqus): 4968 000 Sales : 8140 000 Receivables : 990 500 Payables : 236 000 VAT: 20% The firm gives you the results of Year N-1 Ratios Inventories of raw materials Inventories finished good Receivables Payables Days 36 60 32 45,5 1 year: 360 Days De Plain carbon steel, containing 0.6% carbon is heated 25 C above the upper critical temperatu and heat treated separately as follows: a. Quenched in cold water b. Slowly cooled in the furnace c. Quenched in water and reheated at 250 C d. Quenched in water and reheated at 600 C *Describe the structure/morphology at room temperature which will be formed in each case wi the help of appropriate diagrams. Explain the generalized properties (physical) of each form a justify the treatment you will prefer for making cutting tools and shock resistant engineering components. a. Draw schematics to show different types of Bravis lattices in crystalline materials. Calculate the atomic packing factor (APF) of FCC and BCC crystal structure. 8. State the conditions for unlimited solid solubility for an alloy system. c. From Gibb's phase rule, explain why a triple point is an invariant point. d. What are point defects? Explain two types of point defects. In 500 words or more, describe the differences between immigration, exile, and displacement. Give examples of each of these situations and detail the causes that cause a person to emigrate or be exiled or displaced. (5 pts each) Use the following schema to give the relational algebra equations for the following queries.Student (sid:integer, sname:string, major:string)Class (cid:integer, cname: string, cdesc: string)Enrolled (sid:integer, cid: integer, esemester: string, grade: string)Building (bid: integer, bname: string)Classrooms (crid:integer, bid: integer, crfloor: int)ClassAssigned (cid: integer, crid: integer, casemester: string)1. Find all the student's names enrolled in CS430dl. 2. Find all the classes Hans Solo took in the SP16 semester. 3. Find all the classrooms on the second floor of building "A". 4. Find all the class names that are located in Classroom 130. 5. Find all the buildings that have ever had CS430dl in one of their classrooms. 6. Find all the classrooms that Alice Wonderland has been in. 7. Find all the students with a CS major that have been in a class in either the "A" building or the "B" building. 8. Find all the classrooms that are in use during the SS16 semester. Please answer all of those questions in SQL. Identify the expression from the list below that can be used to derive the integral control signal u a. u = kj b. None of the answers given O c.uk, e dt O d. = ke The weak acid HX has a pka - 5.74. If 20.00 mL of 0.100 MHX are titrated with 0.100 M sodium hydroxide solution, what is the pH at the equivalence point? Make a java program sorting algorithm. Choose the fastest sorting algorithm based on your thoughts. There will be three time trials to be conducted1. Input: 1 up to 1000 Output: 1 up to 10002. Input: 1000 down to 1 Output: 1 up to 10003. Input: 1 to 1000 random Output: 1 up to 1000Criteria:*Identified top sorting algorithm*Conducted three time trials*Ranked the fastest sorting algorithm Describe the essential elements of a persona. Define the key demographic factors that are the basis of how customers are grouped and categorized. Which of these factors are most important for your business? Phase voltage and current of a star-connected inductive load is 150 V and 25 A. Power factor of load is 0.707 lagging. Assuming that the system is a 3-phase three wire and power is measured using two watt meters, find the reading of watt meters. (14) & ZX V X V 30 710 A Glam Event Company has hired you to create a database to store information about the parks of their event. Based on the following requirements, you need to design an ER/EER Diagram.The park has a number of locations throughout the city. Each location has a location ID, and Address, a description and a maximum capacity.Each location has different areas, for example, picnic areas, football fields, etc. Each area has an area ID, a type, a description and a size. Each Area is managed by one location.Events are held at the park, and the park tracks the Event ID, the event name, description where the event is being held. One event can be held across multiple areas and each area able to accept many events.There are three different types of events, Sporting Events, which have the name of the team competing, Performances, which have the name of the performer, and the duration. Each performance can have multiple performers, and Conferences, which have a sponsoring organization.The park also wishes to track information about visitors to the park. They assign each visitor a visitor ID, and store their name, date of birth and registration date. A visitor can visit many locations and each location can be visited by many visitors. They also record information about the locations visited by each visitor, and the date/time of each visit. linear boundary of the field, as shown in the figure below. Calculate the distance x from the point of entry to where the proton leaves the field. Tries 0/10 Determine the angle between the boundary and the proton's velocity vector as it leaves the field. The only force acting on a 2.3 kg body as it moves along the positive x axis has an x component Fx = 4N, where x is in meters. The velocity of the body at x=1.4 m is 9.1 m/s. (a) What is the velocity of the body at x=4.6 m ? (b) At what positive value of x will the body have a velocity of 5.5 m/s ? (a) Number ________________ Units _________________(b) Number ________________ Units _________________ Would one generally make an attempt on constructing in Python a counterpart of the structure type in MATLAB/Octave? Is there perhaps an alternative that the Python language naturally provides, though not with a similar syntax? Explain. A 4-pole, 230-V, 60 Hz, Y-connected, three-phase induction motor has the following parameters on a per-phase basis: R1= 0.5, R2 = 0.25, X1 = 0.75 , X2= 0.5 , Xm = 100 , and Rc = 500 . The friction and windage loss is 150 W.(2.1) Determine the efficiency and the shaft torque of the motor at its rated slip of 2.5%.(2.2) Draw the power-flow diagram in (2.1)(2.3)Using the approximate equivalent circuit, determine the efficiency and the shaft torque of the motor at its rated slip. what is the connection between seo and content marketing Qu 1 Using the separation of variable method, solve the following differential equations in a). and b). a). 2xy+6x+(x^24)y=0